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A Stochastic Approach to Estimate the Uncertainty
Involved in B-Spline Image Registration

M. Hub*, M. L. Kessler, and C. P. Karger

Abstract—Uncertainties in image registration may be a signif-
icant source of errors in anatomy mapping as well as dose accu-
mulation in radiotherapy. It is, therefore, essential to validate the
accuracy of image registration. Here, we propose a method to de-
tect areas where mono modal B-spline registration performs well
and to distinguish those from areas of the same image, where the
registration is likely to be less accurate. It is a stochastic approach
to automatically estimate the uncertainty of the resulting displace-
ment vector field. The coefficients resulting from the B-spline reg-
istration are subject to moderate and randomly performed varia-
tions. A quantity is proposed to characterize the local sensitivity of
the similarity measure to these variations. We demonstrate the sta-
tistical dependence between the local image registration error and
this quantity by calculating their mutual information. We show the
significance of the statistical dependence with an approach based
on random redistributions. The proposed method has the potential
to divide an image into subregions which differ in the magnitude
of their average registration error.

Index Terms—Elastic image registration, local uncertainty.

I. INTRODUCTION

E LASIC registration of medical images may play an im-
portant role in the daily routine of radiation oncology in

the future as adaptive radiotherapy requires the incorporation of
multiple datasets in the treatment planning process as well as
for the patient setup [1]. Therefore, it is essential to know the
geometric correspondence between voxels of different images.
A number of algorithms have been developed to perform fast
elastic image registration [2]–[7].

One major group of these algorithms is driven by intensity
differences and intensity gradients. A similarity measure is op-
timized either directly [6] or in an indirect way [4], [5]. The
presence of image structure is a basic requirement for the fea-
sibility of these methods. More generally, information on the
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geometric alignment must be encoded in the image intensities.
Local alignment errors are likely to occur in homogenous re-
gions of the datasets where image structure is missing.

Most validation methods do not account for errors due to
homogeneity. Exceptions are [8] where the sensitivity of the
metric to rigid transformations is evaluated, as well as [7], where
the sensitivity of the metric to rigid translations is evaluated in
image subregions.

Various methods to validate the elastic registration of med-
ical images have been proposed such as tracking of landmarks
[10]–[13], check of the alignment of contours [13], [14], eval-
uation of the overlay of corresponding edges with a color wash
technique as well as split screen visualization [2] or an investi-
gation of the registration result in test cases, where the ground
truth on the deformation is known. Such test cases are either ob-
tained by simulating deformations on clinical data [5], [6], [15],
[16], [17], or with the help of a physical phantom as in [18] and
[19]. In [9], a bootstrap method is proposed to estimate the un-
certainty of rigid image registration without ground truth.

Each of these methods has its drawbacks. Visible landmarks
may consist of voxels that drive the registration, and may there-
fore not be representative for errors in homogeneous regions of
the same dataset. The overlay of contours can only be evalu-
ated, if the contours are available in both datasets. This is not
the case when the algorithm is used to transfer contours from
one dataset to another. Registration of artificially deformed im-
ages provides the underlaying ground truth of the deformation.
In a clinical setting, however, this information is not available
and it is the task of the image registration to estimate it, so here
this method can not be applied.

The color wash or split screen visualization is helpful to as-
sess the alignment of corresponding edges, but severe registra-
tion errors may be present in homogeneous regions of the image.
These errors are not visible in a color wash or split screen image.

The approach described in [9] is promising, however, this
work does not primarily discuss elastic image registration.

A recently proposed method to validate displacement vector
fields (DVFs) is based on the investigation of their physical fi-
delity. This method was quantitatively tested on a “demons algo-
rithm” [20], [21]. Each registration approach, the “demons algo-
rithm” as well as B-spline registration has its specific strengths
and weaknesses and therefore a validation approach needs to
be tailored to the difficulties of the specific registration algo-
rithm. Regarding the “demons algorithm” its large number of
degrees-of-freedom allows to describe complex deformations
and there are no problems with a potential model mismatch as
it can occur in B-spline registration. At the same time, due to
the large number of degrees-of-freedom the algorithm is likely
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to run into problems with the physical fidelity of the deforma-
tion field. Additionally, due to the nature of its optimization, the
changes of the deformation field per iteration are relatively large
in regions of small intensity gradients. Therefore, the algorithm
is rather sensitive to noise.

Parameterized methods, such as B-spline registration, face
other problems as they are operating with limited degrees-of-
freedom and therefore may be affected by model mismatch. The
error estimation should take this into account. At the same time
the problem of nonfidelity is less likely to be severe in case
of B-spline transformations as nonlinear as well as noninvert-
ible deformations can be penalized [6]. Deformation of rigid
structures has been penalized [22] and some authors consider
B-spline deformation to be free of folding in case of a multires-
olution approach in the knot spacing [23]. For another param-
eterized registration method noninvertible deformations were
avoided by constraints [24]. Nevertheless, a B-spline deforma-
tion field, which fulfills requirements of physical fidelity may
still significantly differ from the underlying ground truth due to
missing image structure or unaligned edges as consequence of
model mismatch. The method described here is tailored towards
a parameterized registration method and takes its specific prob-
lems and weaknesses into account.

The basic idea of this approach is to focus on the local sensi-
tivity of the similarity measure to additional deformations after
the registration. If the registration has resulted in the correct de-
formation, and if there is sufficient structure in the image, such
that the optimum of the metric is well-defined in the sense of
a sharp optimum, the similarity measure should get worse with
any additional deformation. In regions where this is locally not
the case, either due to missaligned structures or in homogenous
regions, we can not distinguish whether the initial or modified
displacement vector is the better estimate. This ambiguity can
be exploited to evaluate the involved geometrical uncertainty.

The aim of this paper is to propose an algorithm and to
demonstrate its potential to divide an image into subregions
that differ in the magnitude of their average registration error.
A color display of these regions can help a clinician to identify
image regions where dose as well as anatomy mapping is likely
to be inaccurate.

II. THEORY

A. B-spline Registration

Any polynomial spline can be regarded as a superposition
of B-spline basis functions as proposed in [25]. B-spline signal
processing has been extensively discussed in [26] and [27] and
its application to multidimensional elastic registration was de-
scribed in [6].

Here, we regard three dimensional images. The result of the
registration is a displacement vector field (DVF) which repre-
sents the deformation as a displacement vector in each voxel.
In B-spline registration the DVF at the voxel position is
represented by

where is the basis function of order , represents the
knot spacing, and represents the coefficients at knot . In
this notation, and represent three-dimensional vec-
tors. The spatial components of these vectors are denoted with
an index . In our study a multiresolution approach
in the knot spacing was applied with a finest knot spacing of
32 mm in plane and 24 mm cross plane.

Let us regard two images with integer intensity, the test image
and the reference image , both represented in voxel coor-

dinates

The aim of the elastic registration is to find a set of coefficients
such that anatomically corresponding voxels of the warped

test image (indexed ) and the reference image reach alignment

A commonly used metric for monomodality image registra-
tion is the sum of the squared differences (SSD) of the image
intensities

where denotes the voxel space of the images.
We consider the DVF with the lowest SSD to be the best solu-

tion for the image registration and minimizing the SSD is there-
fore the optimization problem.

B. Sources of Errors in B-spline Registration

Two major sources of errors in B-spline image registration are
as follows.

1) Ambiguity in Homogeneous Regions: The first partial
derivatives of the SSD with respect to the B-spline coefficients
were given by [6]

Note that both, the first as well as second partial derivatives
in the coefficients contain components of spatial derivatives of
the image intensity. This means that solely those voxels of the
test image with nonzero intensity gradient drive the optimization
process. Regions without intensity gradient follow passively due
to changes of B-spline coefficients in neighboring knots, but do
not guide the deformation process. The metric is not sensitive
to misalignment that occurs within these homogeneous regions,
so the minimum of the metric may be broad and therefore not
well defined. This limits the registration accuracy, as the DVF
resulting from the optimization process may not be the only pos-
sible result which minimizes the metric, and it may deviate from
the unknown ground truth. This general problem is concerning
any optimizer, in case the metric is intensity based.

2) Misaligned Edges: In nonhomogenous regions, errors
may occur, if the optimization does not lead to the global min-
imum of the SSD-metric. This is the case, if the optimization
problem is not convex, or if the optimization process ends
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untimely. In that case corresponding edges may not reach
alignment.

Misaligned edges may also occur due to a mismatch of the
B-spline model. In this case, the true DVF is not in-
cluded in the entity of possible B-spline DVFs with
degree and knot spacing , i.e., for
the best approximation .

C. Algorithm to Estimate the Local Registration Error

We propose to estimate the uncertainty of the elastic registra-
tion by evaluating the sensitivity of the local metric to moderate
and randomly performed variations of the B-spline coefficients,
which are obtained as result of the B-spline registration.

The local contribution to the global SSD can be calculated
from a small region around each voxel. Let be a subre-
gion of the reference image. The contribution of of to
the global is

The aim is to determine the range of geometric deviations,
within certain bounds, which can be performed without in-
creasing the local contribution to the overall metric

.
Let be the set of coefficients resulting

from the registration, where is the number of knots and 3
is the dimension of space. Let be the set of
random variables which are equally distributed within the in-
tervals defined by the boundaries and : for

. In this study mm and mm
were used as typical registration errors are expected within this
range. The size of the region was 12 12 18 mm.

To generate test deformations, the coefficients obtained
from the registration are replaced by randomly modified coef-
ficients . For each set of modified coefficients, the cor-
responding DVF is calculated and the test image is deformed
accordingly. In the next step the spatial deviation between the
randomly modified and the initial deformation is calculated for
each dimension of space and each voxel and the local contribu-
tion to the global SSD metric is calculated for a region around
each voxel.

This procedure is repeated times using different sets of
random variations . For each voxel and dimension, the largest
spatial deviation of the test deformations, for which the local
SSD is smaller than or equal to the initial local SSD, is stored
as a measure of the uncertainty

where is one of the test DVFs with not increasing
local SSD and is the result of the B-spline registration.
denotes the dimension of space . In this work, a
value of 400 was selected for .

The underlying idea of this approach is that the result of the
registration is locally ambiguous or may be locally improved
by an additional random deformation. This may be due to er-
rors as described in Section II-B. The quantity is therefore
regarded as a measure of the local registration uncertainty.

Note that here solely the local SSD is regarded. A test de-
formation may improve the local SSD, while the global SSD
increases due to the influence of the coefficient changes else-
where, outside the locally regarded area.

D. Registration Error in Image Subregions

We consider to be the local
registration error in the spatial dimension ,
where is the calculated DVF and the ground
truth which is generally unknown. We do not expect a deter-
ministic dependence between and in a specific
voxel as the algorithm may have estimated the displacement
vector correctly by chance, although no image structure is lo-
cally present. In case of statistical dependence, however, the
values of may allow the estimation of the average of

for a larger entity of voxels with similar values. In
this section we explain how to exploit the information that
contains on to divide a dataset in subregions that differ
in their average local image registration error . To do so,
the -values are grouped in several intervals and the voxels
are classified accordingly. We expect that the average registra-
tion error increases with increasing .

For the demonstration of the statistical dependence of
and , see Appendix A.

III. APPLICATIONS

A. Generation of Test Data

The algorithm was tested on lung datasets. To generate test
data with known ground truth of the deformation, five clinical
lung data sets were artificially deformed. This deformation aims
to model the transition of the exhale to the inhale breathing
phase. To describe the main physiological aspects of breathing
motion a model for lung deformation should take the following
components into account:

1) extension of the chest in the transversal plane;
2) decompression of the lung in cranio-caudal direction;
3) random deformation;
4) tissue sliding between lung and rib cage.

To our knowledge, there is no validated model available, which
accounts for all these aspects including especially tissue sliding.
In the following we describe how we created artificial inhale
from exhale images.

For each of the steps a DVF is generated and the total DVF
is calculated as a superposition of these components. To model
tissue sliding, two DVFs are generated. One aims to model the
deformation in regions within the chest wall and a second one
aims to model the deformation outside the chest wall. An ad-
ditional step is necessary to combine both deformation fields
without folding or tearing in the boundary region.

1) Extension of the Chest in the Transversal Plane: The ex-
tension was performed by linear scaling. Let be a position in
the region of the diaphragm. Scaling with the factor

was applied for all where is the distance
from the diaphragm in cranial direction. For , the
scaling factor was
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where is a constant, and is the range over which
decays. For , we use . So the magnitude
of is largest in the region of the diaphragm and below
and decreases in cranial direction.

2) Decompression of the Lung in Cranio-Caudal Direction:
During the transition between inhale and exhale breathing
phase, the diaphragm is moved in caudal direction. In the
model, this is described by a displacement in caudal
direction

The closer the distance to the diaphragm, the larger is the dis-
placement. In distance from the diaphragm, the displacement
is zero.

3) Random Deformation: In order to obtain an additional de-
formation which is not regular throughout each slice, an addi-
tional DVF is randomly created and added to the sum of the
deformations which resulted form step one and two. For this,
Gaussian functions, were used as base functions and the coef-
ficients were generated randomly. This DVF cannot generally
be described as a superposition of B-spline basis functions and
hence a model mismatch can be expected.

4) Tissue Sliding Between Lung and Rib Cage: The defor-
mation inside the chest wall, , is created as a su-
perposition of the deformation steps one to three. It is con-
sidered to describe the internal deformation of the lung from
exhale to inhale. Due to tissue sliding, however,
does not describe the deformation outside the chest wall. There-
fore, a second deformation field, , is obtained from

by setting the cranio-caudal component to zero in
each voxel. is considered to describe the external
deformation in the region of the ribs as well as outside the chest
wall. does not describe the deformation of the lung
tissue.

To create a combined DVF which approximates the defor-
mation of the anatomy all over the image without folding or
tearing in the boundary region between lung and rib cage, a third
step is necessary. In the following we describe an approach to
modify such that the boundary surface of the lung
after warping with gets mapped to the same surface
as after warping the image based on . This modifi-
cation allows a simple combination of both DVFs just by using

to warp the inside and to warp the out-
side of the chest wall.

To realize this concept, a mask is created to distinguish the
region inside from the outside of the chest wall. The mask is a
binary image and allows the calculation of intensity gradients.
In a first step, this mask is deformed based on and
registered with the mask deformed based on . As a
result, the deformation field is obtained.

This registration was done with the ITK demons implemen-
tation. We chose this nonparameterized method, as B-spline de-
formations should not be involved in creating the test data.

TABLE I
PARAMETERS USED FOR THE GENERATION OF THE TEST CASES

Finally, is replaced by .
After this slight modification, a simple combination of the mod-
ified and is possible without folding
or tearing in the boundary region. Nevertheless, the resulting
DVF contains a discontinuity in the region of the pleura which
represents tissue sliding.

B. Application of the Algorithm on Test Data

The proposed algorithm was tested using five lung cases. To
generate the test data, the exhale breathing phase of a 4D-CT
was used as a starting point and the DVF described in the pre-
vious section was created using the parameters of Table I.

For , 20 mm were chosen since this may be a typical
diaphragm displacement in case of normal breathing. was
chosen to be about the longitudinal extension of the lung, since
the longitudinal decompression of the lung during inhale is
largest in the region of the diaphragm and decreases to zero
towards the cranial side of the lung. determines the decay of
the longitudinal displacement towards the cranial side of the
lung. It was chosen to approximate the decay found in
a true 4D CT. was chosen in the same way, to approximate
the transversal extension of the chest wall found in a true 4D
CT. The spacing was chosen to be 16 voxels in order to create
a complex deformation. Other values were tested as well, see
next subsection for details. The resulting DVF was then used
to simulate the inhale image based on the exhale image. To test
the algorithm, the exhale and simulated inhale images were
registered using the inhale image as reference and was
calculated for each voxel. As the underlying ground truth of the
deformation is given by the artificially created DVF, the relation
between and the local registration error can be analyzed.

C. Robustness of the Algorithm

The robustness of the algorithm as well as its potential to clas-
sify the quality of the registration result was investigated using
three different deformations for case 1, which differ in the mag-
nitude and spatial variability of the DVF. This was achieved
by using different spacings of the Gaussian functions that con-
tribute to the random component of the DVF. Spacings 20, 16,
and 12 were applied. The smaller the spacing, the stronger is the
spatial variability and the larger is the magnitude of the random
component of the simulated deformation and hence the more
challenging is the registration problem for the B-spline algo-
rithm. So spacing 20 represents a moderate and spacing 12 a
rather challenging test dataset.

D. Reproducibility

As described in the theory section, the values are ob-
tained from random variations of the coefficients and there-
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Fig. 1. Exhale image from the 4D-CT (a) and inhale image (b) simulated on
the basis of the exhale image (a) using the method described in Section III-A.
For comparison an inhale image from the 4D-CT is also shown (c).

TABLE II
AVERAGE REGISTRATION ERROR AND STANDARD

DEVIATION FOR EACH OF THE TEST CASES

fore it is important to show that the result for is over all
reproducible. To show that the proposed approach yields re-
peatable results for , we applied our method nine times to
test case one, using independent sets of coefficient variations.

In each voxel the standard deviation over the
values, obtained from the nine applications of the algo-

rithm was calculated. This standard deviation can be regarded
as a measure for the reproducibility.

IV. RESULTS

A. Test Data

Although the deformation model described in the previous
chapter may not take all aspects of breathing motion into ac-
count it does account for the main physiological components.
Fig. 1 shows an exhale (a) and a simulated inhale (b) image in
comparison to a real inhale image from the 4D-CT (c). The dis-
placement of the diaphragm as well as the tissue sliding between
lung and chest wall is similar in the true and the simulated in-
hale image.

B. Results of the Registration

After registration of the simulated inhale image with the ini-
tial exhale image, the resulting DVF can be compared with the
ground truth and the local registration error can be calculated
in each voxel. Table II shows the average registration error over
the complete body region for each of the five test cases.

C. Registration Error in Subregions

Since is a measure for the uncertainty regarding larger
groups of voxels, the average registration error should increase
with increasing . As a typical example, Fig. 2 displays the
average local registration errors obtained from the ground truth

Fig. 2. Average registration error (ground truth) as a function of � for
case 1. Note: To obtain equal number of entries per bin, the intervals were se-
lected nonequidistantly. The bars are centered in the respective interval.

for case 1 as a function of using 15 intervals. It can be
seen that the average registration error indeed increases with
increasing values of .

It is important to note that not only the average registration
error for each bin, but also the standard deviation of the registra-
tion error within each bin increases with increasing . Fig. 3
displays this standard deviation of the local registration error for
the same case and the same intervals of . Large -values
correspond to large standard deviations. To understand this ef-
fect, regard Fig. 4, which shows the combined histogram for the

-values and the corresponding true local registration error
for the same case as in Figs. 2 and 3. The brightness of the entries
represents the number of voxels showing the respective combi-
nation of and err. The histograms demonstrate, how the
proposed quantity should be interpreted: Although large
registration errors may occur for large -values, small er-
rors are also very likely as the algorithm may have estimated the
deformation correctly by chance although no image structure is
available. Large errors, however, are very unlikely in voxels with
small -values. Since bins with large values are likely
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Fig. 3. Standard deviation of the registration error corresponding to Fig. 3 as a
function of � for case 1. Note: To obtain equal number of entries per bin, the
intervals were selected nonequidistantly. The bars are centered in the respective
interval.

to contain voxels with small as well as voxels with large reg-
istration errors the standard deviation of the registration error
within each bin increases with increasing .

Table III summarizes the average registration errors for all
test cases investigated in this work. For a compact presentation,

was binned in three intervals only. These data show that
separating into three intervals allows separation of voxel
entities with different average registration errors. The larger

(i.e., the bin number), the larger are the average registra-
tion error as well as the corresponding standard deviation.

Fig. 5 displays a color overlay of the lung image with the
values. Such a color overlay can help to guide a user of the algo-
rithm and in particular remind him that the B-spline registration
may not be correct, especially in those areas, displayed in red
color.

D. Demonstration of the Robustness

As described in the Section II-C, the algorithm was applied
on three artificial deformations simulated for case 1, with spac-
ings 20, 16, and 12 of the Gaussian functions. A smaller spacing
of the Gaussian functions causes a more severe model mismatch
and therefore poorer results of the registration. The increase of

Fig. 4. Combined histogram for the � -values and the corresponding true
local registration error for the same case as in Figs. 2 and 3.

the average local registration error with increasing was
found for all the three different deformations. Both, the average

as well as the average registration error increase with de-
creasing spacing of the Gaussian functions.

E. Reproducibility

The average of the standard deviation, over all voxels within
the body region, was less than 0.5 mm for each of the three
dimensions of space. In addition, the standard deviation of the
voxel-based standard deviations, over all voxels within the body
region, was less than 0.5 mm for each dimension. We therefore
consider the values for to be sufficiently reproducible in
case 400 test deformations are carried out.

V. DISCUSSION

As it is probably impossible to determine the registration
error for each individual voxel, we focused on a statistical
evaluation. It is important to note that the value is not
the image registration error itself. In any specific voxel, the
registration error is still unknown after running the proposed
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TABLE III
AVERAGE LOCAL REGISTRATION ERROR FOR �� -BINS AND AL CASES.

NOTE: EACH BIN CONTAINS THE SAME NUMBER OF ENTRIES

algorithm as is an estimate of the average registration
error over a larger entity of voxels.

The algorithm was evaluated based on artificially deformed
test images as described in Section III-A, for which the ground
truth of the DVF is known. These test datasets do not repre-
sent true 4D-CTs. However, the main aspects of breathing mo-
tion are taken into account and so we consider the data to be
a model for the lung motion, which is suitable to evaluate the
proposed method. As the results of this evaluation may depend
on the spacing of the Gaussian functions, used to generate the
test cases, the analysis was repeated for different values of this
parameter. The results show that the method performs well, in-
dependent from the choice this parameter. Hence, the method is
robust against variation of the complexity of the deformation.

Since the standard deviation of under repeated appli-
cation of the proposed algorithm turned out to be less than 0.5
mm in average, the proposed approach yields sufficiently repro-
ducible values to separate smaller from larger -values in
the range of several millimeters.

It is important to note that depends on the choice of
the boundaries and of the random variable (see Sec-
tion II-C). Therefore an average over the complete dataset
may be used as a quality estimate to compare different lung reg-
istrations only, if the same boundaries were used. The average

in a subregion is not identical with the expected average
local registration error. The proposed method rather provides
the information in which subregion the errors are small or large
compared to the range of the expected errors. The magnitude
of the absolute value of the average local registration error in
each subregion may be known from clinical experience, as we
do have a basic idea about the typical range of B-spline regis-
tration errors in the lung from studies such as [13], [14], [18],
[27], [19].

Fig. 5. Overlay of a sagittal lung image with the � values obtained for the
three dimension in space: (a) lateral � component, (b) anterior–posterior
� component, and (c) caudal–cranial � component.

Finally, it should be mentioned that this method was designed
and tested for B-spline registration based on SSD. However, an
estimation of the involved uncertainty by evaluating the local
sensitivity of the metric to variations of the coefficients may also
be an option to estimate the uncertainty of other parameterized
registration algorithms.

VI. CONCLUSION

Based on the method described here it is possible to divide
an image into sub regions that differ in the magnitude of their
average registration error. A color overlay of with the reg-
istered images can help the user to become aware of the regis-
tration uncertainty.

VII. FUTURE WORK

In case that a given dose distribution is to be mapped from
the test image to the reference image, we propose to evaluate
the maximum dose deviation instead of the maximum spatial
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deviation. In that way the same method may be applied to es-
timate the error of the dose accumulation instead of the local
registration error.

So for each voxel and dimension in space, the largest dose
deviation of the test deformations, for which the local SSD
is smaller than or equal to the initial local SSD, can be stored as
a measure of the dose-accumulation uncertainty

where is the dose mapped to the voxel based on
the result of the B-spline registration and is the dose
mapped to the reference image voxel based on a deforma-
tion with one of the test DVFs. In our future work, we plan
to investigate the statistical dependence between
and the true dose accumulation error due to registration errors.
A clinician should be able to identify areas of the image where
large dose accumulation errors due to imperfect image registra-
tion are likely to occur. Registration errors may be one signif-
icant, however, not the only error of dose accumulation in the
lung, as other error sources such as artefacts of the 4DCT due to
imperfect resampling [14], [29] may affect dose accumulation
as well.

APPENDIX

Statistical Dependence Between and : We
demonstrate the statistical dependence between and

by calculating the mutual information (MI) from
their marginal and joint distributions. For this, a histogram of
equally-sized bins is created for the - as well as for the

-values. Let be the probability that a value
belongs to the th bin of the histogram of -values and

the probability that belongs to the th bin of
the histogram of values. Let be the probability
of the joint event that contributes to bin and
to bin .

The mutual information is then calculated by

is the number of bins of the histogram and the
number of bins of the histogram.

The mutual information is just one member of the class of
the -information measures as described in [30] and it is not the
only possible choice for this purpose. However, since it is well
known [31] and the most commonly used information measure,
we selected the mutual information.

If there is no statistical dependence, the MI should be equal
to zero. To demonstrate the statistical dependence, we use the
artificially deformed test images described in Section III-A:

After registering these with the undeformed images and ap-
plying the algorithm described in the Section II-C, a field of

values is obtained for each dimension of space i. As the
deformation of the test data was predefined, the ground truth of
the deformation and hence the local registration error

is known. Subsequently, the initial MI is calculated.

As we are dealing with real world data and therefore with
probability distributions that are estimated based on a limited
sample, it is not justified to interpret any deviation of the MI
from zero as a statistical dependence.

To demonstrate the significance of the increase the initial
-values are randomly redistributed over the voxels, con-

serving the number of entries per bin and hence the shape of
the distribution . Then the joint probability distribution

as well as the MI are recalculated. After this process,
no statistical dependence between and can be ex-
pected and any deviation of the MI from zero is to be regarded as
noise. This procedure is repeated 200 times and so the random
distribution of the MI-values for the case of statistical indepen-
dence is estimated. and are considered to be sta-
tistically dependent, if the initial MI-value is very unlikely to
occur according to the distribution of MI-values obtained for
the case of statistical independence.

Since the largest MI-values, obtained for any of the 200
random redistributions were three orders of magnitude smaller
than the initial MI-values, the quantities and err can be
regarded as statistically dependent.
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