Exploring Peritumoral White Matter Fibers for Neurosurgical Planning

Sonia Pujol, Ph.D. Ron Kikinis, M.D.

Surgical Planning Laboratory
Harvard University

Clinical Goal

Image Courtesy of Dr. Alexandra Golby, Brigham and Women's Hospital, Boston, MA. Neurosurgery 2011 Feb; 68(2):496-505.

Diffusion Tensor Imaging (DTI)
Tractography has the potential
to bring valuable spatial
information on tumor
infiltration and tract
displacement for neurosurgical
planning of tumor resection.

Clinical Goal

The goal of this tutorial is to explore white matter fibers surrounding a tumor using Diffusion Tensor Imaging (DTI) Tractography.

Clinical Case

- 35 year-old male diagnosed with Glioblastoma multiforme (GBM)
- Diffusion Weighted Imaging (DWI) acquisition for neurosurgical planning
 (White Matter Exploration Dataset)

Material

 This tutorial uses the Slicer3.6.3 release version available at <u>www.slicer.org</u>

- Windows XP: Slicer3-3.6.3-2011-03-04-win32.exe
- Mac OS: Slicer3-3.6.3-2011-03-04-darwin-x86
- Linux_x86: Slicer3-3.6.3-2011-03-04-linux-x86
- Linux_x86_64: Slicer3-3.6.3-2011-03-04-linux-x86_64

Overview of the analysis pipeline

Part 1: Loading & Visualization of Diffusion Data

Part 2: Segmentation of the ventricles, and solid and cystic parts of the tumor

Part 3: Tractography reconstruction of the white matter fibers in the peri-tumoral volume

Part 4: Tractography exploration of the ipsilateral and contralateral side

Part 1: Loading and Visualization of Diffusion Data

Diffusion Tensor Imaging

$$S_i = S_0 e^{-b\hat{g}i^T \underline{D}\hat{g}_i}$$

(Stejskal and Tanner 1965, Basser 1994)

$$\mathbf{\underline{D}} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix}$$

Part 1: Segmenting the tumor and ventricles

The tumor in this clinical case is composed of two parts: a solid part, and a cystic part.

In this section, we'll segment the different parts of the tumor using a Grow Cut Segmentation algorithm.

Grow Cut Segmentation

- The Grow Cut Segmentation method is a competitive region growing algorithm using Cellular Automata.
- The algorithm performs multi-label image segmentation using a set of user input scribbles.
- V. Vezhnevets, V. Konouchine. "Grow-Cut" Interactive Multi-Label N-D Image
 Segmentation". *Proc. Graphicon*. 2005.
 pp. 150–156.

The label map **BaselineVolume-label-growcut** has been split into three volumes:

- -BaselineVolume-tissue-label (label1): cystic part of the tumor
- -BaselineVolume-connective_tissue-label (label 4): ventricles
- -BaselineVolume-blood-label (label 5): solid part of the tumor

Part 2: Tractography exploration of peritumoral white matter fibers

Definition of the peri-tumoral volume

Definition of the peri-tumoral volume

Visualization of the DTI Volume

Tractography Parameters

Tractography Results

Tractography Results

Tractography Results

Part 4: Tractography exploration of the ipsilateral and contralateral side

Fiducial Seeding

Fiducial Seeding

Conclusion

- Fully integrated pipeline for semi-automated tumor segmentation and white matter tract reconstruction
- 3D interactive exploration of the white matter tracts surrounding a tumor (peri-tumoral tracts) for neurosurgical planning
- Validation of tractography findings still needed

Neurosurgical Planning Workshop,

September 18, 2011 - Toronto

DTI Tractography for Neurosurgical Planning: A Grand Challenge

September 18, 2011 MICCAI 2011 Conference The Westin Harbor Castle Toronto, Canada

http://www.na-mic.org/Wiki/index.php/Events: DTI Tractography Challenge MICCAI 2011

Acknowledgments

National Alliance for Medical Image Computing (NA-MIC)

NIH U54EB005149

M

Neuroimage Analysis Center (NAC)
NIH P41RR013218