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Longitudinal MR imaging is increasingly being used to measure

cerebral atrophy progression in dementia and other neurological

disorders. Differences in intensity inhomogeneity between serial scans

can confound these measurements. This differential bias also distorts

nonlinear registration and makes both manual and automated

segmentation of tissue type less reliable. A technique is described for

the correction of this differential bias that makes no assumptions about

signal distribution, bias field or signal homogeneity. Instead, the bias

field calculation is performed on the basis that the remaining structure

in the difference image of registered serial scans has small-scale

structure. The differential bias field is of much larger scale and can

thus be obtained by applying an appropriate filter to the difference

image. The serial scan pair is then corrected for the differential bias

field and atrophy measurement can be performed on the corrected scan

pair. Application of a known, simulated bias field to real serial MR

images was shown to alter atrophy measurements significantly. The

differential correction method recovered the applied differential bias

field and thereby improved atrophy measurements. This method was

then applied to serial imaging in patients with dementia using a set of

serial scan pairs with visually identified, significant differential bias

and a set of scan pairs with negligible differential bias. Differential bias

correction specifically reduced the variance of the atrophy measure

significantly for the scans with significant differential bias.
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Introduction

The increasing number of individuals with dementia repre-

sents one of the most pressing social and public health prob-

lems. Therapies to prevent or slow the progression of these

disorders are urgently needed. There is great interest in using

brain imaging to help meet this research challenge. The most

important cause of dementia, Alzheimer’s disease (AD), is

characterised by an inexorable progression of cerebral atrophy.
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Magnetic resonance imaging (MRI) may be used to visualise

and quantify this atrophy. In addition to its use in diagnosis

(Fox et al., 1999), measurement of atrophy progression from

serial MRI has been suggested as a surrogate marker of disease

progression in disease modification trials in AD (Ashburner

et al., 2003).

To detect changes in rates of atrophy, it will be crucial to

have measurements of atrophy progression that are as precise as

possible. Even small differences in MR image acquisition either

within image or between images may confound these attempts.

Any postprocessing methods that could remove or reduce these

differences would therefore be very valuable.

One of the within-image artifacts caused by MR image

acquisition is intensity inhomogeneity. Intensity inhomogeneity,

or bias, is the slowly changing and smooth spatial variation in

signal intensity that can occur within the scan. For example,

often the grey and white matter in one part of the brain may

have systematically lower signal intensity than similar tissue at

the opposite extent of the brain. This effect can be in the order

of 20% (Sled et al., 1998). This causes significant problems for

the image analysis techniques subsequently applied to the MR

images. Fig. 1 shows a pair of longitudinal scans, one of which

has negligible intensity inhomogeneity and the other has signif-

icant intensity inhomogeneity. The relative difference in the

signal intensity in the cerebellum is particularly noticeable.

This artifact is caused by several factors: inhomogeneity of

the magnetic field, B0, of the MR system; inhomogeneity of the

radiofrequency (RF) pulse generated by the oscillating second-

ary magnetic field, B1 (caused by either distortion of the RF

field by the object being scanned or nonuniformity in the

transmitter coil generating the RF pulse); or nonuniform sensi-

tivity of the receiver coils used to detect the MR signal.

This bias has several implications for downstream processing.

First, segmentation of an image into its constituent tissue types

becomes very difficult. This applies to both manual segmentation,

where it may become more difficult for the segmentor to identify

tissue boundaries, and also automated segmentation techniques,

which generally require a model for signal intensity for different

tissue types; such models become invalid for images with large

bias. Second, registrations performed on serial scans with signif-

icant differential bias, in particular nonlinear registrations, may be

affected. The nonlinear registration could attempt to explain the
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Fig. 1. Longitudinal MR scan pair with pronounced differential bias field:

coronal slices through (a) the baseline image and (b) the registered repeat

image. Significant bias can be seen from crown to neck with the cerebellum

and neck appearing much brighter in (b) the repeat image; (c) coronal slice

through difference image between baseline and registered repeat, revealing

significant differential bias displayed as bright signal in inferior structures

such as cerebellum and neck.
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intensity inhomogeneity in the derived deformation field and in

doing so produce unrealistic warps. Last, intensity-based quantifi-

cation techniques will give inaccurate results for scans with

significant intensity inhomogeneity. For example, the Brain

Boundary Shift Integral (BBSI) (Freeborough and Fox, 1997), a

technique used to quantify atrophy within longitudinal scan pairs,

will be degraded by the bias field and more particularly by the

differential bias field between the two scans.

Current techniques for intensity inhomogeneity correction fall

into two categories. The first class of techniques use modified

image acquisition protocols to handle bias correction at source.

The second class are post processing methods. Both methods

are designed to operate on a single scan.

Considering the modified acquisition protocols, correction of

inhomogeneity due to nonuniformity of the transmitter or receiver

coils can be performed by scanning a homogeneous test object to

obtain the inhomogeneity field due to the coil (Wicks et al., 1993);

this inhomogeneity field has also been obtained by scanning the

object twice using two different RF coils (Narayana et al., 1998).

However, neither of these techniques eliminate distortions caused

by the object to be scanned. Alternatively, the RF field can be

measured during the scan (Stollberger and Wach, 1996) to correct

for effects due to the object being imaged; however, this does not

remove effects due to nonuniform reception coil sensitivity.
Such modified acquisition protocols are not ideal, however,

since they generally require increased scan acquisition time. Also,

these techniques cannot be used to correct retrospective data.

Post-processing techniques include those based on the as-

sumption of spatial homogeneity. By assuming tissue homoge-

neity within a region, the bias field can be calculated over that

area and extrapolated to the rest of the image. For example,

methods have been proposed to take an initial segmentation of

the image into its component tissue types and model the

intensity variation within regions of homogeneous tissue-type

using polynomials (Tincher et al., 1993). Reference points of a

typical tissue class can be selected by an expert and a bias field

fitted to those values (Dawant et al., 1993).

Some techniques have assumed that the only low frequency

component of an image is the bias field and hence attempted to

obtain the bias field by applying a homomorphic filter to the

image (a low-pass filter) and assumed what remains is the bias

field (Axel et al., 1987; Lim and Pfefferbaum, 1989). Other

more sophisticated techniques combine segmentation and inten-

sity correction in a single algorithm, deriving the bias field by

modeling tissue type to calculate the expected intensities and

then calculating the bias field by comparing the expected and

actual intensities. This has been done by maximising the

expectations of the intensities (Guillemaud and Brady, 1997;

Wells et al., 1996) and by formulating the problem as an energy

minimisation one (Styner et al., 2000).

The most commonly used bias correction technique, N3

(Sled et al., 1998), is an automated technique which iteratively

sharpens the intensity histogram by deconvolving Gaussian

fields from subsequent estimates of the true signal and spline-

smoothing the derived bias field. This technique assumes that

the distribution of the bias fields is Gaussian, which may not be

true for all coil geometries and anatomies (Vokurka et al.,

1999). Also, the algorithm is necessarily iterative and is

therefore computationally more expensive and may become

trapped in local minima (Vokurka et al., 1999).

These post-processing techniques all require assumptions to

be made: either a certain model for tissue type, the form of

the bias field, regional homogeneity or the relative spatial

frequency distribution of signal due to the structure of the

brain and the effect of the bias field. The technique described

here, however, has been developed specifically to correct

differential intensity inhomogeneity to facilitate measurement

of pathological changes such as atrophy. This technique avoids

assumptions about tissue type, the form of the bias field or of

regional homogeneity. Instead, the technique uses the difference

image between longitudinal scans of a patient, which can be

considered to consist only of noise and atrophy (both of which

are small-scale features) and the differential bias field (rela-

tively large scale compared to the noise and atrophy) to

identify the differential bias field by the application of simple

filters. It should be noted that this technique corrects differen-

tial bias, and therefore any bias common to the longitudinal

images will persist after application of the technique. Such

bias, if significant, will still affect automated segmentation, as

described earlier.

The Materials and methods section details the implications of

differential bias on atrophy quantification and describes the

theory of the correction technique and the algorithm. The Results

section presents the results obtained using this technique. The last

section gives the conclusions and discussion.
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Fig. 2. Diagram illustrating the idealised intensity profiles in one dimension

of a longitudinal scan pair across a cerebrospinal fluid (CSF) brain

boundary for the case where there is negligible differential intensity

inhomogeneity; W is the intensity window across which the boundary

transition occurs, and Dx is the distance moved by an anatomical point

between the two scans.
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Materials and methods

Theory

It is assumed that image formation is given by:

vðxÞ ¼ uðxÞbðxÞ þ nðxÞ ð1Þ

where v(x) is the measured intensity, u(x) is the true signal

intensity, b(x) is the bias field and n(x) is the noise, which is

independent of signal intensity. This assumes that the bias field is

multiplicative, which is generally accepted to be the case for MR

images (Wells et al., 1996).

Baseline and repeat longitudinal images of the same individual

are first registered using rigid registration with rescaling. The

registered images with signal intensity v1(x) and v2(x) are log

transformed because the bias field is multiplicative. The difference

image between the two scans is then calculated to give:

logv1ðxÞ � logv2ðxÞ ¼ log½u1ðxÞb1ðxÞ þ n1ðxÞ�

� log½u2ðxÞb2ðxÞ þ n2ðxÞ� ð2Þ

which becomes:

logv1ðxÞ � logv2ðxÞ ¼ logu1ðxÞ � logu2ðxÞ þ logb1ðxÞ

� logb2ðxÞ þ log½1

þ n1ðxÞ=u1ðxÞb1ðxÞ� þ log½1

þ n2ðxÞ=u2ðxÞb2ðxÞ� ð3Þ

In Eq. (3), the terms log[1 + ni(x) / ui(x)bi(x)], where i = 1

and 2, represent the original additive noise of the system. The

term log u1(x) � log u2(x) represents the difference between the

true signals in the images. Given that the images are longitu-

dinal, and in register, this term contains no residual brain

structure and comprises only registration error and genuine

anatomical change between the two scans, namely, any atrophy

that may have occurred. Assuming registration error is small

and the disease process being studied has not caused any

regional changes to the intensity of grey or white matter, then

this term will have small-scale structure in the scale-space sense

(Perona and Malik, 1990).

The term log b1(x) � log b2(x) represents the differential

bias field and is known to be of large-scale relative to the other

factors contributing to signal (Axel et al., 1987; Lim and

Pfefferbaum, 1989).

Eq. (3) therefore illustrates that the difference image consists of

the differential bias field, noise, atrophy and registration error.

To obtain the differential bias field from the difference image,

a median filter is applied to Eq. (3). The median filter removes

the Gaussian noise (Petrou and Bosdogianni, 1999). It erases

structure of size less than half that of the kernel (Paranjape,

2000), which largely prevents atrophy and small registration error

from being mistaken for differential bias field. A kernel size of 5

was used (11 � 11 � 11 box). This choice was made since it

appeared to erase any anatomical structure remaining in the

difference image while still being sufficiently sensitive to obtain

the differential bias field accurately.
Defining median (v) to be the median transform of image v and

applying this median filter to Eq. (3) gives:

logb1ðxÞ � logb2ðxÞcmedian ½logv1ðxÞ � logv2ðxÞ� ð4Þ

Eq. (4) can be rewritten to express the ratio of the bias fields,

that is, the differential bias field in terms of the actual signal:

b1ðxÞ=b2ðxÞcexpðmedianðlogv1ðxÞ � logv2ðxÞÞÞ: ð5Þ

Implications for longitudinal measurements

Automated image analysis techniques to quantify change

between longitudinal scans and/or to identify the location of

significant change can be divided into two categories. Both types

usually require initial rigid body registration and intensity normal-

isation of the scan pairs. The first set of techniques either derive a

measurement of global atrophy by the comparison of image

intensity profiles, for example, BBSI (Freeborough and Fox,

1997), which directly compares intensity values, and SIENA

(Smith et al., 2002), which compares intensity gradient profiles,

or identify areas of significant difference between scans by

performing t tests on a voxel-by-voxel basis having previously

removed gross anatomical differences using nonlinear registration

(Ashburner and Friston, 2000).

The second set of techniques nonlinearly warp repeat image to

baseline image and hold the information describing the atrophy in

the deformation field itself, for example, voxel compression

mapping (Fox et al., 2001) or deformation-based morphometry

(Ashburner et al., 1998).

To analyse the implications of differential intensity inhomoge-

neity on such techniques, it is necessary to examine the effect of

differential intensity inhomogeneity upon the image. Fig. 2 illus-

trates an idealised intensity profile, demonstrated on a one-dimen-
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sional walk through the brain boundary of two registered and

intensity normalised T1-weighted scans, with no differential inten-

sity inhomogeneity. Fig. 3 illustrates the same intensity profiles,

but for a longitudinal scan pair with significant differential inten-

sity inhomogeneity.

It can be seen from Figs. 2 and 3 that the accuracy of measures

of atrophy calculated using intensity differences will be severely

decreased by the bias because of the artificial change in intensity

value of the same anatomical point between the two scans. This

will be the case for intensity-based techniques, which generally

rely on subtraction images or gradients that will be altered by such

an artificial change. It will also be the case for deformation-based

atrophy quantification techniques where nonlinear registration of

the biased images may be driven by the artificial intensity change

into producing unrealistic warps.

Implications for Brain Boundary Shift Integral

In this paper, we will consider in particular the impact of

differential bias on one of the intensity-based quantification tech-

niques, the Brain Boundary Shift Integral (BBSI) (Freeborough

and Fox, 1997). This technique gives a measure of the atrophy that

has occurred between longitudinal scans.

Considering Fig. 2, the shift in the boundary of the brain can be

approximated thus:

DxcA=W ð6Þ

which is the average distance moved by voxels on the boundary of

interest (i.e., partly inside the chosen intensity window), given that

an anatomical point takes the same value in both the images.

This extends to three dimensions to give the BBSI, the volume

moved through by the boundary, which should approximate the

difference in brain volumes between the two scans.

In the case where there is significant differential intensity

inhomogeneity between the longitudinal scans, the BBSI is affected
Fig. 3. Diagram illustrating the idealised intensity profiles in one dimension

of a longitudinal scan pair across a CSF brain boundary for the case where

there is significant differential intensity inhomogeneity; W is the intensity

window across which the boundary transition occurs, and Dx is the distance

moved by an anatomical point between the two scans.
as can be seen in Fig. 3. In this case, whichever intensity window is

selected, the BBSI defined earlier does not give an indication of

how far the boundary has moved. In addition, the intensity window

is likely to be near the intensity level on one side of the boundary for

one of the scans; thus, extra tissue that is not on the boundary will

contribute to the BBSI and add extra noise. Hence, the BBSI does

not give a valid measure of atrophy where there is significant

differential intensity inhomogeneity between the scans.

Considering then, the BBSI calculated using the true signal,

BSIT, rather than the actual signal:

BSIT ¼
X

½K=ðI2 � I1Þ�½clipðu1ðxÞ; I2; I1Þ

� clipðu2ðxÞ; I2; I1Þ� ð7Þ

where: clip(a(x)) = I2 if a(x) > I2; clip(a(x)) = a(x) if I1 < a(x) < I2;

clip(a(x)) = I1 if a(x) < I1
Substitution from Eq. (1), assuming a noise-free situation,

gives:

BSIT ¼
XI2

I1

K=ðI2 � I1Þclip½v1ðxÞ=b1ðxÞ; I2; I1�

�
XI2

I1

K=ðI2 � I1Þclip½v2ðxÞ=b2ðxÞ; I2; I1� ð8Þ

which becomes:

BSIT ¼
XI2b1

I1b1

K=½b1ðxÞðI2 � I1Þ�clip½v1ðxÞ; b1ðxÞI2; b1ðxÞI1�

�
XI2b1

I1b1

K=½b1ðxÞðI2 � I1Þ�clip½v2ðxÞb1ðxÞ=

b2ðxÞ; b1ðxÞI2; b1ðxÞI1� ð9Þ

Selecting J1 = I1 / b1(x) and J2 = I2 / b1(x) gives:

BSIT ¼
XJ2

J1

K=ðJ2 � J1Þclip½v1ðxÞ; J2; J1�

�
XJ2

J1

K=ðJ2 � J1Þclip½v2ðxÞb1ðxÞ=b2ðxÞ; J2; J1� ð10Þ

This corresponds to calculating the BBSI over a ‘‘moving’’

window, given by limits I1 / b1(x) and I2 / b1(x). This moving

window must meet the criteria for window selection, that is, for all

areas of the scan the intensity window I1 / b1(x) and I2 / b1(x) must be

contained within the relevant boundary intensity transition. Given

that the maximum bias is of the order of 20%, this should be feasible.

It is thus clear that to correct the BBSI for intensity inhomo-

geneity problems, it is sufficient to correct for differential intensity

homogeneity as obtained from Eq. (5).

The algorithm

Images are initially segmented into brain and nonbrain using

MIDAS software (Freeborough et al., 1996). The repeat image

is registered into the space of the baseline image using nine

degrees of freedom rigid body registration incorporating scalings

(Woods et al., 1992, 1993). The repeat brain mask is then
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Table 1

Mean squared difference, as a percentage of grey–white contrast, between

applied differential bias field and the bias field obtained using the

differential bias correction method for varying differential bias fields for

simulated scan pairs, simulated scan pairs with simulated misregistration

and simulated scan pairs with simulated atrophy

Scan pair Mean squared

difference

0–20% 0.0053

20–40% 0.0053

0–40% 0.0056

0–40% (atrophy) 0.040

0–20% (misregistered) 0.0099

20%–40% (misregistered) 0.0095

0%–40% (misregistered) 0.010

0%–20% (atrophy) 0.035

20%–40% (atrophy) 0.035
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resliced into the same space using the transformation obtained

from the registrations. Baseline and registered repeat images are

normalised to their mean intensity within the interior brain

region, where the interior brain region is the intersection of

the baseline and registered repeat brain regions with one erosion

applied (Freeborough and Fox, 1997). This normalisation

ensures that, to a first approximation, mean intensity over tissue

that has not changed between scans will have the same intensity

in baseline and repeat images.

Baseline and registered repeat images are log transformed, and

the difference image between the log-transformed baseline and

registered repeat images is obtained. A median filter of kernel size

5 (i.e., over an 11 � 11 � 11 box) is applied to the difference

image, over the union region of the baseline and registered repeat

brains with two dilations applied, to remove noise, atrophy and

registration errors, which should be of small magnitude because of

the similarity of the serial images. The remaining field represents

the log transform of the differential bias field of Eq. (4). The log-

transform field is inverse log transformed to give the differential

bias field. Since this field describes the relative, not absolute, bias,
Fig. 4. (a and b) Coronal slices through two simulated images with

differential bias fields; (c and d) coronal slices through the same two images

after differential bias correction; (e and f) applied and calculated differential

bias field.
the bias is removed equally from the baseline and registered repeat

images. This is achieved by calculating the square root of the

differential bias field and correcting both images with this,

resulting in both images having the ‘‘midway’’ bias field.

Experiments

The differential bias correction technique (dbc) was tested on

both simulated data and real data from patients with Alzheimer’s

disease. The former enables genuine testing of the technique because

the derived differential bias field obtained using the technique

developed can be compared against the known, applied differential

bias field. The latter is important because it tests the technique’s

ability to detect real bias fields and to assess how the technique may

affect measurements where typical atrophy is occurring.

Simulated bias field applied to simulated images

Images were downloaded from the MNI BrainWeb database

(http://www.bic.mni.mcgill.ca/brainweb/; Collins et al., 1998).

These images were T1-weighted volumetric MR scans, voxel

dimensions 1 � 1 � 1 mm, with 9% noise applied. Artificial

bias fields, obtained from MNI BrainWeb, were applied to these

images. The form of the simulated bias fields have been

obtained from many real MR images. Several different magni-

tudes of bias fields were applied, namely, 0%, 20%, 40%,

where for example, for a bias field of magnitude 20%, the true

signal is multiplied by a field with values ranging from 0.9 to

1.1 (i.e., with values between 10% below true intensity and

10% above true intensity).

The technique was run on the scan pairs: 0% bias image to 20%

bias image, 20% bias image to 40% bias image and 0% bias image to

40% bias image. The calculated differential bias field was compared

with the known applied bias field. This was done both visually, and

also by examining the mean squared difference between the known

and calculated bias fields.

To analyse the effect of registration error, misregistration was

simulated by applying a 0.2 voxel shift in each direction and

reslicing the simulated MNI images: it has been shown that high

quality registration achieves registration accuracy to within 0.01

voxels (F0.0004) (Hajnal et al., 1995). This technique was then run

on scan pairs: 0% bias image to 20% bias misregistered image, 0%

 http:\\www.bic.mni.mcgill.ca\brainweb\ 
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bias image to 40% bias misregistered image and 20% bias image to

40% bias misregistered image.

To analyse the affect of atrophy, rescaling of 0.992 in each

direction was applied to the simulated MNI images to simulate

atrophy of 2.4% of brain volume (Fox et al., 2000). This

technique was then run on scan pairs: 0% bias image to 20%

bias rescaled image, 0% bias image to 40% bias rescaled image

and 20% bias image to 40% bias rescaled image.

Simulated bias applied to real, same day scan pairs

T1-weighted volumetric MR scans, voxel dimensions 1 � 1 �
1.5 mm, were acquired on a 1.5-T Signa Unit (GE Medical

Systems, Milwaukee), inversion recovery (IR)-prepared spoiled

GRASS sequence; imaging parameters: TE, 6.4 ms; TI, 650 ms;

TR 3000 ms; bandwidth 16 kHz. For each subject, two images

were acquired on the same day. The only differences between the

two scans should result from changes in head position, which

may cause some small amount of differential bias, and noise,

since no anatomical change would be expected between same day
Fig. 5. (a and b) Coronal slices through artificially biased baseline image and regi

and e) coronal slices through differential bias corrected baseline and registered rep

field has been removed; (g and h) applied and calculated differential bias field.
scans. The volume difference in each scan pair was calculated

using the BBSI. This would be expected to be very small and

distributed about zero. A simulated bias field in the order of 40%

bias, as described in the last section, was then applied to the scan

pairs and the BBSI calculated. Differential bias correction was

run on each scan pair and the BBSI calculated for the corrected

image pair. The BBSI for the image pair with differential bias and

the BBSI for the corrected image pair were then compared with

the original ground truth BBSI.

Real bias fields on real images

Longitudinal images were acquired of patients with Alz-

heimer’s disease, all of scan interval of approximately 1 year.

Thirty-eight pairs were selected, 19 with severe differential bias

and 19 with relatively little change in bias, the degree of bias

being assessed by an expert. BBSIs were calculated for all the

pairs. The technique was then applied to the scan pairs and the

BBSIs recalculated. The BBSIs before and after correction

were then compared.
stered repeat image, (c) their difference image showing differential bias; (d

eat image pair; (f) their difference image showing that the differential bias
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Fig. 6. Absolute amounts of volume difference between two scans (BBSI in

cc) for same-day longitudinal image pairs with no differential bias, with

applied differential bias and with corrected differential bias.
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Results

Simulated bias field applied to simulated images

Fig. 4 illustrates the effect of correcting simulated differential

bias on a simulated scan pair. The differential bias (of the order of

40%) can be seen between the scan pair (Figs. 4a and b). This

differential bias is corrected in scans (Figs. 4c and d) where the

differential bias no longer can be seen.

The applied differential bias field and differential bias field

obtained from the correction are shown in Figs. 4e and f,

respectively. It can be seen that dbc has clearly identified the

differential bias field. To assess how accurately the correction

technique has calculated the differential bias field, the mean

squared difference between actual and obtained bias fields has

been calculated for 0–20% bias, 20–40% bias and 0–40% bias for

standard simulated image pairs, for image pairs with simulated

misregistration (artificial shift) and for image pairs with simulated

atrophy (artificial scaling) as a percentage of grey–white contrast,

respectively. These results are shown in Table 1. It can be seen that

dbc has accurately calculated the applied bias field. Its performance

is slightly poorer for the cases of simulated misregistration, by a

factor of approximately 1.8, and also poorer for the cases of

simulated atrophy, by a factor of approximately 6.5. However,

the mean squared difference values, which are a percentage of grey

white contrast, show that even in cases of misregistration and

atrophy, dbc can accurately obtain the differential bias field.

The algorithm took approximately 300 s to run on a SUNBlade

2000, 950MHz processor, for an image of 181� 181� 217 voxels.

Simulated bias applied to real, same-day scan pairs

Figs. 5a and b illustrate one of the real T1-weighted, baseline

and repeat image pairs used with simulated bias of magnitude 40%

applied to the baseline image. The resulting differential bias field

can be seen in Fig. 5c, which shows the difference image between

baseline and registered repeat images. The corrected image pair are

shown in Figs. 5d and e, and the corresponding difference image in

Fig. 5f shows that the differential bias has been removed. The

applied bias field is shown in Fig. 5g, and Fig. 5h shows the

obtained differential bias field. It can be seen that the applied and

obtained bias fields are similar within the baseline and registered

repeat union brain mask, with only a slight difference in the

gradient direction, which results from the initial relatively small

differential bias field that can be seen between Figs. 5a and b,

which will be in addition to the applied differential bias field.

The impact of the differential bias field upon atrophy

measurement is shown in Fig. 6. The original calculated volume

differences (atrophy) are negligible (zero mean with random

noise) since the images were obtained on the same day, and

therefore little anatomical change should be seen. The mean

absolute volume difference was 0.93 cc (less than 0.1% of

whole brain volume) and the variance was 0.82. The volume

differences obtained after the application of the simulated bias

field to the baseline image, shown in Fig. 5d, are less accurate,

with a mean absolute volume difference of 2.51 cc and a

greatly increased variance of 2.05, implying that differential

bias adds noise to the atrophy quantification measure.

The differential bias correction technique made a significant

improvement to the differential bias, as can be seen from the

corrected pair shown in Figs. 5d and e. The difference image
between the corrected pair, given in Fig. 5f, shows the bias is no

longer apparent from visual inspection. The volume difference

measurements are improved, with a mean absolute value of 1.09

cc, which is reduced in magnitude from the value for the biased scan

pairs, and the variance was also reduced, with a value of 0.41. Note

that the volume differences in this experiment result from noise

rather than atrophy. Applying dbc therefore does not give obtained

absolute volume differences close to the values for the

corresponding unbiased scans, but rather reduces the mean and

variance of absolute volume change.

The algorithm took approximately 180 s to run on a SUNBlade

2000, 950 MHz processor, for an image of 256� 256� 124 voxels.

Real bias fields on real images

Figs. 7a and b illustrate one of the original, real T1-weighted,

baseline and repeat image pairs used, showing significant real

differential bias. Fig. 7c shows a slice from the bias field

obtained using the differential bias correction technique. The

corrected image pair are shown in Figs. 7d and e. It can be seen

that the differential bias can no longer be identified. Figs. 7f and

g show a colour representation of the BBSI with areas in red

showing voxels where the repeat image has loss of signal (tissue)

and green representing gain in signal; Fig. 7f shows the BBSI for

the uncorrected pair with red highlighting the ventricular expan-

sion but also with signal gain in the cerebellum shown in green;

Fig. 7g shows the BBSI for the corrected pair, note how the

artifactual change in the cerebellum for the uncorrected pair is

removed by dbc, while the genuine expansion of the ventricles is

unaffected.

Table 2 shows the effect of the differential bias correction upon

the means and variances of the groups of scans, where group A is

the set of scan pairs with significant differential bias and group B is

the set of scans with negligible differential bias. It can be seen that

the standard deviation is significantly reduced for group A scans



Table 2

Mean and standard deviation of pre-dbc and post-dbc atrophy values

(BBSI) for a group of scans with significant differential bias (group A), a

group of scans with negligible differential bias (group B) and the two

groups combined
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and is much less affected for group B scans. The means for both

groups A and B are slightly reduced. This suggests that dbc might

be removing a small amount of atrophy. However, the reduction in

atrophy is very small relative to the change in standard deviation. In

particular, atrophy measurements that were negative, indicating

Pre-dbc Post-dbc

Group A mean (cc) 13.7 13.4

Group A standard deviation 31.1 20.5

Group B mean (cc) 14.6 13.5

Group B standard deviation 7.5 6.7

Mean of combined group (cc) 14.1 13.4

Standard deviation of combined group 23.3 15.0

Fig. 7. Coronal slices through (a) baseline and (b) registered repeat of a

longitudinal MR scan pair, with pronounced differential bias field; (c)

obtained differential bias field; (d and e) same coronal slices in the

differential bias-corrected images, note how much more similar to each

other d and e are when compared with a and b; (f and g) colour

representation of the BBSI: areas highlighted in red show voxels where the

repeat image has loss of signal (tissue) and green represents gain in signal;

(f) BBSI for the uncorrected pair with red highlighting the ventricular

expansion but also with signal gain in the cerebellum shown in green; (g)

BBSI for the corrected pair, note how the artifactual change in the

cerebellum for the uncorrected pair is removed by the differential bias

correction while the genuine expansion of the ventricles is unaffected.
growth of the brain, which are more likely to be artifactual and

due to the differential bias, are significantly improved after appli-

cation of the differential bias correction. The atrophy measurements

for scan pairs with little differential bias are very similar with and

without correction.

The algorithm took approximately 300 s to run on a SUNBlade

2000, 950MHz processor, for an image of 256� 256� 124 voxels.
Conclusions and discussion

Image analysis techniques developed for longitudinal images

are particularly adversely affected by the difference in inhomoge-

neity fields, as demonstrated here with an atrophy quantification

technique.

In this paper, a nonparametric, noniterative method is described

for the calculation of the differential inhomogeneity field between

longitudinal MR images. This technique makes none of the

assumptions about tissue classes, intensity distributions, bias field

form or spatial homogeneity of previous techniques and assumes

only that the inhomogeneity field is of large scale (in scale-space

sense) relative to the image noise, atrophy that has occurred and

registration errors; large-scale components of registration error,

atrophy and noise and any other large-scale changes from scan one

to scan two may be removed by this technique.

This technique has been tested on simulated T1-weighted

images with applied simulated inhomogeneity, on real longitudinal

scan pairs onto which simulated inhomogeneity fields have been

applied and on real longitudinal scan pairs with significant atrophy

and significant differential inhomogeneity. The results of the experi-

ments with simulated inhomogeneity show that the technique has

correctly calculated the applied differential inhomogeneity field.

Visual comparison of the corrected and uncorrected simulated and

real image pairs shows that this technique has successfully removed

much of the differential inhomogeneity field. In particular, running

dbc on image pairs with simulated misregistration has shown that

the technique handles registration error of up to 0.2 voxels; use of a

high quality subvoxel registration algorithm, such as one based on

mutual information or ratio of intensity uniformity, will register the

scans well within this tolerance. However, if the initial registration

was poor, the large registration errors would be picked up by the

median filter and confused with differential bias, resulting in the

technique failing. Running dbc on image pairs with simulated

atrophy has shown that it successfully obtains the differential bias

field in the presence of atrophy in the order of that seen in typical

AD over an interval of 1 year; however, in the presence of larger

amounts of large-scale atrophy (e.g., in the case of long intervals

between scans), dbc may remove some of the atrophy.

meier
Highlight
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By considering real longitudinal scans with significant atrophy, it

has been shown that this technique only marginally removes

atrophy, and atrophy values corrected with application of this

technique show less variability. This technique can therefore be

applied before atrophy quantification to improve the accuracy of

atrophy quantification.

Further work will include more detailed analysis of the spectral

form of bias, atrophy, registration error and noise with the aim of

refining the method by distinguishing components of intensity

resulting from noise, atrophy and misregistration from the differen-

tial inhomogeneity effects. The choice of filtering technique is

expected to be critical in this. For example, one attractive approach

could be to apply frequency domain filters to separate more

explicitly the frequency components of the image. It would also

be of interest to investigate the effect of application of the technique

on the joint intensity histogram, which would be sharpened by

removal of differential bias, with the possibility of incorporating

joint intensity histogram sharpening directly into the algorithm.

Future work also includes applying dbc to series of three or more

longitudinal scans to analyse the effect upon series of atrophy rates.

This technique could perhaps be extended from correction of

differential inhomogeneity to correction of the actual inhomoge-

neity field within a single scan by the creation of a difference

image between that scan and an unbiased scan (or template)

warped to the target scan. Nonlinear warping is nontrivial in the

presence of bias. However, using an iterative approach with patient

topology specific templates might enable this to be successful. This

would then remove bias common to the longitudinal scans and

hence improve automated segmentation.

Increasingly, longitudinal MRI studies are being analysed to

identify disease-related structural changes and to detect treatment

effects in therapeutic trials. The technique described here, by

reducing spurious intensity differences due to changes in the

inhomogeneity between scans, should improve the precision of

these important analyses.
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