Multi-atlas Segmentation Applied to Esophagus Delineation for Thoracic Oncology Applications

Jinzhong Yang, PhD Sr. Computational Scientist Dept. of Radiation Physics MD Anderson Cancer Center

> THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History*

Motivation

- Esophagus is an import organ to spare in thoracic radiotherapy treatment planning
- Manual contouring
 - Labor intensive
 - Observer variability

- Absence of intensity consistency
- Random air bubbles inside
- Low contrast to surrounding tissues

Low contrast

Complex and variable shapes (Inter-patient variability)

- Capitalize on prior knowledge
 - Prior shape model and appearance model (or centerline model)
 - Feulner, et al, TMI 2011
 - Kurugol, et al, ISBI 2010
 - Meyer, et al, SPIE Med. Imaging 2011
 - Roussan, et al, SPIE Med. Imaging 2006
 - Air hole model
 - Feulner, et al, TMI 2011
 - Fieselmann, et al, BVM 2008
 - Atlas-based automatic segmentation

- SINGLE ATLAS IS NOT ENOUGH
- USE MULTI-ATLAS SEGMENTATION
 - SELECT OPTIMAL ATLAS CANDIDATES
 - -INCLUDE TISSUE APPEARANCE MODEL

SELECT OPTIMAL ATLAS CANDIDATES

THE UNIVERSITY OF TEXAS DAnderson **Atlas Selection Process** Making Cancer History® **Preliminary Selection** < or = 12 **Atlas Pool** atlases Deformable **Contour Fusion** Registration **Optimal Optimal Atlas** atlases **Selection**

Preliminary Selection

- Purpose
 - Fill out really bad atlases
 - Limit the number of atlases for deformable registration: save some time
- Require rigid registration between each atlas and new image
- Use cross-correlation as similarity measurement
- Measure similarity in a local region containing structures of interest

Atlas Ranking

- Compute local intensity histograms
- Measure similarity using symmetric Kullback-Leibler (KL) divergence
- Rank atlases using measured KL divergence

 Check overlap ratio of deformed contours by sequentially adding atlases from the most to least similar

INCLUDE TISSUE APPEARANCE MODEL

- STAPLE: Simultaneous Truth and Performance Level Estimation (Warfield, et al, TMI 2004)
 - Based on the maximum likelihood estimates of sensitivity and specificity of individual contours
 - Fusion contour is the expected truth by estimation

STAPLE Algorithm

- Assumption:
 - Individual contours/segmentations D (known)
 - True segmentation T (unknown)
 - Performance parameters of individual segmentation (unknown): sensitivity (*p*) and specificity (*q*)
- Maximum likelihood estimates of (*p*, *q*) from the complete data (*D*, *T*)

$$(\hat{p}, \hat{q}) = \arg \max_{p,q} \log f(\mathbf{D}, \mathbf{T} | p, q)$$

• Expectation-Maximization (EM) algorithm estimates from the incomplete data **D**

 $(\boldsymbol{p}^{(k)}, \boldsymbol{q}^{(k)}) = \arg \max_{\boldsymbol{p}, \boldsymbol{q}} E\Big[\log(f(\mathbf{D} | \mathbf{T}, \boldsymbol{p}, \boldsymbol{q})f(\mathbf{T})) | \mathbf{D}, \boldsymbol{p}^{(k-1)}, \boldsymbol{q}^{(k-1)}\Big]$

- **E-Step:** estimate a conditional expectation $f(T_i | \mathbf{D}_i, \mathbf{p}^{(k-1)}, \mathbf{q}^{(k-1)}) = \frac{\prod_j f(D_{ij} | T_i, p_j^{(k-1)}, q_j^{(k-1)}) f(T_i)}{\sum_{T_i'} \prod_j f(D_{ij} | T_i', p_j^{(k-1)}, q_j^{(k-1)}) f(T_i')}$
- M-Step: estimate parameters by maximization

$$(p_{j}^{(k)}, q_{j}^{(k)}) = \arg\max_{p_{j}, q_{j}} \sum_{i} \sum_{T_{i}'} [\log f(D_{ij} | T_{i}', p_{j}, q_{j})] \cdot f(T_{i}' | \mathbf{D}_{i}, \boldsymbol{p}^{(k-1)}, \boldsymbol{q}^{(k-1)})$$

Tissue Appearance Model (TAM)

- The prior probability of **T** is described by TAM: $f(T_i = 1) = P(i)$
- TAM is a Gaussian model estimated from image intensity:

$$P(i) = \frac{1}{Z} \exp\left(-\frac{(I(i) - \mu_p)^2}{\sigma_p^2}\right)$$

• Mean μ_p and variance σ_p^2 are estimated from pixels in the union region of individual segmentations

^{Aderson} ^{Center} Include Tissue Appearance Model

• Integrate the tissue appearance model into the STAPLE fusion process

Individual segmentations

Tissue appearance model

Final segmentation

ESOPHAGUS AUTOSEGMENTATION

- Planning CT of 15 thoracic cancer patients
 - Resolution: 1.0x1.0x2.5mm³
- Esophagus contours were manually delineated
 - From the top of C6 vertebra to esophagus/stomach junction

- Performed 15 leave-one-out tests
 - One image as test and the remaining 14 as atlases
 - Number of selected optimal atlases varied from 6 to 12.
- Evaluation metrics (between auto-segmented and manual contours)
 - 3D volume overlap (Dice similarity coefficient)
 - 3D mean surface distance (mean error)
 - 3D Hausdorff distance (max error)

Results

Volume Overlap

Mean±SD: 73.2%±7.4%

Median = **76.7%**

Results

Mean Surface Distance

Mean±SD: 2.2±0.8mm

Median = 1.8mm

Results

Hausdorff Distance

Mean±SD: 16.9±8.9mm

Median = **12.7mm**

Results

Example 1 Example 2 Green: manual contours; Red: auto-segmented contours

Results

- Achieved reasonably good results in esophagus autosegmentation for thoracic radiotherapy
- Limitations of our approach
 - Optimal atlas selection highly depends on the image data
 - Similarity comparison of entire long and winding esophagus was not locally accurate in atlas selection
 - Tissue appearance model is subject to the impact of air bubbles

Acknowledgements

- Peter Balter, PhD
- Laurence Court, PhD
- Lifei Zhang, PhD
- Dept. Radiation Physics
- This work is partial supported by the Cancer Prevention Research Institute of Texas (CPRIT)

- Lei Dong, PhD
- Yongbin Zhang, MS