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 Esophagus is an import
organ to spare in
thoracic radiotherapy
treatment planning

e Manual contouring
— Labor intensive
— Observer variability
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* Absence of intensity consistency
e Random air bubbles inside

* Low contrast to surrounding tissues

Air bubbles Low contrast
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e Complex and variable shapes (Inter-patient
variability)
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e Capitalize on prior knowledge

— Prior shape model and appearance model (or
centerline model)
e Feulner, et al, TMI 2011
e Kurugol, et al, ISBI 2010
 Meyer, et al, SPIE Med. Imaging 2011
e Roussan, et al, SPIE Med. Imaging 2006

— Air hole model

e Feulner, et al, TMI 2011
e Fieselmann, et al, BVM 2008

— Atlas-based automatic segmentation



* SINGLE ATLAS IS NOT ENOUGH

e USE MULTI-ATLAS SEGMENTATION
—SELECT OPTIMAL ATLAS CANDIDATES
—|INCLUDE TISSUE APPEARANCE MODEL
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e Multi-Atlas Segmentation
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SELECT OPTIMAL ATLAS CANDIDATES
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* Purpose
— Fill out really bad atlases

— Limit the number of atlases for deformable
registration: save some time

 Require rigid registration between each atlas and
new image

e Use cross-correlation as similarity measurement

e Measure similarity in a local region containing
structures of interest
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e Compute local intensity histograms

e Measure similarity using symmetric Kullback-
Leibler (KL) divergence

e Rank atlases using measured KL dlvergence

Atlas ﬁ New image

KL divergence
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 Check overlap ratio of deformed contours by
sequentially adding atlases from the most to least
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INCLUDE TISSUE APPEARANCE MODEL
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e STAPLE: Simultaneous Truth and Performance
Level Estimation (Warfield, et al, TMI 2004)

— Based on the maximum likelihood estimates of
sensitivity and specificity of individual contours

— Fusion contour is the expected truth by estimation

Expected sensitivity[P(D=1|T=1)]

fusion contour

Individual
contours

1-specificity[P(D=0|T=0)]
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e Assumption:
— Individual contours/segmentations D (known)
— True segmentation T (unknown)

— Performance parameters of individual
segmentation (unknown): sensitivity (p) and
specificity (q)

e Maximum likelihood estimates of (p, g) from
the complete data (D, T)

(p,q) =arg rr;%xlog f(D, T|p,q)
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e Expectation-Maximization (EM) algorithm
estimates from the incomplete data D

(p®,q") =argmax Ellog(f (D| T, p,q) f (T))| D, p*?,q%?|

e E-Step: estimate a conditional expectation
[T, (0, 1T, P& al)f (1)

21 F O IT 2 e ) F (M)

e M-Step: estimate parameters by maximization

(p$,q8) = argmaXZZ[logf(D.,lT p;.q.)]- f(T'|D;, p**,q"?)

J J i

f (T, | D;, p(k_1)1q(k_l))
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 The prior probability of T is
described by TAM: T (T;=1)=P()
e TAM is a Gaussian model estimated
from image intensity:
(I (i)—upfj
2

Op

* Mean x4, and variance ¢’ are
estimated from pixels in the union
region of individual segmentations

P@)= %exp[—
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Integrate the tissue appearance model into
the STAPLE fusion process

Individual segmentations  Tissue appearance model Final segmentation



ESOPHAGUS AUTOSEGMENTATION
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e Planning CT of 15 thoracic cancer patients
— Resolution: 1.0x1.0x2.5mm?3

e Esophagus contours were manually delineated

— From the top of C6 vertebra to esophagus/stomach
junction
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e Performed 15 leave-one-out tests
— One image as test and the remaining 14 as atlases

— Number of selected optimal atlases varied from 6
to 12.

e Evaluation metrics (between auto-segmented
and manual contours)

— 3D volume overlap (Dice similarity coefficient)
— 3D mean surface distance (mean error)

— 3D Hausdorff distance (max error)
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Hausdorff Distance
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Example 1 Example 2

Green: manual contours; Red: auto-segmented contours
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 Achieved reasonably good results in esophagus
autosegmentation for thoracic radiotherapy

e Limitations of our approach

— Optimal atlas selection highly depends on the image
data

— Similarity comparison of entire long and winding
esophagus was not locally accurate in atlas selection

— Tissue appearance model is subject to the impact of
air bubbles
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