

NA-MIC National Alliance for Medical Image Computing http://na-mic.org

Slicer3 Tutorial / Registration Library: Case 29 - DTI

converting and aligning diffusion MRI

Dominik Meier, Ron Kikinis Sept. 2010

Introduction / Scenario

- We have a surgical planning dataset containing two structural reference scans: a T2 and T1-weighted MRI, and a diffusion-weighted (DWI) scan.
- We want to convert the DWI into a DTI dataset to enable fiber-tracking
- We then want to align the DTI with the structural reference T1 scan

T1 reference

T2 reference DTI baseline

DTI tensor

we seek the DTI tensor aligned and resample into the space of the T1 reference scan.

• To accomplish this task we will use the following modules:

Ē

- Volumes Module
- Diffusion Tensor Estimation Module
- BrainsFit Registration Module
- Data Module
- Resample DTI Module

le	Moo	lules:	Diffusio	n Tensor E	stimation	
Mod	lules:		BRAINS	Fit	-	
Å						
Mod	ules:	Resa	mple DTI	Volume		

- Slicer version 3.6.1 or later
- Example Dataset: download and extract the dataset for this tutorial: RegLib_C29_DATA.zip, which should contain this tutorial, all original and some intermediate solution data files.
- The extension set RegLib_C29_DATA_DWI.zip contains the original DWI image and the resampled DTI image (omitted from main set to maintain moderate dowload sizes).
- Tutorials to complete first (optional):
 - Slicer3Minute Tutorial
 - Loading and Viewing Data
 - DTI tutorial

Pipeline

	Step	Module	Result	Slides
1	Convert DICOM DWI to NRRD format	Converters / DICOM to NRRD Converter	DWI.nrrd	6
2	Convert DWI -> DTI	Diffusion / Utilities / Diffusion Tensor Estimation	DTI volume: DTI.nrrd DTI baseline: DTI_base.nrrd	7-8
3	Register T2 to T1	Registration / BrainsFit	transform + resampled T2 volume: Xf1_T2-T1_Affine, T2_Xf1	10
4	Register Baseline DTI to resampled T2	Registration / BrainsFit	nonrigid Bspline transform: Xf2_DTI-T1_unmasked, Xf3_DTI-T1_masked	11-15
6	Resample DTI	Diffusion / Utilities / Resample DTI Volume	Resampled DTI in space of T1: DTI_Xf3	16

Convert to NRRD format

- 1. We first convert the DICOM series of the DWI image into a single-volume NRRD file. This prevents problems when reading multi-dimensional datasets from DICOM directly. If reading the DICOM directly, the 4th dimension may not be recognized and merged with the 3rd dimension to yield an unusable image stack. The DICOM to NRRD converter taks care of this issue.
- 2. Select the directory where the DICOM series is located and a filename for the result image file.

1	Modules:	Dicom to Nrrd Converter 🔤 🖣 🕨
	3DSlicer	
* Help &	Acknowled	gement
Dicom	Fo Nrrd Co	nverter
	Parameter	set Dicom to Nrrd Converter 🖃 🛋
		Status Idle
^ IO		
		Input Dicom Data 🔁 DICOM
		Output Directtory 🚞 workspace
Output Filename DWI.nrrd		
 Output 	: Options	
Defa	ult	Cancel Apply

The conversion from DWI to DTI will produce 3 new volumes:

Convert DWI -> DTI

- 1. We next convert the DWI volume into a DTI tensor image that can be used for fiber tracking and other forms of quantifying diffusion.
- 2. The DTI Estimation module in the Diffusion / Utilities section will perform this task in a single automated step:
 - 1. Select the DWI image
 - 2. Create new DTI output image
 - 3. Create new output baseline volume
 - 4. Create new Otsu mask volume
 - 5. Leave Estimation Parameters at defaults
 - 6. Click Apply
 - The DTI_baseline output will serve as moving image for the registration
 - The Otsu mask image may be useful as mask to focus registration

1

Help & Acknowledgement
 Diffusion Tensor Estimation

 Parameter set Diffusion Tensor Estimation =
 Status Idle

 IO

 Input DWI Volume =
 Output DTI Volume DTI =

Output Baseline Volume DTI_Baseline 🖃 🖨

Otsu Threshold Mask 🛛 Otsu Threshold Mask 🖃 🚔

Estimation Parameters

Estimation Parameters 🔳 LS 🔲 WLS 🔲 NL

Shift Negative Eigenvalues 🗉

Otsu Omega Threshold Parameter 0.5

Cancel

Remove Islands in Threshold Mask

Apply Mask to Tensor Image 🗷

Default

Apply

ы

Registration Strategy

1.Register the T2 scan to the T1

2.Register the DTI_baseline to the registered T2

3. Apply the second transform to the DTI volume.

The reason for these 2 steps is that best registration quality and robustness is achieved when image contrast and/or resolution are similar. A registration of the DTI_baseline to the T1 is a large step in both image contrast and resolution / FOV and likely to fail

We register to the T2 **<u>after</u>** it is aligned with the T1. Registering to the original T2 and then moving to the T1 would require concatenating transforms in a form not currently supported, or alternatively would require additional resampling which would reduce DTI image quality.

Register T2 -> T1

- 1. Go to the "BrainsFit" module
- 2. Input: Fixed Image: T1 Moving Image: T2

3. Output:

"Slicer Linear Transform": create new, rename to "Xf1_T2-T1_Affine" Output Volume: create new, rename to "T2_Xf1" Check boxes for: "rigid", "affine"

Registration Parameters all defaults except Number of Samples 200,000

- 1. Go to the "BrainsFit" module
- 2. Input: Fixed Image: T2_Xf1 Moving Image: DTI_baseline

3. Output:

"Slicer Bspline Tansform": create new, rename to "Xf2_DTI-T1_unmasked" Check boxes for: "rigid", "affine" + "Bspline" registration

Registration Parameters as shown below: Changes to defaults

highlighted • Registration Parameters

	negiorarion i arametero		
	Transform Type		
	Number Of Iterations 1500		
	Number Of Samples 20000D		
	Minimum Step Size 0.005		
	Transform Scale 1000		
	Reproportion Scale 1		
	Skew Scale 1		
\triangleleft	Number Of Grid Subdivisions 5,5,3		
	Maximum B-Spline Displacement 0		

National Alliance for Medical Image Computing http://na-mic.org

📤 🎦 Modules: BRAINSFit 🖃 🖪
3DSlicer
* Help & Acknowledgement
↑ BRAINSFit
Parameter set BRAINSFit =
Status Idle
Input Parameters
Fixed Image Volume T2
Moving Image Volume DTe
 Registration Phases To Use
Initialize with previously generated transform e
Initialize with MomentsAlign registration phase
Initialize with GeometryCenterAlign registration phase
Initialize with CenterOfHeadAlign registration phase
Include Rigid registration phase 🗹
Include ScaleVersor3D registration phase
Include ScaleSkewVersor3D registration phase
Include Affine registration phase 🗹
Include BSpline registration phase
* itput Settings (At Least One Output Must Be Specifie
Slicer BSpline Transform X m =

Registration: Masking

- For this scenario a mask of the brain parenchyma is useful and improves registration quality.
- The DTI estimation process produced a mask for the DTI_base image, but we still need another for the T1.
- We can either perform a separate segmentation for the T1 or reuse the DTI_mask by first performing another registration.

Obtain Mask for T1 / T2reg

BRAINSfit requires masks for both the fixed and moving image. To obtain a mask for the fixed image we first use the BRAINSfit registration we just did (without a mask) and use the result transform to resample the DTI_mask volume into the T1 space.

Resample Scalar/Vector/DWI Volume
Parameter set Resample Scar/DWI Volume 🖃 🚔
Status Idle
 Input/Output
Input Volume DTI_mask -
Reference Volume (To Set Output Parameters) 1 =
Output Volume DTI_mask_Xf2 =
Deformation Field
Resampling Parameters
 Transform Parameters
Transform Node 🛛 🛪 🚍
Transforms Order 🔲 input-to-output 🔳 output-to-input
Bulk Transform
▼ √anual Transform (Only Used If No Transform Node Set)
Rigid/Affine Parameters
 Interpolation Type
Interpolation 🔲 linear 🔳 nn 🗏 ws 🔲 bs

BRAINSfit requires masks for both the fixed and moving image. To obtain a mask for the fixed image we first perform the same (Affine + Bspline) registration without a mask and use the result transform to resample the DTI_mask volume into the T1 space.

This requires :

- BRAINSfit registration (unmasked), output = Bspline Xform only
- Resample Scalar/Vector/DWI volume, applied to DTI_mask; output = T1_mask

- We now have the masks to repeat the registration: We use the same settings except we add the two mask files: Go to the "BrainsFit" module
- 2. Input: Fixed Image: T2_Xf1 Moving Image: DTI_baseline
- 3. Mask Processing Tab: Check box: Mask Processing Mode: ROI Fixed Mask: DTI_mask_Xf1 Moving Mask: DTI_mask
- 4. Output:

"Slicer Bspline Tansform": create new, rename to "Xf3_DTI-T1_masked" "Output Volume": create new, rename to "DTI_base_Xf3" Check boxes for: "rigid", "affine" + "Bspline" registration

Registration Parameters as shown below: Changes toRegistration Rayameters

■ ľ Modules: BRAINSFit 3DSlicer Help & Acknowledgement BRAINSFit Parameter set BRAINSFit -Status Idle Input Parameters Fixed Image Volume T2 Xf Moving Image Volume DT...e 😑 🚔 Registration Phases To Use Initialize with previously generated transform | e 😑 🛋 Initialize with MomentsAlign registration phase Initialize with GeometryCenterAlign registration phase Initialize with CenterOfHeadAlign registration phase Include Rigid registration phase Include ScaleVersor3D registration phase Include ScaleSkewVersor3D registration phase Include Affine registration phase 🗹 Include BSpline registration phase 🗹 Itput Settings (At Least One Output Must Be Specifie Slicer BSpline Transform X...m =

National Alliance for Medical Image Computing http://na-mic.org

Resample DTI

Last step is to resample the DTI with the new transform (Xf3).

This is done with the *Resample DTI Volume* Module, found in the *Diffusion / Utilities* Set

- 1. Input image = DTI Output Volume = New DTI Volume Reference Volume = T1
- 2. Transform Parameters: Transform Node = Xf3_DTI-T1_masked Select/check the *output-to-input* box
- 3. Apply

📤 🎽 Modules:	Resample DTI Volume 🔤 🔳
3DSlicer	
* Help & Acknowled	lgement
↑ Resample DTI Vo	lume
Parameter s	set Resample DTI Volume 🖃 🛋
	Status Idle
Input/Ouput	
	Input Volume DTI 🖃 🚔
	Output Volume DTI_BSpl2 =
Reference Volume	(To Set Output Parameters) PGP
Deformation Field	
Resampling Para	meters
Transform Param	eters
	Transform Node 🗙m 🖃 🚍
Transforms Order	🔲 input-to-out <mark>put 🔳 output-to-input</mark>
	Bulk Transform 🔲

We have now the DTI in the same orientation and resolution as the T1 reference scan.

For verification: for the resampled DTI_BSpl2 select "Color Orientation" from the Display tab in the Volumes module, then set fore- and background to the SPGR and DTI_BSpl2 respectively and drag the fade slider to a halfway position.

animated gif, view in presentation mode

National Alliance for Medical Image Computing http://na-mic.org

Acknowledgements

National Alliance for Medical Image Computing NIH U54EB005149

Neuroimage Analysis Center NIH P41RR013218 -12S1 (ARRA Suppl)