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Abstract. Many neuroanatomy studies rely on brain tissue segmentations of
magnetic resonance images (MRI). We present a segmentation tool, which per-
forms this task automatically by analyzing the MRIs as well as tissue specific
spatial priors. The priors are aligned to the patient through a non-rigid registra-
tion method. The segmentation itself is parameterized by an XML file making the
approach easily adjustable to various segmentation problems. The tool is hidden
beneath a ’one-button’ user interface, which is simple to install and is applicable
to a wide variety of image acquisition protocols.

1 Prologue
Our segmentation pipeline (Figure 1) robustly partitions MRIs into grey and white mat-
ter, and cortical spinal fluid. The method is guided by tissue specific spatial priors,
which define the probability of a tissue class being present at every location within the
image. These spatial priors are part of an atlas which is aligned to the MRIs using the
non-rigid registration implementation by Guimond [1]. Compared to affine algorithms,
non-rigid methods have a reduced risk of systematic biases [2]. The next section will
explain in detail the four steps that compose the segmentation pipeline.

2 Segmentation Pipeline
Step 1 - Intensity Normalization: An intensity normalization of the patient MRIs in-
creases the variety of image acquisition protocols that our tool can handle. The simple
normalization first determines the average intensity value of the patient MRIs within
the head region. We then normalize the MRIs so that the new average intensity value is
equivalent to the one defined by the atlas.
Step 2 - Non-Rigid Registration:In order for our atlas to guide the segmentation, it
has to be aligned to patient’s space. The atlas, a set of MRIs taken on a template subject,
is aligned to the patient by registering the template MRIs to the MR scans of the patient,
using a non-rigid registration algorithm designed by Guimond et al. [1]. This process
results in a correspondence field, which maps each voxel in the atlas space to one in the
patient coordinate system (see also Figure 1).
Step 3 - Spatial Prior Alignment: Now that we have determined a correspondence
between atlas and patient space we can warp the spatial priors to the patient MRIs.
The correspondence field obtained in Step 2 is applied to the spatial priors, resulting
in patient specific spatial priors which guide the segmentation of Step 4. In our case,
the priors define the spatial distribution of each tissue class over an entire population.
The priors were generated by registering labelmaps of 80 different training subjects to
a template subject using the method of Warfield et al. [3].
Step 4 - Segmentation:The segmentation of the MRIs is based on EM implementation
by [4]. The implementation first reads in the parameters of each tissue class defined by
a XML-file. This file can be easily modified to define a different segmentation scenario.
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Fig. 1.The simple user interface with the underlying segmentation pipeline for outlining the three
major brain tissue classes in MRIs.

After reading in these parameters, the method simultaneously estimates the image in-
homogeneities caused by the RF coil and segments the images into the different tissue
classes. It improves the solution to both problems by repeating the Expectation Step
(E-Step) and Maximization Step (M-Step) until convergence is reached. The E-Step
calculates the posterior probability that a voxel is assigned to a tissue class. This cal-
culation is based on the aligned spatial prior, the intensity in the MRIs, and the image
inhomogeneity. The M-Step updates the estimate of the image inhomogeneities based
on the results of the E-Step. When the algorithm converges, the labelmap at each voxel
is defined by the tissue class with the maximum posterior probability at that location.

3 Conclusion
We presented a four step pipeline approach which automatically segments MRIs into
the major brain tissue classes. The approach is parameterized by an XML-file that can
be adjusted to various segmentation problems. For the neuroscientist, this pipeline is
hidden behind a ’one button’ user interface (Figure 1). The pipeline is programmed in
the Visual Tool Kit (VTK) environment and integrated in the medical imaging software
3D Slicer. 3D Slicer is publicly available (http:www.slicer.org) and can be run on several
platforms. The segmentation has been tested for both brain tissue classification as well
as cortical and subcortical parcellation [4].
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