

Slicer3 Training Compendium

Slicer3 Training Tutorial ARCTIC

(Automatic Regional Cortical ThICkness)

University of North Carolina, Chapel Hill: Neuro Image Research and Analysis Lab Neurodevelopmental Disorders Research Center

Cedric Mathieu, Clement Vachet, Martin Styner, Heather Cody Hazlett Contact : cvachet@email.unc.edu

Following this tutorial, you will be able to perform an individual analysis of regional cortical thickness.

You will learn how to load input volumes, run the end-to-end module ARCTIC to generate cortical thickness information and display output volumes.

Cortical thickness on WM surface

Cortical thickness on GM surface

This tutorial assumes that you have already completed the tutorial **Data Loading and Visualization**.

Tutorials for **Slicer3** are available at the following location:

• Slicer3 tutorials http://www.na-mic.org/Wiki/index.php/Slicer3.2:Training

This tutorial requires the installation of Slicer3, BatchMake, BatchMake wrappers, the tutorial dataset and the external modules. They are available at the following locations:

• Slicer3 download page (*Slicer 3.2*)

http://www.slicer.org/pages/Downloads

• BatchMake download page (BatchMake 1.0.6)

http://www.batchmake.org/batchmake/resources/software.html

- BatchMake wrapper download page (*ARCTIC_BatchMake_Wrapper_1.0*)
- Tutorial dataset download page(*ARCTIC_Tutorial_example_1.0*)
- External modules download page (*ARCTIC_Executables_1.0*) http://www.nitrc.org/projects/arctic/
- Atlas download page(*UNC_Pediatric_Brain_Atlas*)

http://www.insight-journal.org/midas/item/view/2277

Disclaimer: It is the responsibility of the user of Slicer to comply with both the terms of the license and with the applicable laws, regulations, and rules.

The tutorial dataset (*ARCTIC_Tutorial_example_1.0*) is a ZIP file.

Unzip this file somewhere in your computer.

An "*ARCTIC_Tutorial_example_1.0*" folder will be created, containing:

- A pediatric case: T1-weighted and T2-weighted images.
- An "ARTIC-Results/" directory, in which results of the tutorial example will be saved.

The executables are in a ZIP file (*ARCTIC_Executables_1.0_linux32/64*).

Unzip this file somewhere in your computer.

An "*ARCTIC_Executables_1.0_linux32/64*" folder will be created, containing executables needed to perform the cortical thickness analysis.

To add the executables as Slicer3 external modules:

- Open Slicer3
- Go to View \rightarrow Application Settings \rightarrow Module Settings
- Click on the "add a preset" button
- Select the "ARCTIC_Executables_1.0" folder and confirm
- Close Slicer3

The atlas and its related files are in a ZIP file (UNC_Pediatric_Brain_Atlas).

Create a "pediatric-atlas-4years-sym-T1-RAI" folder somewhere in your computer.

Unzip the ZIP file in this new folder.

The "pediatric-atlas-4years-sym-T1-RAI" folder will thus contain the atlas and its related files.

You can then unzip all the images (gunzip command).

Add the executables in the PATH.

-tcsh usage : setenv PATH ARCTIC-Executables-Directory/:Slicer3D-Plugins-Directory/:Batchmake-Directory/:\${PATH} -bash usage : export PATH=ARCTIC-Executables-Directory/:Slicer3D-Plugins-Directory/:Batchmake-Directory/:\${PATH}

Notice : To execute ARCTIC within Slicer3, it is not necessary to add "Slicer3D-Plugins-Directory/" in the PATH.

Set ARCTIC environment variable

-tcsh usage : setenv BatchmakeWrapper_Dir Batchmake-Wrapper-Directory/ -bash usage : export BatchmakeWrapper_Dir=Batchmake-Wrapper-Directory/

WITH: ARCTIC-Executables-Directory/ : Downloaded folder (ARTIC_Executables_1.0) Slicer3D-Plugins-Directory/ : Directory containing Slicer3 plugins Release: "Slicer3Dir"/lib/Slicer3/Plugins Compiled Version: "Slicer3Dir"/Slicer3-build/lib/Slicer3/Plugins Batchmake-Directory/ : Directory containing BatchMake application Batchmake-Wrapper-Directory/ : Downloaded folder (ARTIC_Batchmake_Wrapper_1.0)

- 1- Pipeline overview
- 2- Input images
- 3- Pipeline description
- 4- Ouput images and organisation
- 5- Execution within Slicer
- 6- Example with tutorial dataset
- 7- Command line execution

- **1- Pipeline overview**
- 2- Input images
- 3- Pipeline description
- 4- Ouput images and organisation
- 5- Execution within Slicer
- 6- Example with tutorial dataset
- 7- Command line execution

All the tools used in the current pipeline are Slicer3 modules, some of them being UNC external modules. The user can thus perform a regional cortical thickness analysis on an individual subject within Slicer3.

Two different modes can be used, depending on the input images:

- Raw images (T1-weighted, T2-weighted, PD)
- Tissue segmentation label image

- 1- Pipeline overview
- 2- Input images
- 3- Pipeline description
- 4- Ouput images and organisation
- 5- Execution within Slicer
- 6- Example with tutorial dataset
- 7- Command line execution

What you need...

Raw images

T1-weighted image Tissue segmentation atlas directory

Optional

T2-weighted image PD-weighted image Atlas raw image + its parcellation Case parcellation image

Segmented image

Raw image Tissue segmentation label image

Optional Atlas raw image + its parcellation Case parcellation image

- 1- Pipeline overview
- 2- Input images
- **3- Pipeline description**
- 4- Ouput images and organisation
- 5- Execution within Slicer
- 6- Example with tutorial dataset
- 7- Command line execution

Pipeline Description

1. Tissue segmentation

Module : itkEMS (UNC Slicer3 external module)

2. Regional atlas deformable registration

3.1. Skull stripping

Module : SegPostProcess (UNC Slicer3 external module)

- 3.2. Deformable registration of T1-weighted atlas Module : RegisterImages (Slicer3 module)
- 3.3. Applying transformation to its parcellation map Module : ResampleVolume2 (Slicer3 module)

3. Sparse and asymmetric Cortical Thickness

Module : CortThick (UNC Slicer3 module)

Pipeline Description

Tissue segmentation (itkEMS external module)

Probabilistic atlas-based automatic tissue segmentation via an Expectation-Maximization scheme. ItkEMS also performs an intensity inhomogeneity correction of the input image that removes gradual variations in the image intensities mainly due to RF coil imperfection

Input_T1-Image.gipl

Image_corrected_EMS.gipl

Image_labels_EMS.gipl

Skull Stripping (SegPostProcess external module)

This step is performed using the previously computed tissue segmentation label image.

Deformable registration of T1-weighted atlas (RegisterImages module)

B-spline pipeline registration.

A transformation file is created and will be used by the next step.

Module link

http://www.na-mic.org/Wiki/index.php/ITK_Registration_Optimization#Pipeline_Registration

TransformFile.txt

AtlasRegistered_Image_corrected_EMS_stripped.gipl

Pipeline Description

Applying transformation to the atlas' parcellation map (ResampleVolume2 module)

Module link :

http://slicer.spl.harvard.edu/slicerWiki/index.php/Modules:ResampleVolume2-Documentation

TransformFile.txt

Parcellation.gipl

ParcellationRegistered_Image_corrected_EMS_stripped.gipl

Pipeline Description

Cortical Thickness (CortThick external module)

Sparse and asymmetric local cortical thickness

Optional Outputs

Image_labels_EMS.gipl

abel	Average	Std Dev	Nb Of Elem
1	2.96	1.81	1214
2	3.8	1.79	2113
3	2.93	1.89	1128
4	4.09	1.8	1796
5	3.9	2.52	897
6	4.15	1.93	9
7	4.31	1.76	90
8	3.39	1.41	2772
9	2.81	1.61	1479

Regional Cortical Thickness information

WM_AvgBoundary.gipl

GM_AvgBoundary.gipl

Volume information (ImageStat and ImageMath modules)

Both modules are used to generate volume information in the following files :

- TissueSegmentationVolumes.csv White matter, gray matter and CSF volumes.
- ParcellationMapVolumes.csv (if the parcellation image is provided) White matter, gray matter and CSF volumes per lobe.

- 1- Pipeline overview
- 2- Input images
- 3- Pipeline description
- 4- Output images and organization
- 5- Execution within Slicer
- 6- Example with tutorial dataset
- 7- Command line execution

Output and Organisation

- 1- Pipeline overview
- 2- Input images
- 3- Pipeline description
- 4- Ouput images and organisation
- **5- Execution within Slicer**
- 6- Example with tutorial dataset
- 7- Command line execution

Execution within Slicer

Load input images

- Demonstration with « Raw Images »
- Demonstration with « Segmented Image »

Demonstration : Load the input images

🕈 Load				
Select Volume File				
Volume Name:	5063-005-02_10_T1.hdr			
Image Origin:	Centered 🖃 2			
Image Orientati	^o From File 📼			
🔲 Label Map	Single File			
	Apply 3			

How to load raw images (case and atlas)?

- 1- Select the image in the browser
- 2- Set the image origin as « centered »
- 3- Click on « Apply » to load

How to load parcellation and label images?

- 1- Select the image in the browser
- 2- Set the image origin as « centered »
- **3-** Check the « label map » button
- 4- Click on « Apply » to load

▲ Load				
Select Volume File				
Volume Name:	Parcellation.gipl			
Image Origin:	Image Origin: Centered 💷 2			
Image Orientati	Image Orientatio From File 📼			
3 🗹 Label Map	Single File			
	Apply	4		

Demonstration in Slicer

- Load input images
- Demonstration with « Raw Images »
- Demonstration with « Segmented Image »
- Parcellation option
- Advanced parameters

Demonstration : "Raw Images" Input 1

Verifications / Options

1- If available, set the T2 and/or PD-weighted images to improve the tissue segmentation

2- Check that the atlas has the same orientation than the input images

3- Check the tissue segmentation atlas type (T1-weighted or T2-weighted image)

4- Set the output images to be displayed in Slicer(« Create a new volume » instead of « None »)

Parameter set ARCTIC1 —				
Status Idle				
 Input 1 : Raw Images 				
T1-Weighted Image pediatric_T1_RAI.gipl 📼 🚔				
T2-Weighted Image pediatric_T2_RAI.gipl ==				
PD-Weighted Image None 😑 🚔				
2 Image Orientation RAI				
Tissue Segmentation Atlas Directory 📄 pediatric-atlars-sym-T1-RAI				
3 Segmentation Atlas Type 🔳 T1 🔲 T2				
Input 2 : Segmented Image				
▲ Output				
4. Skull Stripped Image ARCTIC Volume1 📼 🚔				
Registered Atlas ARCTIC Volume2 📼 🚔				
Registered Parcellation ARCTIC Volume3 😑 🚔				
Cortical Thickness on WM Boundary ARCTIC Volume4 🔤 🚔				
Cortical Thickness on GM Boundary ARCTIC Volume5 🔤 🚔				
Cortical Thickness Results Directory ARCTIC-Results				
Parcellation				
Case Parcellation Image None 🚍 🚔				
Atlas Parcellation Image None 🚍 🚔				
Atlas Image None 🖃 🚔				
 Advanced Tissue Segmentation Parameters 				
 Advanced Skull Stripping Parameters 				
 Advanced Atlas Registration Parameters 				
Default Cancel Apply				

ARCTIC

Demonstration in Slicer

- Load input images
- Demonstration with « Raw Images »
- Demonstration with « Segmented Image »
- Parcellation option
- Advanced parameters

Demonstration in Slicer

- Load input images
- Demonstration with « Raw Images »
- Demonstration with « Segmented Image »
- Parcellation option
- Advanced parameters

Parcellation options

If you want to perform a lobar cortical thickness analysis, choose between the two possibilities

a- Add a parcellation image which is defined in the input coordinate space (« Case Parcellation Image »)

b- Add the atlas raw image **and** its parcellation, defined in the atlas coordinate space (« Atlas Parcellation Image »)

 ABCTIC Parameter set ARCTIC1 Status Idle Input 1 : Raw Images Input 2 : Segmented Image Tissue Segmentation Image | None -White Matter Label 1 -Grey Matter Label 2 CSF Label 3 Raw Image | None 📖 Output Skull Stripped Image | ARCTIC Volume1 Registered Atlas ARCTIC Volume2 Registered Parcellation ARCTIC Volume3 Cortical Thickness on WM Boundary ABCTIC Volume4 Cortical Thickness on GM Boundary ARCTIC Volume5 Cortical Thickness Results Directory ARCTIC-Results Parcellation a Case Parcellation Image | None Atlas Parcellation Image | Parcellation.gipl b Atlas Image | template.gipl t Advanced Tissue Segmentation Parameters Advanced Skull Stripping Parameters Advanced Atlas Registration Parameters Default Cancel Apply

Demonstration in Slicer

- Load input images
- Demonstration with « Raw Images »
- Demonstration with « Segmented Image »
- Parcellation option
- Advanced parameters

Tissue segmentation parameters

a- Filter options: specifies smoothing parameters prior to the segmentation

b- Priors weighting the tissue classes for the segmentation

C- Atlas warping options:

- No atlas warping:

- Unchecked by default: atlas to subject B-Spline registration is performed

- Checked: atlas to subject affine registration is performed instead of the warping

- Grid size X,Y,Z: grid controls points for atlas warping

Skull stripping parameters

a- Check to apply a dilation of the mask (necessary if the tissue segmentation has a low quality)

Atlas registration parameters

a- Different initialization methods

 Advanced Tissue Segmentation Parameters 						
			10			
a	Filter Time Step			0.01		
	Filter I	Method 🔳 Curvati	ure flow 📃 Gra	ad aniso diffusion		
	WM global spacial prior scalling			1.3 🕨		
	h	GM global spaci	al prior scalling	1		
	D	CSF global spaci	al prior scalling	0.7		
		Other global spaci	al prior scalling	1		
		Maximu	4			
			N	o atlas warping 📃		
		•	Grid Size (X)	5 🕨		
		C	Grid Size (V)	5 🕨		
			Grid Size (Z)	5 🕨		
▲ Advanced S	ikull Stri	ipping Parameters				
	a Mask Dilation 🔲					
 Advanced Atlas Registration Parameters 						
Initialization 🔲 None 👘 Landma 🗐 ImageCenti 🔳 CentersOfM:						
a Second Momer						

- 1- Pipeline overview
- 2- Input images
- 3- Pipeline description
- 4- Ouput images and organisation
- 5- Execution within Slicer
- 6- Example with tutorial dataset
- 7- Command line execution

Example with tutorial dataset

Load input images

• Run ARCTIC

Modules:	Volumes	- 4 > 🔳 (3
3DSlicer			
Help & Acknowledgement			
▲ Load			
Select Volume File			
Volume Ivame:			
Image Origin: From File	-		
Image Orientatio From File	-		
📃 Label Map 📃 Single File			
Ap	oply		
Active Volume:			

In Slicer, select the module « Volumes » to load the input images.

Then click on the « Select Volume File » button to load the images.

A new window 'Open Volume File' is now open. Select the **« ARCTIC_Tutorial_example**» directory. Select the **« pediatric_T1_RAI.gipl »** file in the Data directory and click on **« Open »**.

è	Modules:	Volumes	- 4 🕨 🗐 🧭
	3DSlicer		
 Help & Ad 	cknowledgemen	t	
- Load	Shift		
Select	Volume File		
Volume Nam	ne: pediatric_1	1_RAI.gipl	
Image Origin	n: Centered		
Image Orien	tatio From File		
📃 Label Ma	ap 📃 Single F	īle	
		Apply	
Active Volum	e:		
T DI L			

Now, select the Image Origin as « **Centered** ».

And click on « Apply ».

Modules: Volumes I I I I C	
Help & Acknowledgement	The first in
Load Select Volume File Volume Name: pediatric_T1_RAI.gipl Image Origin: Centered Image Orientatio From File Label Map Single File	You can c Volume »
Active Volume: pediatric_T1_RAI.gipl	

The first image is now loaded.

You can check it in the « Active Volume » widget.

Apply the same steps to load the T2-weighted and atlas images.

One can find the T2-weighted image in the same directory than the T1weighted one.

The atlas image, named « template-stripped.gipl » is in the « pediatricatlas-4years-sym-T1-RAI » directory.

Modules: Volumes 💷 🕢 🕨 💭 📿	
3DSlicer	
Help & Acknowledgement	Now we will load the parcellation
Load Select Volume File Volume Name:	Click on the « Select Volume File » button to load the parcellation.
Image Origin: Centered 📼	
Image Orientatio From File 📼	
Label Map Single File	
Apply	
Active Volume: template.gipl	

Open Volume File 🗕 🗆					
**	: 😗 · 📴 💋	Name 🔬	Size	Modified tim	ie 🛛 🔺
TutorialDataSet	mjomier people cascio Freesurfer gimpel gouttard aRCTIC ARCTIC_Batchmake_Wrapper ARCTIC_Data ARCTIC_Data ARCTIC_Exec ARCTIC_ReadMe ARCTIC_TutorialDataset ARCTIC_TutorialDataset ARCTIC_Tutorial_example ARCTIC-Results Data Tutorial_example BrainParcellationAtlas-pediatric-T1-RAI Parag ribes styner vached	Name A amygdalaLeft.gipl amygdalaRight.gipl areg_par.txt caudateLeft.gipl caudateLeft.gipl caudateRight.gipl hippocampusLeft.gipl hippocampusRight.gipl latVentricleLeft.gipl latVentricleLeftMask.gipl latVentricleRight.gipl latVentricleRight.gipl latVentricleRight.gipl latVentricleRight.gipl latVentricleRight.gipl pallidusLeft.gipl pallidusRight.gipl pallidusRight.gipl putamenRight.gipl putamenRight.gipl template.gipl stepletert.gipl	Size 8,879 KB 8,879 KB 1 KB 8,879 KB	Modified tim Fri Dec 12 12:15:27 200 Fri Dec 12 12:15:28 200 Fri Dec 12 12:15:26 200 Fri Dec 12 12:15:29 200 Fri Dec 12 12:15:29 200 Fri Dec 12 12:15:30 200 Fri Dec 12 12:15:30 200 Fri Dec 12 12:15:33 200 Fri Dec 12 12:15:33 200 Fri Dec 12 12:15:33 200 Fri Dec 12 12:15:34 200 Fri Dec 12 12:15:35 200 Fri Dec 12 12:15:36 200 Fri Dec 12 12:15:37 200 Fri Dec 12 12:15:38 200 Fri Dec 12 12:15:39 200 Fri Dec 12 12:15:39 200 Fri Dec 12 12:15:39 200 Fri Dec 12 12:15:40 200	10 10 10 10 10 10 10 10 10 10
File name: Parcel	llation.gipl	1,			Open
Files of type: Volum	ne (*)				Cancel

A new window 'Open Volume File' is now open. Select the « **pediatric-atlas-4years-sym-T1-RAI** » directory . Select the « **Parcellation.gipl** » file and click on « **Open** » .

≜ Load				
Carl Select Volume File				
Volume Name:	Parcellation.gipl			
Image Origin:	Centered 🔤			
Image Orientati	From File 🔤			
🗹 Label Map	Single File			
	Apply			
Active Volume:	template.gipl			

Now, select the Image Origin as « Centered ».

Then, check the **« Label Map »** case to load the parcellation as a label image.

And click on « Apply ».

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	odules:	Volumes	-	4	•	Ċ
30	Slicer					
• Help & Ackno	owledgement					
▲ Load						
📄 Select Vo	lume File					
Volume Name:	Parcellation.gip	I				
Image Origin:	Centered 😑	2				
Image Orientati	^o From File 😑	i l				
🗹 Label Map	Single File					
	Apply	/				
Active Volume:		Parc	ellation.gipl			

The dataset is now loaded.

You can check it in the **«** Active Volume **»** widget while displaying the 4 images.

Example with tutorial dataset

Input images loading

ARCTIC execution

Module execution

Module execution

	Select Directory	
%	G- 🕲 · 🖻 😕	
	🛅 mjomier	
	🗆 🗀 people	
TutorialDataSet	🚞 cascio	
	🛅 Freesurfer	
<u>~</u>	📄 gimpel	
	🛅 gouttard	
AutismDataVachet	🗆 📄 mathieuc	
<u>~</u>	🗆 🖻 🛅 ARCTIC	
	ARCTIC_Batchmake_Wrapper	
pediatricT1_RIP	🕀 🫅 ARCTIC_Data	
	ARCTIC_Exec	
<u>~</u>	ARCTIC_ReadMe	
ation	ARCTIC_TutorialDataset	
alias	BrainParcellationAtlas-pediatric-T1-RAI	
<u></u>	BrainsegAtias-pediatric-T1-RA	
	pediatric-atlas-4years-sym-T1-RAI	
mathieuc	i Parag	
		-
	styner	
	M	
	OK Cancel	

A new window is now open to select the tissue segmentation atlas.

Search and select the **« pediatric-atlas-4years-sym-T1-RAI/**» folder.

Click on the **« OK »** button to confirm.

Der Module execution

1- Select « Create a new volume » to display output images

2- Click on the « Cortical Thickness Results **Directory** » button

ARCTIC				
	Parameter set ARCTIC1			
* Input 1 : I	Raw Images			
	T1-Weighted Image pediatric_T1_RAI.gipl 📼 🚔			
	T2-Weighted Image pediatric_T2_RAI.gipl 🔤 📑			
	PD-Weighted Image None -			
Image Orientation RAI				
Tissue Segmentation Atlas Directory ediatric-atlars-sym-T1-BAI				
Segmentation Atlas Type 🔳 T1 📃 T2				
Input 2 : Segmented Image				
 Output 				
	Chull Christian I Incom			
	Skull Stripped Image ARCTIC Volume1 🔤 🚍			
1	Registered Atlas ARCTIC Volume2 📼 🛋			
	Registered Parcellation ARCTIC Volume3 🔤 💂			
	Cortical Thickness on WM Boundary ARCTIC Volume4 🔤 🛓			
	Cortical Thickness on GM Boundary ARCTIC Volume5 😑 🚔			
	Cortical Thickness Results Director <mark>y 📄</mark>			
 Parcellation 	on			
Case Parcellation Image None 🖃 🚽				
Atlas Parcellation Image None 🔤 🚔				
Atlas Image None				
Advanced Issue Segmentation Parameters				
Advanced Atlas Begistration Parameters				
Default	Cancel Apply			

Module execution

Select the « **ARCTIC-Results** » folder in the ARCTIC_Tutorial_Example directory

Click on the **« Save** » button to confirm your choice.

1- Add the **« Parcellation.gipl »** as Atlas Parcellation Image, and the **« template-stripped.gipl »** as Atlas Image

2- Click on the « Apply » button to start the process.

ARCTIC					
Parameter set ARCTIC1 🔤 🛋					
Status Idle					
 Input 1 : Raw Images 					
T1-Weighted Image pediatric_T1_RAI.gipl 📼 🚔					
T2-Weighted Image pediatric_T2_RAI.gipl 📼 🚔					
PD-Weighted Image None 🔤 🚔					
Image Orientation RAI					
Tissue Segmentation Atlas Directory 📄 pediatric-atlars-sym-T1-RAI					
Segmentation Atlas Type 🔳 T1 📃 T2					
Input 2 : Segmented Image					
▲ Output					
Skull Stripped Image ARCTIC Volume1 📼 🚔					
Registered Atlas ARCTIC Volume2 📼 🛋					
Registered Parcellation ARCTIC Volume3 📼 🚔					
Cortical Thickness on WM Boundary ARCTIC Volume4 🔤 🚔					
Cortical Thickness on GM Boundary 🛛 🗛 🚍 🚍					
Cortical Thickness Results Directory 📄 ARCTIC-Results					
Parcellation					
Case Parcellation Image None 🔤 🚍					
Atlas Parcellation Image Parcellation.gipl 😑 🚔					
 Advanced Tissue Segmentation Parameters 					
 Advanced Skull Stripping Parameters 					
 Advanced Atlas Registration Parameters 					
Default Cancel 🥱 Apply					

Module execution

Once the execution is finished, several images are displayed within Slicer. You can compare your images with the following ones to perform a quick quality control.

Skull Stripped Image ARCTIC Volume1

Registered Atlas ARCTIC Volume2

Registered Parcellation ARCTIC Volume3

Cortical Thickness on WM Boundary ARCTIC Volume4

Cortical Thickness on GM Boundary ARCTIC Volume5

- 1- Pipeline overview
- 2- Input images
- 3- Pipeline description
- 4- Ouput images and organisation
- 5- Execution within Slicer
- 6- Example with tutorial dataset
- 7- Command line execution

Use the command line

« Raw Images » Mode

Global analysis

ARCTIC --T1 Image_T1.gipl --segAtlasDir TissueSegmentationAtlasDirectory/

Lobar cortical thickness analysis

If the atlas raw image and its parcellation are provided:

ARCTIC --T1 Image_T1.gipl --segAtlasDir TissueSegmentationAtlasDirectory/ --atlas Atlas.gipl --atlasParcellation Parcellation.gipl

If the case parcellation image is provided:

ARCTIC --T1 Image_T1.gipl --segAtlasDir TissueSegmentationAtlasDirectory/ --caseParcellation CaseRegisteredParcellation.gipl

Use the command line

« Segmented Image » Mode :

Global analysis

ARCTIC -- label TissueSegmentationImage.gipl -- rawImage Image_T1.gipl

Lobar cortical thickness analysis

If the atlas raw image and its parcellation are provided:

ARCTIC --label TissueSegmentationImage.gipl --rawImage Image_T1.gipl --atlas Atlas.gipl --atlasParcellation Parcellation.gipl

If the case parcellation image is provided:

ARCTIC --label TissueSegmentationImage.gipl --rawImage Image_T1.gipl --caseParcellation CaseRegisteredParcellation.gipl

Slicer3 toolkit provides an accessible and versatile platform to conduct image processing of MRI data, in this case, regional cortical thickness analysis using ARCTIC.

Thanks to this tutorial you are now ready to perform a regional cortical thickness analysis on your own dataset.

National Alliance for Medical Image Computing NIH U54EB005149

UNC Chapel Hill

Neurodevelopmental Disorders Research Center Neuro Image Research Analysis Laboratories

- Steven Aylward, Kitware Inc. (RegisterImages)
- François Budin, Psychiatry Neuroimaging Laboratory, Boston (ResampleVolume2)
- Julien Jomier, Kitware Inc. (Batchmake)
- Joseph Piven, Neurodevelopmental Disorders Research Center, UNC Chapel Hill
- Marcel Prastawa, Scientific Computing and Imaging Institute, Utah (itkEMS)
- Delphine Ribes, Sylvain Gouttard , Cassian Marc, NIRAL, UNC (CortThick)