
3D SLICER

Steve Pieper1,2, Michael Halle1, Ron Kikinis1

1Surgical Planning Laboratory, Brigham and Women’s Hospital; 2Isomics, Inc.

ABSTRACT

To be applied to practical clinical research problems,
medical image computing software requires infrastructure
including routines to read and write various file formats,
manipulate 2D and 3D coordinate systems, and present a
consistent user interface paradigm and visualization
metaphor. At the same time, research software needs to be
flexible to facilitate implementation of new ideas. 3D
Slicer is a project that aims to provide a platform for a
variety of applications through a community-development
model. The resulting system has been used for research in
both basic biomedical and clinically applied settings. 3D
Slicer is built on a set of powerful and widely used
software components (Tcl/Tk, VTK, ITK) to which is
added an application layer that makes the system usable
by non-programmer end-users. Using this approach,
advanced applications including image guided surgery,
robotics, brain mapping, and virtual colonoscopy have
been implemented as 3D Slicer modules. In this paper we
discuss some of the goals of the 3D Slicer project and
how the architecture helps support those goals. We also
point out some of the practical issues which arise from
this approach.

1. INTRODUCTION

Medical image computing applications are complex

pieces of software requiring a common set of base
functionality as well as the ability to be customized for
specific clinical applications. In a research environment, it
is often necessary to create prototype environments that
allow exploration and refinement of a new algorithm or
concept in the context of a complete functional end-user
application. The 3D Slicer project [1] (or simply ‘Slicer’)
began as way to provide a common research platform with
basic functionality and has evolved to support a wide
variety of clinical applications. We approached this
problem first from the perspective our own laboratory’s
requirements, but quickly realized that building a larger
community of users and developers had the potential to
create a more powerful and useful software environment.
Following the philosophical model of Open Source
software, we have created an infrastructure to manage the
project and to encourage community involvement. The
resulting software environment has been used as the basis
for a number of scientific research efforts which provide

the funding for Slicer’s ongoing software engineering.
There have been over 4000 registered downloads of Slicer
not including developer access. The Slicer user’s email
list contains 166 subscribers; the developer’s list 117
subscribers. There are about a dozen active developers
with write access to the source code repository and a
comparable number of module developers.

Figure 1 Sample 3D Slicer display showing intra-
operative MRI slices and 3D reconstructions. (Data
courtesy Dr. Ion-Florin Talos, Brigham and Women's
Hospital).

2. SLICER GOALS AND NON-GOALS

To create a system meeting those requirements, Slicer was
designed and continues to evolve with several goals and
“non-goals” in mind. We use the term “non-goals” to refer
to considerations that may be driving factors for other
software development efforts but have been explicitly
excluded from Slicer’s objectives.

Slicer goals:
• to establish a common development platform for

researchers within a clinical research environment;

• to provide users with a familiar user interface to
perform image processing and visualization tasks;

• to establish a set of conventions for data handling and
exchange that both developers and users can adopt
when there is no overriding reason not to do so;

• to encourage transfer of algorithm and visualization
techniques from developers to users for evaluation,
refinement, and use;

• to foster information exchange and collaboration
between different researchers, departments, and
institutions, locally and world-wide; and

• to minimize the different costs of entry and membership
in the developer and user community.

Slicer “non-goals”:
• not a goal to create a self-supporting revenue stream

based on software sales or support;
• not a goal to further sales of a required commercial

software package or hardware device;
• not a goal to lock users or developers into a single

software platform;
• not a goal to protect intellectual property by limiting

access to software code or internal functionality;
• not a goal to contractually guarantee clinical accuracy

or reliability for research code;
• not a goal to have the code FDA-approved; and
• not a goal to provide all software components written

internally "from scratch" in their entirety.

Slicer's non-goals may well be valid, even necessary goals
for a commercial software company. It is also possible
that a commercial third-party might use Slicer or parts of
the Slicer code to help meet goals different from ours. By
consciously freeing ourselves from these commercially-
oriented goals, we have furthered Slicer's fundamental
goals by encouraging a world-wide community of talented
developers and skilled users to both use and contribute to
the open platform. Also, while we cannot guarantee
anything about the accuracy or reliability of the code, we
believe that the software engineering infrastructure
provides a high level of quality that is sufficient for
advanced biomedical research.

Some of our greatest challenges, from both a software and
social engineering perspective, have been to create
mechanisms that take full advantage of the creativity and
expertise of our contributors while maintaining Slicer's
stability. Our developers are generally experts in their
own fields, not in Slicer development. They are literally
all over the world, using a variety of operating systems
and computer hardware. They work for corporations,
universities, hospitals, or even just themselves. Without
some guidance, control, and limits, the entire process risks
devolving into chaos.

We have found that several elements are essential to
managing this distributed developer and user
environment. The first is good communication. Without it,
no standard of work is possible, efforts become
duplicated, and individuals feel isolated rather than part of
a larger team. We make heavy use of both developer and
user electronic mail lists to discuss current and future
issues with Slicer. For those developers who are local, a
semi-weekly meeting provides an opportunity to hold
face-to-face discussions. Notes from these meetings are
available through the mailing list and on Slicer's web
page. The web page also provides a central focus for all
documentation for both users and developers. Access to
the software repository is available to developers both
through the web and through CVS (Concurrent Version
System [2]), permitting authorized software access and
updates from anywhere on the network. These central
services (mailing lists, web page, software repository) are
maintained by the same professional staff that is
responsible for core Slicer development; these
computational and personnel resources form the stable
structure upon which Slicer development is built.

The second most important principle of our work is
modularity. Modular systems allow developers working in
relative isolation to produce elements of value that other
people can use. Modularity is also essential for software
stability in quickly-developing systems: a small change by
any one developer should have minimal or no adverse
impact on other developers or users. Modularity
encourages the concept of a toolbox that can be tailored to
particular tasks. Finally, modular systems allow
developers to concentrate on their own areas of expertise,
enabling them to understand, implement and test their
own software elements without extensive knowledge of
the larger platform.

Modularity in Slicer is done using layers of abstractions
and componentized functional units. Slicer is layered to a
large extent on VTK (Visualization Toolkit [3]), a freely-
available visualization toolkit written in C++ from
Kitware, Inc. [4]. Slicer extends VTK's base functionality
with C++ modules designed for medical imaging. VTK
also provides bindings to most of its functionality for
interpreted languages such as Tcl [5]. Slicer uses these
bindings to provide a common library of Tcl script code
and to implement Slicer's cross-platform user interface
written in the Tcl/Tk windowing toolkit. These foundation

3D Slicer Application
Slicer Base Module 1 Module N …
VTK Tcl
OpenGL Window System

Computer Hardware

layers also provide the parsing semantics for MRML,
Slicer's XML-based data exchange file format. Slicer's
component architecture is based on the concept of
modules that can provide new user interface components,
new software services written in Tcl or C++, or a
combination thereof. Modules can be developed
individually and do not require access to all other modules
to compile or function. Modules are loaded into Slicer at
runtime using Tcl's package mechanism and the dynamic
loading capability of modern operating systems.

A modular software structure permits variations in
development styles, timetables, or licensing structures
between different modules. Policies for one module do
not in general dictate the policies for any other. It is
possible, for instance, that the compiled VTK
implementation class for a 3D Slicer module could be
distributed in binary form only, without source code, and
used to provide new functionality. While such a policy
might seem to be contrary to the spirit of an open
platform, the choice is a social one; 3D Slicer's software
architecture does not preclude it. Such flexibility can
actually be quite useful in an academic environment: users
can gain the benefits of modules using newly developed
algorithms, while module writers can temporarily protect
their work prior to publication.

3. ISSUES AND LIMITATIONS

While the project design and implementation have been
broadly successful at meeting Slicer’s goals, a number of
specific issues require ongoing attention.

3.1. Non-Research Clinical Applications

Although Slicer is not intended to be an FDA regulated
medical device, validation of the design and verification
of the implementation are important aspects of any
software package, particularly one to be used as the basis
for scientific studies to be published in the literature and
for clinically-oriented research. This is a particular
challenge in the face of the diverse development
community process described above. Slicer does rely on
the automated testing infrastructure provided by the
packages on which it relies: Tcl/Tk, VTK, and ITK
(Insight Toolkit [6]) all include regression tests as a major
part of the development process. One can point to
anecdotal evidence from open source projects that the
open development process identifies and fixes many bugs
that might go undiscovered in proprietary packages.
While we believe this trend to be true and that Slicer has
benefited from that process, the evidence is not adequate
to support claims of clinical accuracy.

To date, our only firm answer to the question of adequacy
for clinical use is to forbid, in the software license

agreement, any non-research use of the software and to
state that: “In no event shall data or images generated
through the use of 3D Slicer Software be used in the
provision of patient care.” See [1] for full text of software
license agreement. These limitations are driven by the
very real concern that addition of new features will have
unintended consequences in other parts of the code, in
spite of the developers’ best intentions and the modular
design of the software.

The limitation of use to research applications is a
reflection of three aspects of the current state of the Slicer
development process. First, there is no fixed set of
functionality for the program as a whole to test against
because features are being added and modified to suit the
needs of the developers and users. This is particularly
difficult due to the extensive and rich set of user
interactions with the 3D environment; refining and
improving these 3D interactions is a critical part of the
research effort. Second, there is currently no individual or
group whose job function is to perform exhaustive testing
of the software to the level required for clinical use. Third,
there is no entity with an interest in claiming or
supporting a particular level of functionality or accuracy;
that is, in typical FDA regulated medical device software
a corporation makes certain claims that the software is
suitable for clinical application and is held responsible for
ensuring that the product lives up to those claims.
Although some members of the development teams are
part of hospitals that provide clinical care or corporations
that develop medical devices, the institutions themselves
specifically disclaim any responsibility for Slicer.

The three issues mentioned in the previous paragraph are
not fundamental limitations and, as stated, are merely
reflections of the current realities of the development
community. One possible future development would be
for a corporation to step forward and take on
responsibility for refining and testing the software in
support of particular claims of clinical functionality. Such
an effort would no doubt require freezing certain aspects
of the code and probably removing some functionality.
While there may be specific intellectual property
embodied in non-public Slicer modules, this approach
would require extensive testing and bug fixing in the base
code. Since the Slicer license agreement requires that
changes to the base code be made publicly available, we
believe this scenario would be beneficial to the Slicer
development community by improving the robustness of
the underlying software and by providing an avenue for
possible clinical application.

3.2. Major Architectural Changes

Another consequence of the distributed nature of the
development community is that over the years several

individuals and development teams have contributed
major sections of the code and then moved on to other
projects. Because some strong development guidelines
were in place from the beginning of the project, most of
the code is readable and maintainable. In particular, the
C++ code in Slicer has benefited greatly from the
implementation structure provided by VTK which
provides a class hierarchy and build mechanism that has
been adopted and extended within Slicer. Also, because
C++ is used for the compute-intensive aspects of the
program, while Tcl/Tk is used for the application logic
and user interface, there is a natural division of the
organizational structure common to the modules. As with
any large program, certain aspects of the design become
out of date as new requirements emerge. It is an ongoing
challenge to incorporate new designs within the base code
while maintaining compatibility with the modules; this
reality has limited our ability to make major changes to
the underlying architecture.

3.3. Engineering Effort and Funding

Another major consideration with any software
development project is the availability of personnel,
equipment, and other resources to ensure the ongoing
viability of the project. With community-developed
projects like Slicer, we benefit from the (often significant)
contributions from the developers who provide bug fixes
or new feature contributions as dictated by their own
needs and interests. In spite of these valuable
contributions, and in fact to make best use of them, some
level of centralized administration and engineering effort
is required. Our strategy in this regard has been to have
Slicer adopted by various research projects and the
standard visualization and image processing environment.
These research efforts then serve as a focus for the
development process and a spur to new functionality.

In particular, the Neuroimage Analysis Center (NAC) [7],
a Biomedical Technology Resource Center funded by the
National Center for Research Resources (NCRR) [8] at
the National Institutes of Health is the organizational
“home” of Slicer’s development and administration.
Through the NAC, Slicer is used actively in a variety of
clinical research scenarios including neurosurgical
planning, investigation of Alzheimer’s Disease, multiple
sclerosis, schizophrenia, and related conditions. The NAC
is also collaborating with other NCRR-funded centers in
the Biomedical Informatics Research Network (BIRN) [9]
project, which provides additional funding for engineering
and application development for the Slicer. Additional
support comes from the National Science Foundation
robotics project [10] and a newly forming Department of
Defense project in support of combat casualty care. Each
of these projects places new demands for added

functionality but at the same time provides a context in
which the base Slicer code can be improved and refined.
The pace and open philosophy of Slicer development
would simply not be possible without the support from
these governmental funding sources.

4. CONCLUSION

The 3D Slicer project has proven to be an exciting and
productive environment for advanced medical image
computing projects. The goals articulated here have
resulted in a platform where new functionality rapidly
progresses from concept to implementation and where
new multi-institution and multi-specialty collaborations
are facilitated. This environment, appropriate for the
research setting, is inherently less structured and restricted
than conventional medical device software that used in
clinical routine. While we openly acknowledge
imperfections in Slicer's design and implementation, we
believe that Slicer offers compelling abilities to improve
and grow over time compared to commercially-licensed
alternatives. We plan to continue working on new
methods that will improve the quality and reliability of the
code while preserving the support for creative
contributions from the wider development community.

5. ACKNOWLEDGEMENTS

The authors would like to thank all the past and current
Slicer developers. Special thanks to David Gering, Lauren
O’Donnell and Nicole Aucoin for significant design and
engineering contributions. This investigation was
supported by NIH grant P41 RR13218 and the Biomedical
Informatics Research Network (www.nbirn.net).

6. REFERENCES

[1] 3D Slicer home page http://www.slicer.org
[2] CVS home page http://www.cvshome.org
[3] VTK home page http://www.vtk.org
[4] Kitware home page http://www.kitware.com
[5] Tcl/Tk home page http://www.tcl.tk
[6] Insight Toolkit home page http://www.itk.org
[7] NAC home page
http://spl.harvard.edu/pages/projects/grants/nac
[8] NCRR Biomedical Technology Center home page
http://www.ncrr.nih.gov/biotech/btresctr.asp
[9] BIRN home page http://www.nbirn.net
[10] CISST home page http://cisstweb.cs.jhu.edu

http://www.slicer.org/
http://www.cvshome.org/
http://www.vtk.org/
http://www.kitware.com/
http://www.tcl.tk/
http://www.itk.org/
http://www.ncrr.nih.gov/biotech/btresctr.asp
http://www.nbirn.net/
http://cisstweb.cs.jhu.edu/

	3D SLICER
	ABSTRACT

