
Figure 2. Semi-automatic segmentation of a TBI volume in 3D Slicer. Challenges associated with this 
segmentation include low T1 image quality (low contrast, non-isotropic voxels) and brain damage. Brain 
segmentation was performed automatically, followed by user-supervised level-set segmentation of the 
lesions and ventricles. T1 hyperintense regions are shown in yellow. (A) T1 image; (B) gray matter 
volume; (C) white matter volume; (D) scalp segmentation; (E,F) ventricles and lesion segmentation 

Figure 1. Semi-automatic segmentation of a TBI volume in 3D Slicer. T1 image quality is poor, as a result 
of motion, poor contrast, etc. First, all image volumes (first column) are co-registered to the anatomic T1 
volume, whereafter segmentation is performed to obtain tissue classifications (white matter, gray 
matter, CSF, ventricles and lesions – second column). Finally, the 3D models are created in 3D Slicer. 

Figure 2. Multimodal segmentation of several MR volumes acquired from a TBI patient. The 
segmentation method being used (Atlas Based Classification, ABC) performs co-registration of all input 
modalities (5 MRI channels, in this case) and atlas-based segmentation of brain tissue and CSF. Bias-
correction (all modalities) and brain-stripping  is an integrative, automatic part of ABC. White matter 
lesions and ventricles were segmented via post-processing using level-set segmentation.  (A) 5 MR 
image channels; (B) automatic tissue classification; (C) 3D model showing ventricles, lesions. 
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Figure 4. (A) Automatic segmentation of the scalp surface for a TBI patient performed using 3D slicer 
software. (B) Model of the gray matter surface, rendered in 3D Slicer. (C) Cross-section through the 
anatomy reveals tissue types. (D, E). 3D views of segmented tissues, with white matter (red), gray 
matter (green), CSF (blue), ventricles (cyan) and lesions (yellow).  
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Figure 5. Tractography and joint display of segmented objects and MRI. The ABC algorithm performs the 
co-registration of structural modalities to DTI (baseline image registered to TSE), which allows TDI 
tensor field and structural images to be available in the same coordinate system.  

Figure 6. Visual assessment of multi-modality imaging of 3D fiber tracts and morphometry provides 
proof of 3D Slicer capabilities to perform TBI MR image analysis. Such analysis may potentially identify 
specific targets for neurological testing; this may allow the clinician to deploy neuropsychological tests 
based on hypotheses from imaging.  

Figure 7. Co-registration of structural MRI volumes using 3D Slicer and ABC algorithm.  
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Figure 8. Use of ABC segmentation algorithm reveals the method’s robustness to the presence of 
serious anatomical abnormality, as shown in this automatic segmentation of a TBI case.  

Figure 9. Brain tissue segmentation using ABC and Slicer displays the white matter surface with 
temporal lobe lesion.  

INTRODUCTION 
 

• an estimated 1.7 million Americans sustain 
a traumatic brain injury (TBI) every year 
[1] 

• the use of automatic segmentation for the 
clinical investigation of TBI remains an 
elusive goal because such methods are 
insufficiently robust to accurately capture 
TBI-related changes in brain anatomy 

• despite recent progress in image analysis, 
it remains difficult to quantify TBI-related 
brain insults multi-modally, especially for 
improving clinical outcome metrics 

• to address the urgent need for clinically-
oriented TBI analysis tools, we have used 
multimodal, automatic TBI analysis 
methods with a view toward assessing 
clinical improvement 

 

METHODS 
 

• we employ the NA-MIC Kit and 3D Slicer 
platforms [2, 8, 9] to obtain metrics of 
pathology and changes due to therapy 
and/or recovery 

• processing includes segmentation of 
lesions, hemorrhage, edema and other 
pathology using Atlas Based Classification 
(ABC) 

• ABC is a robust automatic segmentation 
framework which includes multimodal 
image registration, model-based bias field 
correction, tissue classification and outlier 
detection [2, 4-7] 

• the ABC paradigm is considerably more 
suitable for TBI volume segmentation 
compared to standard methodologies 

• longitudinal changes are assessed by 
registration and joint segmentation of 
baseline and follow-up data for the 
ultimate purpose of performing 
longitudinal analysis 

• our tools allow cross-correlation of 
multimodal metrics from structural 
imaging (cortical thickness, volume, 
lesions) and DTI with clinical outcome 
variables (time since injury, age, gender, 
etc.)  

• neuroimaging data are drawn from the 
LONI Image Data Archive (IDA), a 
comprehensive archive comprised of a 
number of funded projects [3] 

RESULTS 
 

• 3D Slicer and the NA-MIC Kit are 
applicable to the analysis of TBI 
neuroanatomy to investigate alterations in 
cortical thickness aand white matter 
changes 

• Slicer software tools being developed 
allow us to obtain multimodal results for 
the analysis of neurological concomitants 
associated with TBI 

• metrics can be extracted for uni- and 
multivariate modeling to provide 
additional insights about neuro-
anatomical changes and clinical outcome 
variables  

• multimodal data processing solutions are 
to be made openly available, with 
accompanying training materials via the 
NA-MIC web site, and compliant with the 
NA-MIC open-source policies 
 

CONCLUSIONS 
 
• we envision NA-MIC Kit workflows to be 

suitable for TBI clinical practice and 
patient monitoring, particularly for 
assessing TBI damage and measuring 
neuroanatomical change over time 

• with knowledge of location, extent, and 
degree of change, metrics can be 
associated with clinical measures and 
subsequently used to suggest viable 
treatment options for individual subjects 
against patterns that are typical TBI 
populations 
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Figure 5. Sample white matter and lesion segmentation, showing opaque models (left) of the white 
matter (red) with lesion (yellow) and transparent models (right). 


