

THE HARVARD CLINICAL AND TRANSLATIONAL SCIENCE CENTER

Radiation Dosimetry and Cancer risks of Imaging

Jeffrey T.Yap, PhD

Senior Diagnostic Physicist, Department of Imaging, DFCI Assistant Professor of Radiology, Harvard Medical School Director of Education, Harvard Catalyst Imaging Consortium Valerie Humblet, PhD

Harvard Catalyst Imaging Consortium

	Harvard Catalyst Imaging
AND TRANSLATIONAL SCIENCE CENTER	Consortium
MASSACHUSETTS GENERAL HOSPITAL	Bruce Rosen, Director Randy Gollub, Co-Director Gordon J. Harris, Consultant William Hanlon, Consultant
Beth Israel Deaconess Medical Center	Robert Lenkinski, Consultant Ivan Pedrosa, Consultant
BRIGHAM AND WOMEN'S HOSPITAI A Teaching Affiliate of Harvard Medical Schoo	Clare Tempany, Consultant Ron Kikinis, Consultant Charles Guttmann, Consultant Todd Perlstein, Consultant Gordon Williams, PI for CTSC Translational Technologies
Children's Hospital Boston	Stephan Voss, Consultant Simon Warfield, Consultant
DANA-FARBER	Annick D. Van den Abbeele, Consultant Jeffrey Yap, Consultant, Director of Education
	Valerie Humblet, Imaging Liaison Yong Gao, Imaging Informatics Architect
THE HARVARD CLINICAL AND TRANSLATIONAL	

Imaging modalities that use *ionizing* radiation

Radiology

THE HARVARD CLINICAL AND TRANSLATIONAL SCIENCE CENTER

- X-ray
- Dual Energy X-ray Absorptiometry (DEXA)
- Fluoroscopy
- Mammography
- Computed Tomography (CT, CAT scan)
- Nuclear medicine
 - Gamma camera (e.g. bone scans, MUGA)
 - Single photo emission computed tomography (SPECT)
 - Positron emission tomography (PET)

HARVARD CATALYST THE HARVARD CLINICAL AND TRANSLATIONAL SCIENCE CENTER

X-ray Computed Tomography (CT)

- 3-dimensional whole-body imaging
- Higher radiation dose than planar x-ray
- To provide information about the size and location of the tumor and whether it has spread;
- Ideal for image guidance (biopsy/surgery/radiation)
- Standard for response assessment in clinical oncology trials

Imaging Modalities that involve *nonionizing* radiation

Photography

THE HARVARD CLINICAL AND TRANSLATIONAL SCIENCE CENTER

- Optical imaging
- Bioluminesence
- Ultrasound (e.g. sonogram, echocardiogram)
- Magnetic Resonance Imaging (MRI)
 - Nuclear Magnetic Resonance (NMR)
 - Functional MRI (fMRI)
 - MR Spectroscopy (MRS)

- Dosimetry of individual organs can be measured with low dose scans
- Radiation exposure is proportional to the quantity of injected radiopharmaceutical
- For a given amount of radiation, damage and risk is higher for pediatric populations

	Absorbed dose per unit activity administered (mGy/MBq)										
Organ	Adult	15 years	10 years	5 years	1 year						
Adrenals	1.2E-02	1.5E-02	2.4E-02	3.8E-02	7.2E-02						
Bladder	1.6E-01	2.1E-01	2.8E-01	3.2E-01	5.9E-01						
Bone surfaces	1.1E-02	1.4E-02	2.2E-02	3.5E-02	6.6E-02						
Brain	2.8E-02	2.8E-02	3.0E-02	3.4E-02	4.8E-02						
Breast	8.6E-03	1.1E-02	1.8E-02	2.9E-02	5.6E-02						
Gall bladder H-tract	1.2E-02	1.5E-02	2.3E-02	3.5E-02	6.6E-02						
Stomach	1.1E-02	1.4E-02	2.2E-02	3.6E-02	6.8E-02						
SI	1.3E-02	1.7E-02	2.7E-02	4.1E-02	7.7E-02						
Colon	1.3E-02	1.7E-02	2.7E-02	4.0E-02	7.4E-02						
ULI	1.2E-02	1.6E-02	2.5E-02	3.9E-02	7.2E-02						
(LLI	1.5E-02	1.9E-02	2.9E-02	4.2E-02	7.6E-02						
Icart	6.2E-02	8.1E-02	1.2E-01	2.0E-01	3.5E-01						
Kidneys	2.1E-02	2.5E-02	3.6E-02	5.4E-02	9.6E-02						
Liver	1.1E-02	1.4E-02	2.2E-02	3.7E-02	7.0E-02						
lungs	1.0E-02	1.4E-02	2.1E-02	3.4E-02	6.5E-02						
Auscles	1.1E-02	1.4E-02	2.1E-02	3.4E-02	6.5E-02						
Desophagus	1.1E-02	1.5E-02	2.2E-02	3.5E-02	6.8E-02						
Ovaries	1.5E-02	2.0E-02	3.0E-02	4.4E-02	8.2E-02						
ancreas	1.2E-02	1.6E-02	2.5E-02	4.0E-02	7.6E-02						
Red marrow	1.1E-02	1.4E-02	2.2E-02	3.2E-02	6.1E-02						
škin	8.0E-03	1.0E-02	1.6E-02	2.7E-02	5.2E-02						
Spleen	1.1E-02	1.4E-02	2.2E-02	3.6E-02	6.9E-02						
Festes	1.2E-02	1.6E-02	2.6E-02	3.8E-02	7.3E-02						
Thymus	1.1E-02	1.5E-02	2.2E-02	3.5E-02	6.8E-02						
Thyroid	1.0E-02	1.3E-02	2.1E-02	3.5E-02	6.8E-02						
Jterus	2.1E-02	2.6E-02	3.9E-02	5.5E-02	1.0E-01						
Remaining organs	1.1E-02	1.4E-02	2.2E-02	3.4E-02	6.3E-02						
(mSv/MBa)	1.9E-02	2.5E-02	3.6E-02	5.0E-02	9.5E-02						

A	В	C	D	E	F	G	н			K	L	M	N
Data Ent	ry Fields	DFCI Nuclear Medicin	e Procedures									Calculate	d Values
Number	Number of			Injected	Injected	Eff Dose per	Eff Dose per	Effective		Effective		Effective	Effective
of Scans	Scansin			Activity	Activity	Unit Activity	Unit Activity	Dose	Effective Dose	Dose	Referenc	Dose in	Dose in
in Year 1	All Years	Scan	Isotope	(mCi)	(MBq)	(mSv/MBq)	(mSv/mCi)	(mSv)	(Rem)	(rem)	e	Year 1	All Years
		Bone	Tc-99m-MDP	25	925	0.008	0.296	7.4	0.74	0.75	ICRP 53	(
		Lung Perfusion	Tc-99m-MAA	5	185	0.011	0.407	2.035	0.2035	0.2	ICRP 80	(
		Ventilation	Xe-133 gas	40	1480	0.0008	0.0296	1.184	0.1184				
		RVG (MUGA)	Tc-99m-RBC	25	925	0.007	0.259	6.475	0.6475	0.65	ICRP 80	(
		GI Bleed	Tc-99m-RBC	25	925	0.007	0.259	6.475	0.6475	0.65	ICRP 80	(
		Hemangioma	Tc-99m-RBC	25	925	0.007	0.259	6.475	0.6475				
		IP/Leveen shunt	Tc-99m-MAA	5	185	0.011	0.407	2.035	0.2035	0.2	ICRP 80	(r (
			Tc-99m Sulfur Colloid	3	111	0.0019	0.0703	0.2109	0.02109				
		Catheter Flow Study	Tc-99m Pertechnetate	20	740	0.013	0.481	9.62	0.962				
		Lymphoscintigram	Tc-99m Sulfur Colloid	0.5	18.5	0.0019	0.0703	0.03515	0.003515				
		Renal function	Tc-99m MAG3	10	370	0.007	0.259	2.59	0.259				
			Tc-99m MAG4	10	370								
		Renal GFR	Tc-99m DTPA	15	555	0.0049	0.1813	2.7195	0.27195				
		Hepatobiliary	Tc-99m Mebrotenin	6	222	0.017	0.629	3.774	0.3774				
	_	Damaged RBC Scan	Tc-99m Damaged RBC	10	370	0.007	0.259	2.59	0.259		1000 00		.
		Gallium	Ga-67 Citrate	10	370	0.1	3.7	3/	3.7	3.7	ICRP 80		
	_	Thallium	TL-201 Chloride	3	111	0.23	8.51	25.53	2.553	2.4	ICRP 80		
	_	1-123 MIBG	1-123 MIBG	10	370	0.013	0.481	4.81	0.481	0.48	ICRP 80		
	_	I-131 MIBG	1-131 MIBG	1	3/	0.14	5.18	5.18	0.518	0.53	ICRP 53/8	r (r i
		Octreoscan	In-111 Somatostatin	6	222	0.054	1.998	11.988	1.1988				
	_	Prostascint Scan	In-111 Capromab Pendetide	5	185	0.25	9.25	46.25	4.625				
			Tc-99m RBC	10	370	0.007	0.259	2.59	0.259				
		DECLIDET Deservices	In-111/10-99m	5	185								
		EDC DET (aslu)	E 18 EDC	00	740	0.040	0.702	44.00	1.408	14	1000.00		
	_	PDG PET (only)	F-18 FDG	20	740	0.019	0.703	14.06	1.405	1.4	NUDee/CD		
		FLT DET (only)	E 40 ELT	20	270	0.027	0.999	19.90	1.990		Nurkeg/Ch		
	_	WE EDO DETOT	F-10 FLI	20	370	0.031	1.197	11.97	1,197	2.4	1000 00/0		
		WD N-E DETCT	F-10 PDG	20	740			<u> </u>		2.9	NuDee/CD		
		WD NAP PETCT	E 40 ELT	20	270					3	Nurkeg/Ch		
_		WOPLIPEIGI	FIOFLI	10	370	L Effective De	a (rem) for al	Nuemed/	CT Dress duras				
		WB FLT PETCT	F-18 FLT	10	370 370	al Effective Do	se (rem) for al	Nucmed/	PET Procedures:		Nurkeg/Ch		

EFECTRATE DFCI Radiology Procedures Effective Effective Effective Effective Unit Activity Dose Scan KVp Chest x-ray Effective Effective Effective Unit Activity Dose Chest x-ray Colspan="2">Colspan="2">Reference Mam ogram Deno Densiometry 0.041 (CRP 62 0 0 Bone Densiometry 0.001 (ACR/RSNA 0 0 Bone Densiometry 0.018 (NRPB-WH 0 0 Chest CT 120 180 0.048 (NRPB-WH 0 Chest CT 120 180 0.039 (Kalendar 99 0 0 Palvis CT 0.039 (Kalendar 99 0 0 0 0 0 CT- 120												
EXPRESSION FOR THE PARYARD CLINICAL AND TRANSLATIONAL SCIENCE CENTER DFCI Radiology Procedures DFCI Radiology Procedures Effective mAs Effective (mSv/MBq) Effectiv												
THE HARVARD CLINICAL AND TRANSLATIONAL SCIENCE CENTER DFCI Radiology Procedures Scan Wp Effective mAs Effective (mSv/MBq) Effective (rem) Effective Bore 0.004 [ICRP 62 O O Chest x-ray 0.004 [ICRP 62 0 0 0 0 Marmogram 0.004 [ICRP 62 0 0 0 Bone Densiometry 0.001 [ACR/RSNA 0 0 Head CT 120 360 0.9 [Kalendar 99 0 0 Head CT 120 180 180 0.39 [Kalendar 99 0 0 Abdomen CT 120 180 180 0.39 [Kalendar 99 0 0 Pelvis CT 120 185 1.7 [DFC] 0 0 0 CT-guide biopsy Total Effective Dose (rem) for all Radiology Procedures: 0 0 0 0 Effective Lows (rem) for all Numeed/PET and Radiology Procedures: 0 0 0 0 0 Chest CT 100 100 100 0.0 0 0 0 0 CaP CT 120<		AVARD ALYST										
THE HARVARO CLINICAL AND TRANSLATIONAL SCIENCE CENTER DFCI Radiology Procedures Scan K/p Effective mAs Mathematical Science Center Chest x-ray Chest x-ray Chest x-ray Chest x-ray Chest x-ray OUD4 [CRP 62 OUD4 [CRP 62 OUD4 [CRP 60 Bone Densitometry Seletal Survey Image: Colspan="2">OUD4 [CRP 62 Image: Colspan="2">OD400 Abdomen CT 120 Abdomen CT OD400 OD400 Abdomen CT Pelvis CT Colspan= 120 Total Effective Dose (rem) for all Radiology Procedures: OD400 CAP CT Total Effective Dose (rem) for all Radiology Procedures: OD400 CAP CT 120 185	• 1											
DFCI Radiology Procedures Effective Effective Effective Image: Character of the sector	THE HARVARD	CLINICAL										
DFCI Radiology Procedures Effective mAs Effective mAs Effective (mSV/MBq) Effective (rem) Effective Reference Chest x-ray 0.004 ICRP 62 0 0 Mammogram 0.004 ICRP 62 0 0 Bone Denstometry 0.004 ICRP 60 0 0 Steletal Survey 0.018 NRPB-WM 0 0 Head CT 120 360 360 0.9 Kalendar 99 0 Chest CT 120 180 180 0.84 Kalendar 99 0 0 Pelvis CT 0 165 1.7 DFCI 0 0 CT-guided biopsy 0 180 0.8 Br J Radiol.200 0 0 CT-guided biopsy 0 181 NemePel/PET and Radiology Procedures: 0 0 Effective Cose (rem) for all NumePET and Radiology Procedures: 0 0 0 Equivalent to Number of Years of Background Radiation: 0.0 0.0 0.0	SCIENCE C	ENTER										
DFCI Radiology Procedures Effective mAs Effective mAs Effective (mSv/MBq) Effective (rem) Effective Reference Chest x-ray 0.004 ICRP 62 0 0 Mammogram 0.004 ICRP 62 0 0 Bone Densionetry 0.004 ICRP 62 0 0 Skeletal Survey 0.001 ICRP 60 0 0 Head CT 120 360 360 0.9] Kalendar 99 0 0 Chest CT 120 180 180 0.68] Kalendar 99 0 0 Abdomen CT 0.03 185 1.7 0 0 0 Pelvis CT 120 185 185 1.7 0 0 0 CAP CT 120 185 185 1.7 0 0 0 Call Effective Dose (rem) for all Nucmed/PET and Radiology Procedures: 0 0 0 0 0 Call Effective Dose (rem) for all Nucmed/PET and Radiology Procedures: 0 0 0 0 </td <td>00121002 0</td> <td></td>	00121002 0											
Effective Chest x-ray Effective mAs Effective mAs Effective (mSV/MBq) Effective (rem) Effective Reference Marmogram 0.004 ICRP 62 0 0 Bone Densitometry 0.004 ICRP 60 0 0 Skeletal Survey 0.001 ICRP 62 0 0 Head CT 120 360 0.018 INPB-W4 0 Chest CT 120 180 0.08 Kalendar 99 0 Abdomen CT 0.08 Kalendar 99 0 0 Pelvis CT 0.03 Kalendar 99 0 0 CAP CT 120 185 1.7 (DFC) 0 CT-guided biopsy Total Effective Dose (rem) for all Radiology Procedures: 0 0 Ctal Effective Core (rem) for all Nucmed/PET and Radiology Procedures: 0 0 Equivalent to Number of Years of Background Radiation: 0.0 0.0		-										+
Scan Effective mAs Effective mAs Effective mAs Effective (mSV/MBq) Effective (mem) Effective (ms)	DFCI Radiology Proc	edures	1			Eff Dece per		Effective				+
Scan KVp mAs Chective Chective Code Chest x-ray mAs (mSv/MBq) (rem) Reference Mammogram 0.004 ICRP 62 0 0 0 Bone Denstometry 0.004 ICRP 60 0 0 0 Skeletal Survey 0.001 ACR/RSNA 0 0 0 Head CT 120 360 0.9 Kalendar 99 0 0 Chest CT 120 180 0.68 Kalendar 99 0 0 0 Abdomen CT 0.39 Kalendar 99 0 0 0 0 0 Pelvis CT 0.39 Kalendar 99 0 0 0 0 0 CT-guided biopsy 0 165 1.7 DFCl 0 0 0 Coal Effective Dose (rem) for all Radiology Procedures: 0 0 0 0 0 Cheat CT 120 165 165 1.7 DFCl 0 0 0 Cheat CT 120 16			<i>-</i> <i>u</i>		THe allow	Lin bose per		Dees				
Sodal NPD Inns (IIISWIRBQ) (IIIIN) (IIIIN) <th(iiiin)< th=""> <th(iiiin)< th=""> <th(iiiin< td=""><td>C</td><td>W/n</td><td>Ellec</td><td>LIVE</td><td>mAc</td><td>(m Su/M Ba)</td><td></td><td>(rom)</td><td>Petersnee</td><td></td><td></td><td></td></th(iiiin<></th(iiiin)<></th(iiiin)<>	C	W/n	Ellec	LIVE	mAc	(m Su/M Ba)		(rom)	Petersnee			
Otex Aray 0.004 [CR9 62 0 0 Mammogram 0.045 [CR9 60 0 0 Bone Denstomety 0.001 [ACR/RSNA 0 0 Keletal Survey 0.011 [ACR/RSNA 0 0 Head CT 120 360 360 0.9 [Kalendar 99 0 0 Chest CT 120 180 180 0.84 [Kalendar 99 0 0 Pelvis CT 0.39 [Kalendar 99 0 0 0 CAP CT 120 185 185 1.7 [DFC] 0 0 CT-guided biopsy Total Effective Dose (rem) for all Radiology Procedures: 0 0 Equivalent to Number of Years of Background Radiation: 0.0 0.0 0.0	Charl v rov	kvp	mas		mAs	(nowmbd)		0.004	ICPD 62	0		0
Image: Construction Output Bottlewide	Mammoaram							0.045	1000 60	0		ň.
Dolle betristineury 0.001 RUNCRAW 0 0 Head CT 120 360 360 0.9 Kalendar 99 0 0 Head CT 120 360 360 0.9 Kalendar 99 0 0 Chest CT 120 180 180 0.64 Kalendar 99 0 0 Abdomen CT 0.88 Kalendar 99 0 0 0 0 Pelvis CT 0.39 Kalendar 99 0 0 0 0 CAP CT 120 165 1.7 DFCI 0 0 0 CT-guided biopsy Total Effective Dose (rem) for all Radiology Procedures: 0	Rese Desitemeter							0.045	ACD/DONIA	0		-
Skeled Strey 0.0 is 0.0 is <th0.< td=""><td>Chalatal Custory</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.001</td><td>NDDD W/</td><td>0</td><td></td><td>-</td></th0.<>	Chalatal Custory							0.001	NDDD W/	0		-
Inead CL 120 360 360 0.5 National 99 0 0 Chest CT 120 180 180 0.68 Kalendar 99 0 0 Abdomen CT 0.39 Kalendar 99 0	Skeletal Survey	100		000	200			0.018	NRPB-W4	0		-
Cheat Cit 120 180 160 Comparison C	Read CT	120		300	360			0.9	Kalendar 99	0		-
Addomen C1 0.66 (Ratendar 99 0 0 Pelvis CT 0.39 (Ratendar 99 0 0 CAP CT 120 165 1.7 (DFCI 0 0 CT-guided biopsy 0.8 (Br J Radiol. 200 0 0 0 Total Effective Dose (rem) for all Radiology Procedures: 0 0 0 Total Effective Dose (rem) for all Nucmed/PET and Radiology Procedures: 0 0 Equivalent to Number of Years of Background Radiation: 0.0 0.0 Equivalent to Number of Years of Maximum Annual Occupational Exposure: 0.0 0.0	Chest CT	120		180	180			0.64	Kalendar 99	0		-
Total Effective Dose (rem) for all Nucmed/PET and Radiology Procedures: 0 0 0 0 0	Abdomen CT							0.68	Kalendar 99	0		-
CHT_guided biopsy 1/20 105 165 1/20/20 0 0 CT-guided biopsy Total Effective Dose (rem) for all Naceed(PET and Radiology Procedures: 0 0 Total Effective Dose (rem) for all Nuceed(PET and Radiology Procedures: 0 0 Equivalent to Number of Years of Background Radiation: 0.0 0.0 Equivalent to Number of Years of Maximum Annual Occupational Exposure: 0.0 0.0	CAD OT	100		400	405			0.39	Kalendar 99	0		-
Cl-guided biopsy 0.8 (Br J readin. 200 0 0 Total Effective Dose (rem) for all Radiology Procedures: 0 0 0 Total Effective Dose (rem) for all Nucmed/PET and Radiology Procedures: 0 0 0 Equivalent to Number of Years of Background Radiation: 0.0 0.0 0.0 0 Equivalent to Number of Years of Maximum Annual Occupational Exposure: 0.0 0.0 0.0	CAP CT	120		165	165			1./	DFCI	0		4
Total Effective Dose (rem) for all Nacionad Procedures: 0 0 Total Effective Dose (rem) for all Nucmed/PET and Radiology Procedures: 0 0 Equivalent to Number of Years of Background Radiation: 0.0 0.0 Equivalent to Number of Years of Maximum Annual Occupational Exposure: 0.0 0.0	C1-guided biopsy						D	0.8	Br J Radiol. 200	0		4
Equivalent to Number of Years of Maximum Annual Occupational Exposure: 0.0 0.0			(Iotal Effective	Dose (rem) for	all Radiol	ogy Procedures:			-
Equivalent to Number of Years of Background Radiation: 0.0 0.0 Equivalent to Number of Years of Maximum Annual Occupational Exposure: 0.0 0.0				lota	I Effective Do	se (rem) for al	Nucmed/PET	and Radiol	ogy Procedures:	0	•	-
Equivalent to Number of Years of Maximum Annual Occupational Exposure: 0.0 0.0					E	quivalent to N	umber of Years	s of Backg	round Radiation:	0.0	0.	0
				quiva	alent to Numbe	r of Years of N	laximum Annu	al Occupa	tional Exposure:	0.0	0.	0
				_								_

IENCE CENTER				
able 1: Lifetime Attribu	table Ris	k of Cancer	from Expo	sure to Radiation
Number of cases per	100,000 pe	rsons exposed	to a single do	se of 0.1 Gy
Age at Exposure	Male	Percent	Female	Percent
0	2563	2.56%	4777	4.78%
5	1816	1.82%	3377	3.38%
10	1445	1.45%	2611	2.61%
15	1182	1.18%	2064	2.06%
20	977	0.98%	1646	1.65%
30	686	0.69%	1065	1.07%
40	648	0.65%	886	0.89%
50	591	0.59%	740	0.74%
60	489	0.49%	586	0.59%
70	343	0.34%	409	0.41%
0.0	174	0.17%	214	0.21%
60 70	489 343 174	0.49% 0.34% 0.17%	586 409 214	0.59% 0.41% 0.21%

