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Abstract

To better understand brain disease, many neuroscientists study anatomical differ-
ences between normal and diseased subjects. Frequently, they analyze medical im-
ages to locate brain structures influenced by disease. Many of these structures have
weakly visible boundaries so that standard image analysis algorithms perform poorly.
Instead, neuroscientists rely on manual procedures, which are time consuming and
increase risks related to inter- and intra-observer reliability [53]. In order to automate
this task, we develop an algorithm that robustly segments brain structures.

We model the segmentation problem in a Bayesian framework, which is applicable
to a variety of problems. This framework employs anatomical prior information in
order to simplify the detection process. In this thesis, we experiment with different
types of prior information such as spatial priors, shape models, and trees describing
hierarchical anatomical relationships. We pose a maximum a posteriori probability
estimation problem to find the optimal solution within our framework. From the
estimation problem we derive an instance of the Expectation Maximization algorithm,
which uses an initial imperfect estimate to converge to a good approximation.

The resulting implementation is tested on a variety of studies, ranging from the
segmentation of the brain into the three major brain tissue classes, to the parcellation
of anatomical structures with weakly visible boundaries such as the thalamus or
superior temporal gyrus. In general, our new method performs significantly better
than other standard automatic segmentation techniques. The improvement is due
primarily to the seamless integration of medical image artifact correction, alignment
of the prior information to the subject, detection of the shape of anatomical structures,
and representation of the anatomical relationships in a hierarchical tree.
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Chapter 1

Introduction

In the last two decades, the field of medical image analysis has greatly influenced

many areas in neuroscience. For example, with the advancement of functional imag-

ing modalities, neuroscientists have been increasingly interested in methodologies

that can identify cortical and subcortical structures in anatomical imaging modali-

ties. Image analysis methods support this identification process by providing auto-

mated segmentation of structures from multimodal images. The surgical removal of

brain tumors is another field influenced by medical image analysis. The surgeons

sometimes use image-guided navigational systems, which identify the pathology in

the multimodal images and track surgical probes with respect to the pathology.

Many neuroscience studies aim to find new disease related anatomical character-

istics in order to increase the reliability of diagnosing the illness or improving the

effectiveness of treatment methods against the disease. For example, a recent ad-

vancement in the study of schizophrenia suggests that the superior temporal gyrus,

an anatomical structure partially responsible for auditory system, is altered by the

disease [57, 95]. This might explain why some schizophrenic patients experience au-

ditory hallucinations. These studies are often based on the analysis of Magnetic

Resonance (MR) images. Figure 1-1 shows an example of three types of MR images.

They visualize different characteristics of the brain, which simplifies the detection of

anatomical structures that are altered by a disease. The goal of this thesis is to aid

this type of analysis by developing principled statistical approaches that automati-
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T1 weighted T2 weighted proton density

Figure 1-1: Examples of different types of magnetic resonance images that are of-
ten used by neuroscientist to better understand diseases. The T1-weighted image
was produced through a 3D spoiled gradient-recalled acquisition sequence. The T2-
weighted and proton density images were acquired through a double-echo spin-echo
sequence resulting in 2D multi slices throughout the brain.

cally segment anatomical structures in MR images of different acquisition formats.

Neuroscientists categorize segmentations of anatomical structures by attributes

such as shape, size, or location. These subject specific characterizations are collected

for studies testing the hypothesis that the disease alters an anatomical structure.

In the schizophrenia example, a scientist might determine the average size of the

superior temporal gyrus in the controlled and diseased patient group to evaluate the

hypothesis that the structure is enlarged in schizophrenic patients.

The reliability of a study often depends on the number and quality of segmented

cases. Neuroscientists mostly rely on human experts specifically trained for this task

to perform the segmentations. This process, however, is very labor intensive and

increases the risks related to inter- and intra-observer reliability [50] as shown in

examples of Figure 1-2. In this experiment, six experts were asked to segment the

superior temporal gyrus in the image to the left. None of the resulting segmentations

are equivalent.

The field of medical image analysis has developed a variety of automatic segmen-

tation methods to increase the impact of neuroscience studies. Automated methods

reduce the manual labor for outlining the structures and the results are generally

reproducible. However, these methods generally do not achieve the quality of human

18



Figure 1-2: The image to the left shows the area around the superior temporal gyrus
on an MR image. The other images are the corresponding segmentations of six
medical experts. None of the six segmentations are equivalent.

experts so that neuroscientists continue to rely on manual segmentations.

The task of automatically segmenting medical images is challenging as the images

are corrupted by several artifacts. Brain MR images, such as in Figure 1-3, include

image inhomogeneities, noise, ambiguous intensity patterns with respect to inside and

outside the brain, and partial volume effects. The partial voluming effect describes

voxels whose intensities are influenced by multiple structures. Furthermore, regions

inside and outside the brain may have ambiguous intensity patterns in MR images.

In the last decade the field of medical imaging has made tremendous progress in

outlining the three main brain “tissue” classes - corticospinal fluid, white matter and

gray matter - in MR images, e.g. [112, 103, 19, 65]. Most neuroscientists, however, are

keenly interested in further parcellating these tissue classes into their substructures

such as [87, 54].

The detection of the substructures is even more difficult than outlining the basic

classes as many of them are defined by weakly visible boundaries. For example, the

intensity pattern of the thalamus in MR images are very similar to the neighboring

white matter (Figure 1-4.) Algorithms cannot rely on the MR images alone in order

to distinguish these two structures. Instead, they are guided by prior information

related to these anatomical structures. Prior information captures common attributes

of anatomical structures in a population. For example, in the case of the thalamus

one might measure the average volume of the thalamus relative to the ventricles

within a healthy population group. Automatic segmentation methods could use this

information in order to reduce the space of possible labelmaps of the thalamus as the

ventricles are easily identifiable.
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Figure 1-3: MR images are corrupted by various image artifacts. Those include noise,
image inhomogeneities, and partial voluming. In addition, regions inside and outside
the brain have ambiguous intensities.

1.1 Prior Information

Atlases capture prior information about anatomical structures. Their use and or-

ganization varies depending on the intended purpose [96, 97]. For example, if an

algorithm outlines structures with weakly visible boundaries, the spatial distribu-

tions of the structures can simplify the task [34, 80], as the location and not the

intensity pattern defines the boundary. Spatial distributions are defined by proba-

bilistic atlases [67, 94] capturing the inter-subject variability in brain architecture (see

Figure 1-5.) These types of atlases are often generated by analyzing the variability

within manually segmented training data [75, 28].

Another type of probabilistic atlas is an intensity-based atlas, in which the com-

bination of multiple scans of the same subject allows a high-resolution representation

of the complex brain anatomy [48]. Intensity based atlases are also often used to cap-

ture the variability in intensity pattern across a large population. Such atlases can be

stationary [112, 60, 108], which means that the prior is independent from the voxel

location, or spatially varying [34] so that the prior depends on the voxel location.

20



(a) MR image (b) Manual Segmentation

Figure 1-4: (a) shows a MR image of the area around the thalamus, which is this image
the structure below the dark ventricles. The corresponding manual segmentation of
the thalamus is shown in (b). From the intensity pattern in (a) the boundary of the
thalamus to the neighboring white matter is not clearly defined.

A very different category of prior information is represented by deformable atlases,

which describe the mean shape as well as standard shape differences of anatomical

structures. Defining the mean shape itself is a complex problem. For example, simple

averaging of subjects generates a blurred image that is not particularly useful. Several

approaches have been developed to generate an average model without losing the high

initial image resolution associated with MR images [96, 10, 90, 6]. More recently,

algorithms [70, 49, 40] use the same concept but calculate implicit correspondences,

which are obtained using the voxel sum of squared differences as a voxel agreement

measure.

A critical aspect in generating a shape atlas is the representation of an anatomical

structure’s boundary. As discussed in [37], shapes can be represented by spherical

harmonics [52], point-based models [15], skeleton or medial representations [79, 8],

and landmark-based descriptors [7, 17]. The best representation strongly depends

on the application. For example, we use signed distance maps [38, 60] for the shape

representation of subcortical structures in Chapter 4 because the representation is

relatively simple to integrate into our segmentation approach.

To capture the shape variability across a population, researchers in medical image

analysis often use Principal Component Analysis [16]. Principal Component Analysis

transforms the training data into a lower dimensional eigenvector space. The variabil-
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Probabilistic Atlas Shape Model

low high deflation expansion

Figure 1-5: These are examples of prior information used by segmentation methods.
The image to the left shows part of a probabilistic atlas of the white matter in three
dimensions. Areas in red indicate low probability of the structure and blue define
high probability regions. The image to the right is a shape model of the ventricles,
caudate, and thalamus where red indicates areas of expansions and blue represents
deflation with respect to the mean.

ity within the training data is then represented by the most dominant eigenvectors.

The method is especially useful when the training data under-represents the variation

within a population.

1.2 Registration

In order to incorporate prior information into the segmentation algorithm, the atlas

must be aligned to the subject. This task is performed by registration methods,

which compute the mapping between two data sets. Registration algorithms can

be separated into three categories: rigid, affine, and more general non-rigid. Rigid

and affine registration algorithms compute a single, global transform. For example,

the affine registration method by Warfield et al.[107] defines the global registration

parameters as the setting that produces the minimum entropy between the two data

sets.

In contrast to affine and rigid registration methods, non-rigid registration algo-
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rithms produce correspondence fields to match individual voxels of both data sets. A

voxel is defined as the smallest unit in a three-dimensional image, similar to a pixel in

two dimensions. An interesting class of non-rigid registration methods are physically

based elastic matching models, where the constraints are defined by the material’s

elastic properties [3, 21, 35, 26]. To reduce computational complexity, the constraints

are often modeled by a finite element method [11, 30, 109]. Less computationally

expensive algorithms are methods that model the matching from the source to the

target by spline functions [84, 6, 22, 72, 28, 78]. The simplicity of spline functions is

favorable for medical image analysis as they can be specifically tailored towards brain

matching by including specific characteristics of the internal cortex [93].

For this thesis, we are specifically interested in non-rigid registration methods,

which align MR images of the prior information to the MR images of a specific

subject of interest. This task can be achieve by registration methods constrained by

the intensity patterns of the source and target images. Based on the theory of optical

flow, Thirion [92] and later Guimond [41] experimented with Maxwell Demons using

attraction and diffusion attributes for areas within each image. As such, areas within

the source images are assigned attraction attributes in correlation to areas in the

target images. The algorithm now estimates the mapping between source and target

by aligning areas that attract each other.

1.3 Segmentation

Given a range of possible atlas types and registration methods, we now give a brief

overview of segmentation algorithms applied to medical images. A segmentation al-

gorithm separates a medical image into different anatomical structures based on the

image data and prior information about anatomical appearance and layout. In this

thesis we specifically focus on methods that automatically segment MR images. As

mentioned, the task is difficult as the MR images are corrupted by image inhomo-

geneities, noise, and partial volume effects.
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1.3.1 Modeling Image Artifacts

Initially, the robustness of automatic segmentation methods was increased by using

multiple input channels [105, 61]. In the last decade, explicit models of the image

artifacts have been developed. For example, the implementations of [1, 23, 111, 29]

focus on the detection and correction of image inhomogeneities. The importance of

correctly identifying inhomogeneities for accurately segmenting the image into struc-

tures of interest is also emphasized by the EM approach of Wells et al. [112], which

simultaneously solves both problems. We will give a detailed account of this method

in Chapter 2.

The partial volume effect is another artifact in MR images. This artifact, for

example, causes the small gaps between adjacent folds of the neocortical gray matter

to be invisible on MR images. Several groups have addressed this issue by explicitly

modeling the effect [32, 91] or by performing a topology correction on the anatomical

structures [42, 86], as smoothing over small gaps generates anatomical abnormalities.

The third major artifact in MR images - noise - has been addressed by anisotropic

filtering [36, 55]. These types of filters prefer intra-region smoothing rather than

smoothing across boundaries. Such filters consider intensity data only and neglect

anatomical information of the structures of interest. In contrast, Markov random

fields can reduce the impact of noise by considering the intensity of the input image

as well as modeling the neighborhood relationship of multiple anatomical structures.

Various solutions within this framework have been proposed for medical imaging

[44, 74, 33, 117, 65, 51, 103, 76].

1.3.2 Including Prior Information

Most of the previous methods rely solely on the image intensity information. They

robustly identify anatomical structures like the three major brain tissue classes, whose

boundaries are clearly visible in MR images. However, when faced with structures

with weakly visible boundaries, such as the superior temporal gyrus, prior knowledge

about attributes such as shape or location is necessary.
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In light of this problem, template-driven segmentation methods complement the

information extracted from patient-specific image data with generic anatomical tem-

plates. These approaches generate the segmentations by aligning previously seg-

mented brains to the subject, such as in [12]. They often rely heavily on the accuracy

of the registration, which is itself a challenging problem [45]. This concern was ad-

dressed by Rohlfing at al. [83] by producing a segmentation based on the alignment

results of multiple registration techniques. In general, template-driven segmentation

methods strongly depend on the atlas information. This drawback impacts the accu-

racy of the methods especially for the identification of pathologies, such as tumors,

that are difficult to capture in an atlas.

Deformable Model Based Methods

Unlike template driven methods, deformable model based algorithms explicitly de-

form the prior information within the segmentation process. Examples of deformable

model-based approaches include active contour methods [99, 60, 2, 46, 102, 113, 62,

85, 114], which evolve an initial shape of the tissue class until it fits the patient’s

specific situation. These methods typically only segment one tissue class or organ at

a time, but extensions to multiple structures have been developed [116, 100]. A vari-

ation of this approach is the T-Snake approach, where tissue classes are represented

by deformable organisms [68]. Another type of border growing approach is based on a

fuzzy clustering technique [106, 101, 77]. These methods use dynamic programming,

where the mapping between input and segmentation output is largely influenced by

the input data itself. Inaccuracies in the methods’ modeling approach are therefore

difficult to resolve.

While these methods often focus on the integration of prior information, they only

implicitly model the image artifacts of MR images mentioned in Section 1.3.1. This

weakness may cause difficulties in initializing the algorithms to larger data sets as the

parameter settings of the algorithms have to be adjusted to the individual noise level

or intensity pattern of the subject.
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Serial Methods

To overcome this problem, serial methods combine several different operations. For

example, the segmentation pipeline by Collins et al. [13] first determines the image

artifacts, then registers the atlas to the patient, extracts the surfaces from the aligned

atlas, and finally uses these aligned surfaces to initialize an artificial neural network.

Warfield [108] uses an optimal tissue class boundary estimator in a feature space

consisting of multiple signal intensities and spatial context from an anatomical atlas.

Fischl et al. [34] first filter out the image artifacts, then erase intensities connected

with the skull, determine the gray matter/white matter border on these modified

images, split the border into cortical and subcortical structures, apply a topological

correction tool to the cortical gray matter, map the corrected boundary on a sphere to

register the subject with an atlas, and then further parcellate the cortical surface into

its substructures. Serial methods can achieve high quality segmentations but they

are generally difficult to adjust to new segmentation problems or image acquisition

sequences.

EM Based Methods

Unlike serial methods, unified approaches simultaneously determine the solution to

different aspects of a given segmentation problem. Many of these methods first adjust

their model to the segmentation problem and then segment the subjects into the

structures of interest. As an example Ballester et al. [4] uses the result of Wells

EM segmenter [112] to construct a 3D mesh, which detects the outer surface of the

structure to be segmented. Grau [39] first aligns an atlas to a patient and then applies

a watershed algorithm to the segmentation problem. Unified methods are generally

adjustable to different segmentation environments with a minimal amount of effort.

However, these methods often approximate the solution to simplified segmentation

models, which reduces the robustness of the approach.

This thesis will focus on a unified framework inspired by the EM segmentation

approach of Wells [112]. As mentioned above, the method simultaneously estimates
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the image inhomogeneities and segments the image into structures of interest. The

method has the advantage of being applicable to a wide variety of problems as the

intensity correction within the model adjusts to the given data set. To increase the

robustness of the method Van Leemput [103] first registers spatial priors to the subject

of interest using an affine registration method and then guides the segmentation

algorithm with the aligned priors. This process, however, cannot accurately parcellate

brain tissues into their substructures due to inaccuracies in the the registration of

the spatial priors to the subject. For example, Srivastava et al. [88] have shown

that the atlas aligned with an affine registration method cannot properly capture the

variability within the brain. These shortcomings increase the risk of systematic errors

in the segmentation process, which generally lowers the accuracy of the methods. As

we will show in this thesis, these shortcomings can be overcome by more flexible

registration methods than affine alignment approaches.

In summary, the field of medical imaging has developed methods that are gen-

erally either not robust enough to determine cortical structures or that are targeted

towards specific imaging acquisition protocols. This deficiency has restricted the use

of automatic segmentation approaches in many neuroscience applications.

1.4 Objective and Contribution of the Thesis

The objective of this thesis is the development of statistical frameworks that are tar-

geted towards automatically and robustly parcellating the major tissue classes into

their substructures. The design of the models are guided by the overall philosophy

that they should be applicable to a wide variety of problems with a minimal amount

of training effort. We are specifically interested in robustly segmenting anatomical

structures with weakly visible boundaries in MR images to increase the use of auto-

matic segmentation methods in the field of neuroscience.

The approaches of this thesis rely on prior information to accurately segment

these structures. While prior information simplifies the automatic detection of many

anatomical structures, it might also negatively bias the results. For example, the
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atlas might favor uncommon characteristics in an anatomical structure, which will

mislead the segmentation approach. In order to create robust unified segmentation

models, this thesis attempts to answer the following two questions:

- What type of prior information is useful for the automatic segmentation of

anatomical structures?

- How should the information be introduced into the framework?

Our answers to these questions are embedded in the novel automatic segmentation

models developed throughout this thesis.

The major contributions of this thesis with respect to unified segmentation meth-

ods are summarized as:

- combining registration of prior information with segmentation of MR images,

- modeling explicitly the boundary of anatomical structures through a shape atlas,

- defining a tree to represent the hierarchical relationship between structures.

We prove the robustness of the developed models by applying them to an EM

approach originally proposed by Wells et al. [112]. We are aware, that a variety

of extensions of Wells’ EM approach already incorporate prior information [51, 103,

66]. However, none of these methods have been applied to the substructures of the

major brain tissue classes. We show that our new methods reliably segment these

substructures in multiple experiments. In these experiments, we compare the results

of our new approach to segmentations produced by other methods.

The remainder of this section explains in further detail the major contributions

of this thesis.

1.4.1 Combine Registration and Segmentation

When using prior information in a segmentation algorithm, the alignment of the atlas

to the MR images is very important. Any incoherence between the two coordinate
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systems reduces the effectiveness of the prior information in assisting the segmenta-

tion process. We therefore develop two very different alignment strategies. We first

suggest a pipeline approach, which uses a non-rigid registration method to align the

spatial priors to the subject and then applies an EM segmenter to the images. We

demonstrate the accuracy of our algorithm by identifying in multiple subjects the

thalamus and the superior temporal gyrus, both substructures of the gray matter

with indistinct boundaries. The experiment, however, also demonstrates the extreme

sensitivity of the implementation to the initial alignment errors of the registration

method.

In order to increase the robustness of unified segmentation methods, we propose

a novel statistical framework, which couples the registration of the atlas with the

segmentation of the MR images. We determine a solution within this framework

through an instance of an EM algorithm. The method simultaneously updates both

registration and segmentation parameters at each iteration. We test this approach by

segmenting 22 subjects into the thalamus and the caudate. We illustrate its superior

performance by comparing the accuracy of the results to the outcome of other EM

methods.

1.4.2 Model Shape Constraints in Statistical Framework

Spatial priors simplify the segmentation of many anatomical structures but they often

fail to properly capture the variability of these structures. For example, the caudate

is defined by two “horns” whose subject specific bending is difficult to represent with

spatial priors. In addition, these priors are generally characterized by slowly varying

values indicating the variability in location of the anatomical structure. The impact

of these priors is therefore limited for the automatic segmentation of structures with

weakly visible boundaries as the boundaries are neither identified by the intensity

patterns nor the prior information. An alternative to spatial priors are shape models,

which analyzes the boundary of a structure explicitly by comparing it to the expected

shape and standard deformations of the anatomical structure.

For our approach, we choose a shape model based on signed distance maps. We
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integrate the atlas into a unified statistical framework that tightly couples the shape

analysis of a structure with the segmentation of MR images. Again, we determine the

solution within this framework using the EM approach that simultaneously deforms

the shape structure and segments the image. Unlike most methods in the field,

the final segmentation is only indirectly influenced by the shape constraints. This

is generally advantageous as the training data normally is too small to capture all

shape variations within a population. Our model can therefore handle subject specific

abnormalities that are not represented in the training data.

We further extend this shape based segmentation method with the registration

of the shape atlas to the image space. The resulting algorithm simultaneously aligns

the atlas to the image space, detects the shape of anatomical structure, segments the

images into the structures of interests, and estimates the image inhomogeneities.

1.4.3 Represent Hierarchical Relationships in a Tree

As mentioned above, the effectiveness of prior information greatly depends on the

anatomical structures to which it is applied. For example, some anatomical struc-

tures are defined by indistinct boundaries in which case prior information is essential

for robustly outlining these structures. Other boundaries are clearly visible on MR

images, so that the segmentation process might ignore them by relying too much on

the prior information. To our knowledge, previous segmentation frameworks do not

explicitly model these circumstances.

To overcome this deficiency we develop a hierarchical model, which defines anatom-

ical dependencies between structures. These dependencies are expressed in a data

tree, which guides the segmentation process. Guided by the data tree the algorithm

partitions the segmentation problem into less difficult subproblems. At each subprob-

lem, the prior model is redefined based on specific requirements of the subproblem as

well as the attached subtree. Unlike other hierarchical approaches [65, 34, 74] the at-

las space defines the dependency between anatomical structures so that the approach

is adjustable to a variety of segmentation problems with a minimal amount of train-

ing effort. To show the method’s versatility and accuracy, we apply the approach to
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MR images with different signal to noise ratios and we outline different anatomical

structures.

1.5 Overview of Validation Techniques

Validating segmentation methods for medical images is very difficult due to the ab-

sence of ground-truth. Instead, the field of medical image analysis has developed

phantoms [58] where the ground-truth is known or compare the results to a reference

standard [110], or the approach is applied to multiple scans of the same subject [14].

As mentioned, the goal of this thesis is to increase the reliability of automatic segmen-

tation methods so that they can be applied to a wider variety of neuroscience studies.

Many of these studies currently rely on manual segmentations to find disease-related

characteristics. Therefore, we compare the automatic generated results to manually

segmentations. When multiple manual segmentations of the same subject are present

we compare our method to a reference standard produced by STAPLE[110]. This

reference standard represents the highest consensus between the manual segmenta-

tions. The remainder of this section focuses on metrics measuring the accuracy of the

automatic segmentations with respect to the reference standard.

While the literature proposes a wide variety of metrics for this purposes [118] we

apply the volume overlap measure DICE [63] and the Positive Predictive Value (PPV)

[31]. DICE measures the volume overlap between two segmentations by normalizing

the volume of intersection between the two segmentations with the sum of the volumes

of both segmentations. The measure ranges from 0, indicating no similarity between

two segmentations, to 1, indicating complete agreement.

Unlike DICE, PPV considers the foreground, outlined by the segmentation, as

well as the background. It measures the agreement of both areas with respect to a

reference standard by normalizing the sensitivity by both specificity and sensitivity. In

the medical literature, “sensitivity” is defined as the proportion of the image correctly

outlining the foreground, while “specificity” is the proportion of the image correctly

outlining the background. PPV is zero if the foreground and background do not
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overlap in both segmentations and one if they are equivalent.

In summary, we show the accuracy of the approaches developed throughout this

thesis by comparing the resulting automatic segmentations to a reference standard.

When multiple segmentations of the same subject are present we use STAPLE to

generate a reference standard. Otherwise, the reference standard is represented by the

only manual segmentation present. The agreement between automatic segmentation

and reference standard is measured by different matrices that deviate in the aspects

they capture.

1.6 Organization of the Thesis

Chapter 2 introduces the EM algorithm by deriving the method from a lower bounding

viewpoint. In this light, EM is interpreted as a lower bound optimization algorithm,

which tightens the lower bound to an objective function at each iteration. We then

rederive and compare two EM approaches targeted towards medical imaging segmen-

tation [112, 103].

The following three chapters analyze the use of different prior information in

an EM approach. Chapter 3 discusses a variety of alignment methods that regis-

ter an atlas to the image coordinate system. Chapter 4 focuses on the integration

of shape constraints into the EM framework. Chapter 5 develops an anatomically

guided segmentation approach that incorporates allows the EM approaches of the

previous chapters. The resulting algorithm simultaneously registers the atlas to the

image space, detects the shape of an anatomical structure, models the image inhomo-

geneities in the MR images, and is explicitly guided by the hierarchical relationship

of anatomical structures. The final chapter, Chapter 6, summarizes the results and

discusses future research directions resulting from this thesis.
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Chapter 2

The Expectation-Maximization

Algorithm

“The difficulties associated with the use of the EM algorithm may have been the cause

for its considerable popularity” Stoica and Selen [89]

The automatic segmentation of medical images separates an image into different

anatomical structures based on image and training data. This is a challenging problem

because the images are corrupted by image artifacts such as image inhomogeneities

and noise. The accuracy of the segmentation depends on properly modeling the

artifacts as well as correctly incorporating the training data. In this thesis, we address

this issue as a parameter estimation problem with respect to an incomplete data

model.

In general, problems are put in the context of an incomplete data model if no

accurate analytical solution can be determined. In this section, the incomplete data

model describes the complicated relationship between the parameters representing

the image inhomogeneities and the observed medical image data. This relationship is

greatly simplified if the underlying ground-truth segmentation is known. Throughout

this thesis, however, we are interest in problems were the ground-truth segmentation

is unknown. Instead, we determine the solution to the corresponding estimation

problem using an instance of the Expectation-Maximization (EM) algorithm [25].
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At each iteration, the algorithm calculates the most likely parameter setting of the

image inhomogeneity based on the current segmentation of the observed image and

then updates the segmentation based on the current parameter setting.

This chapter first gives a general overview of the EM algorithm to motivate its use

for the automatic segmentation of medical images. Next, we adopt the algorithm to a

multiple clustering example that closely relates to our original segmentation problem.

We then derive two different instances of the EM algorithm specifically target towards

medical image segmentation. The first approach, originally proposed by Van Leemput

et al.[103], solves a maximum likelihood problem. The second approach, suggested by

Wells [112], determines the solution to a maximum a posteriori probability estimation

problem.

2.1 Background

This section revisits the most important terminology necessary to understand the EM

algorithm in detail. We assume the reader is familiar with basic concepts in statistics,

which are also reviewed in [5].

As mentioned, the EM-algorithm estimates the optimal parameter setting within

an incomplete data model. The following definition further formalizes this concept:

Definition 1 (Incomplete Data Model)

A data model is incomplete if the relationship between the observed data O and

the parameter space Ψ is too complicated to be described in a statistical

framework. In this case, the relationship between O and Ψ is represented by

incomplete log likelihood L(Ψ) , log p(O|Ψ). This relationship is simplified

by adding the hidden data H to the model. The relationship of O, H, and Ψ is

now defined by the complete log likelihood Lc(Ψ) , log p(O, H|Ψ).

Example:

The segmentation of medical images can be modeled as an incomplete data problem,

where the medical images are the observed data, the hidden data is the true segmen-

tation, and the parameter space captures the image inhomogeneities. Many other
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modeling approaches for the same problem are possible.

The EM algorithm is generally applied to incomplete data problems that can be

solved iteratively by calculating the maximum to a closely related but simpler lower

bound. This lower bound is derived from the expected value over the hidden data

with respect to the current parameter estimate and the observed data. We will define

the expected value explicitly as its notation varies in the literature.

Definition 2 (Expected Value)

The expected value with respect to the distribution p(z) of the random vector z is

defined by Ez(f(z)) ,
∫

z
p(z) · f(z)dz where f(·) is a function defined in the random

vector space of z. In discrete space, the expected value is defined as

Ez(f(z)) ,
∑

z P (z) · f(z). Furthermore, the expected value with respect to the

distribution of z conditioned on random vector or parameter y is defined as

Ez|y(f(z)) ,
∫

z
p(z|y) · f(z).

Example:

The expected value of the log likelihood with respect to the hidden variables is

defined as

EH|O,Ψ (Lc(Ψ)) =
∫

H
Lc(Ψ) · p(x|O, Ψ)dx =

∫
H

log(p(O, x|Ψ)) · p(x|O, Ψ)dx

The definition of the simpler lower bound is based on Jensen’s Inequality with

respect to the expected value of the hidden data. We now show the proof of Jensen’s

Inequality for the expected value of concave functions. However, the inequality is

applicable to a larger class of functions.

Definition 3 (Concave)

Let f : (a, b)→ IR be a scalar function, for which the derivative f ′ exists in the open

interval (a,b). f is concave iff

∀x, y ∈ (a, b) : f(y) ≤ f(x) + f ′(x)(y − x)
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Lemma 4 (Jensen’s Inequality)

For any concave function h : IR→ IR over the random vector x, the following

inequality holds: Ex (h(x)) ≤ h (Ex(x)).

Proof:

The proof simply re-applies the definition of concavity to expected values. If we

define x̃ , E(x) and ỹ , x then an upper bound for the concave function h(·) at ỹ

is defined according to Definition 3 as

h(ỹ) ≤ h(x̃) + h′(x̃) · (ỹ − x̃).

x̃ and ỹ have the same expected value, since E(x̃) = E(E(x)) = x̃ and

E(ỹ) = E(x) = x̃. Taking the expected value on both sides of the inequality results

in the Jensen inequality

E(h(x)) = E [h(ỹ)] ≤ E [h(x̃) + h′(x̃) · (ỹ − x̃)]

= h(x̃) + h′(x̃) · (E(ỹ)− x̃) = h(E(x)) ¥

We end this overview of terminology with a notation simplifying the understanding

of the mathematical derivations in this thesis.

Definition 5 (Extended Explanation of Derivation)

In the remainder of this thesis ’
x
=’ refers to footnote x for further explanation.

2.2 Deriving the EM Algorithm

This section is an introduction to the EM algorithm. First, it describes the EM

algorithm as a lower bound optimization method. Then, it proves the convergence

properties of the method. We end the section with a summary of this topic.
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2.2.1 EM: A Lower Bound Optimization Method

Over the years, many different interpretations of the EM algorithm have been pre-

sented in the literature, e.g. [43, 71, 73, 89, 69]. This section views the algorithms as

a lower bound optimization technique originally described by [64, 24]. We choose this

interpretation as it nicely displays the convergence properties of the method. From

the lower bound viewpoint, the EM algorithm estimates the solution to the maximum

likelihood problem

Ψ̂ = arg max
Ψ

L(Ψ), (2.1)

by defining a lower bound for the incomplete log likelihood L(·) as displayed in

Figure 2-1. In the Expectation-Step (E-Step), the method defines this lower bound

based on the current estimate Ψ′ of the optimal solution Ψ̂. The Maximization-Step

(M-Step) calculates the maximum of the lower bound to update the estimate Ψ′. The

algorithm iterates between the E-Step and M-Step until the series of estimates Ψ′

converges.

The method is in general applied to problems where no analytical solution to

Equation (2.1) can be found. However, we can restate the problem by introducing

the hidden data H and defining the parameter estimation as

Ψ̂ = arg max
Ψ

log

(∑
H

p(O, H|Ψ)

)
. (2.2)

Note, that the complete likelihood p(O, H|Ψ) of Equation (2.2) is the marginal of the

incomplete likelihood p(O|Ψ) of Equation (2.1).

Instead of solving Equation (2.2), the EM algorithm finds a maximum to the

simpler objective function

Q(Ψ, Ψ′) , EH|O,Ψ′

(
log

p(O, H|Ψ)

p(H|O, Ψ′)

)
with p(H|O, Ψ′) > 0 (2.3)

where Ψ′ is an approximation of the optimal solution Ψ̂. As we show later, the

objective function Q(·, Ψ′) has two nice properties with respect to the original problem
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defined in Equation (2.1). First, it defines a lower bound on the incomplete log

likelihood L(·) touching L(·) at least in one point. Second, the maximum of the

objective function Q(·, Ψ′) is an improvement over the initial estimate Ψ′ with respect

to maximum Ψ̂. Based on these properties of the objective function, the EM method

improves its estimate Ψ′ by repeating the following two steps:

Definition 6 (Expectation-Maximization Algorithm)

Expectation Step (E-Step): Calculate the lower bound Q(·, Ψ′) of L(·) based

on the current estimate Ψ′ of the optimal parameter setting Ψ̂:

Q(Ψ, Ψ′) , EH|O,Ψ′

(
log

p(O, H|Ψ)

p(H|O, Ψ′)

)

Maximization Step (M-Step): Update the estimate Ψ′ by the maximum of

the current lower bound

Ψ′ ← arg max
Ψ

Q(Ψ, Ψ′).

The EM algorithm iterates between the E- and M-Steps until the lower bound

function converges to a local extrema, which is guaranteed by the EM framework if

the iteration sequence has an upper bound [69].

Before deriving important properties of the lower bound we note that the objective

function Q(·, Ψ′) of the EM algorithm is generally defined as

Q(Ψ, Ψ′) = EH|O,Ψ′ (log p(O, H|Ψ)) = EH|O,Ψ′ (Lc(Ψ)) , (2.4)

which is the expected value of the complete log likelihood. The lower bound defined in

Equation (2.3) and the objective function of Equation (2.4) have the same maximum,

because the denominator p(H|O, Ψ′) in Equation (2.3) is constant with respect to Ψ.

Thus, both objective functions define the same algorithm.
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2.2.2 Properties of the Lower Bound

This section focuses on the convergence properties of the algorithm. In particular,

we will show that the EM algorithm improves the approximation Ψ′ at each iteration

unless Q(Ψ′, Ψ′) is the maximum of the bound Q(·, Ψ′) (see also Figure 2-1.) In other

words, at each iteration the EM-algorithm tightens the bound with respect to the log

likelihood L(·) unless the current estimate defines a local extremum.

In comparison, gradient descent methods find a local optimum by first approxi-

mating the objective function with a polynomial function. As an example, Figure 2-1

shows a linear approximation at point Ψ′. Gradient descent methods take a step along

this polynomial function. The proper step size is unknown because of the uncertainty

of the quality of the approximated function. Gradient descent methods therefore do

not not guarantee an improvement at each iteration.

New
Guess

Guess
Current

Lower Bound
Q(pa,pa’)

Objective
Function

pa

Linear Approx.

Figure 2-1: The lower bound defined by Q(·, Ψ′) touches the incomplete likelihood at
least at the approximation Ψ′. The new guess is the maximum of the current lower
bound, which is at least as good as the previous estimation. Unlike gradient descent
methods, the EM algorithm improves its approximation at each iteration, unless the
current approximate already is a local maximum. The graph was originally motivated
by [71].

To prove the convergence property of the EM algorithm we first show that Q(·, Ψ′)
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is a lower bound of L(·). In the second step, we prove that Q(·, Ψ′) touches L(·) at

least at one point, which is the parameter setting Ψ′. From these two properties it

follows that the log likelihood L(Ψ′′) of the maximum Ψ′′ of Q(·, Ψ′) is greater than

or equal to L(Ψ′) because

L(Ψ′′)
1

≥ Q(Ψ′′, Ψ′)
2

≥ Q(Ψ′, Ψ′)
3

= L(Ψ′)

The next two corollaries prove the previously mentioned properties:

Corollary 7 (Q(·, Ψ) is a Lower Bound of L(·))

∀Ψ′, Ψ : L(Ψ) ≥ Q(Ψ, Ψ′)

Proof:

The proof marginalizes over the hidden data H and applies Jensen’s Inequality

L(Ψ) = log p(O|Ψ)
4

= log

(∫
p(H, O|Ψ)dH

)

= log

(∫
p(H, O|Ψ)

p(H|O, Ψ′)
p(H|O, Ψ′)dH

)

5

= log

(
EH|O,Ψ′

[
p(H,O|Ψ)

p(H|O, Ψ′)

])

6

≥ EH|O,Ψ′

(
log

p(H, O|Ψ)

p(H|O, Ψ′)

)
= Q(Ψ, Ψ′) ¥

Corollary 7 implies that the maximum of the lower bound determined in the M-Step is

equal or suboptimal to the solution of Equation (2.1). The next corollary proves that

1Q(·,Ψ′) is a lower bound of L(·)
2Ψ′′ is the maximum of Q(·, Ψ′)
3Q(·,Ψ′) = L(·) at point Ψ′
4Marginalizing over H
5Apply Definition 2 of the expected value
6Apply Jensen Inequality defined in Lemma 4
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at least one point of the lower bound touches the log likelihood L(·); an important

quality of this bound.

Corollary 8 (Q(·, Ψ′) touches L(·))

∀Ψ′∃Ψ : Q(Ψ, Ψ′) = L(Ψ)

Proof:

The proof simply uses Bayes’ rule

Q(Ψ, Ψ′)
7

= −EH|O,Ψ′

(
log

p(H|O, Ψ) · p(O|Ψ)

p(H|O, Ψ′)

)

= −EH|O,Ψ′

(
log

p(H|O, Ψ)

p(H|O, Ψ′)

)
+ log p(O|Ψ)

⇒ Q(Ψ′, Ψ′) = −EH|O,Ψ′

(
log

p(H|O, Ψ′)
p(H|O, Ψ′)

)
+ log p(O|Ψ′)

8

= log p(O|Ψ′) = L(Ψ′) ¥

The previous corollary is very important for the understanding of the EM al-

gorithm as it proves that the EM algorithm converges to a local extrema of the

objective function L(·). In order to understand the connection between the corol-

lary and the convergence behavior of the algorithm, let Ψ̂ be the point to which

algorithm converges. By the definition of EM formulation, Ψ̂ has to be the global

maximum of Q(·, Ψ̂) so that the derivative ∂Q(Ψ,Ψ̂)
∂Ψ |Ψ=Ψ̂

is zero. Based on the previous

proof we know that Q(·, Ψ̂) touches L(·) in point Ψ̂, which implies that the derivative

∂Q(Ψ,Ψ′)
∂Ψ |Ψ=Ψ′ is equivalent to ∂L(Ψ)

∂Ψ |Ψ=Ψ′ . We conclude that Ψ̂ is a local extremum of

the original objective function L(·).

7Bayes Rule: p(A,B|C) = p(A|B, C) · p(B|C)
8log p(H|O,Ψ′)

p(H|O,Ψ′) = 0
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2.2.3 Summary

In summary, the EM algorithm finds the maximum likelihood solution to the incom-

plete data problem by transforming it into a problem of finding the optimal lower

bound in the complete data model. As we show in Section 2.2.2, the method im-

proves its bound at each iteration unless the parameter setting of the bound already

defines a local maxima.

Note, that the right choice of the hidden data H is critical for the adoption of the

EM algorithm to a specific problem. This task is in general not trivial as the hidden

data should simplify the initial maximization problem so that the maximum of the

expected value with respect to H can be found easily. Motivated by this challenge,

the next section will derive the EM algorithm for a class of problems, for which the

implementation is quite simple.

2.3 Examples of EM-Approaches

This section first derives a solution for a generic example closely related to the problem

of segmenting medical images. We will then apply the concept to two different models

of the segmentation of MR images.

2.3.1 Applying EM to a Multiple Clustering Example

The complete model is defined by n independent samples O = {o1, ...., on}. Each

sample oi is drawn from a group of l different clusters. The assignment of sample space

O to the clusters is unknown. In this model, the unknown assignment is represented

by the independent hidden parameters H = (h1, . . . , hn). Each hidden data hx is an

indicator random variable, so that hx ∈ {e1, . . . , el}. The vector ej is zero at every

position except j, where its value is one. As an example, if hx = ej, then sample

x is assigned to cluster j. An important aspect of the model is the relationship

between the parameter space Ψ, the hidden data H, and the observed data O. If we

assume independence of the parameter space with respect to the hidden data then
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the relationship is encoded in the complete likelihood

P (H, O|Ψ) = P (H|Ψ) · P (O|H, Ψ)
9

=
n∏

x=1

P (hx) · P (ox|hx, Ψ)

We define the optimal parameter setting Ψ with respect to this model as the solu-

tion to a maximum likelihood problem with the objective function of Equation (2.4).

We therefore focus first on finding a simpler expression for the complete data log

likelihood Lc(·), which is defined as

Lc(Ψ) = log P (H, O|Ψ) =
n∑

x=1

log P (hx) +
n∑

x=1

log P (ox|hx, Ψ) (2.5)

Equation (2.5) can be expressed in terms of vector functions, because hx is an indi-

cator random variable. To do so, we define the vector over the spatial distribution of

each cluster

Vx , (P (hx = ej))j=1,..., l (2.6)

and the vector function over the likelihood of the parameter space

Ux(Ψ) , (P (ox|hx = ej, Ψ))j=1,..., l . (2.7)

The complete log likelihood of Equation (2.5) is defined as

Lc(Ψ) =
n∑

x=1

ht
x log Vx +

n∑
x=1

ht
x log Ux(Ψ).

9The group of samples O are drawn independently. In addition, we assume that
P (O|H, Ψ) =

∏n
x=1 P (ox|hx,Ψ).
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Based on Equation (2.4) the objective function of the complete model is

Q(Ψ, Ψ′) = EH|O,Ψ′(Lc(Ψ)) =
n∑

x=1

Ehx|ox,Ψ′(h
t
x log Vx) + Ehx|ox,Ψ′(h

t
x log Ux(Ψ))

=
n∑

x=1

Ehx|ox,Ψ′(h
t
x) · log Vx +

n∑
x=1

Ehx|ox,Ψ′(h
t
x) · log Ux(Ψ).

(2.8)

To simplify the objective function we replace the expected value by vectorWx, which

is defined as

Wx , Ehx|ox,Ψ′(hx)

= (0 · P (hx 6= ej|ox, Ψ
′) + 1 · P (hx = ej|ox, Ψ

′))j=1,..., l

= (P (hx = ej|ox, Ψ
′))j=1,..., l

10

=

(
P (ox|hx = ej, Ψ

′)P (hx = ej|Ψ′)
P (O|Ψ′)

)

j=1,..., l

(2.9)

Wx defines the cluster specific posterior probability of the hidden data hx. In a

machine learning context, Wx(a) , Ehx|ox,Ψ′(hx(a)) captures the weight that the

sample ox is assigned to the cluster a. In the remainder of this thesis we therefore

callW the weights. Based on the previous independence assumptions, the weightsW
transform into

Wx =

(
P (ox|hx = ej, Ψ

′)P (hx = ej)

P (O|Ψ′)

)

j=1,..., l

11

=

(
P (ox|hx = ej, Ψ

′) · P (hx = ej)∑l
k=1 P (ox|hx = ek, Ψ′) · P (hx = ek|Ψ′)

)

j=1,..., l

12

=

(
P (ox|hx = ej, Ψ

′) · P (hx = ej)∑l
k=1 P (ox|hx = ek, Ψ′) · P (hx = ek)

)

j=1,..., l

=

(
Ux(Ψ

′, j) · Vx(j)

Ux(Ψ′)tVx

)

j=1,..., l

(2.10)

Substituting the expected value in Equation (2.8) with the weights Wx changes the

10Bayes Rule
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objective function to

Q(Ψ, Ψ′) =
n∑

x=1

W t
x log Vx +

n∑
i=1

W t
x log Ux(Ψ) (2.11)

As mentioned, at each iteration the EM algorithm finds the parameter setting Ψ′′,

which maximizes the objective function Q(·, Ψ′) given the current estimates Ψ′. In

order for Ψ′′ to be a maximum, the derivative of the objective function at point

Ψ = Ψ′′ has to be zero:

∂Q(Ψ, Ψ′)
∂Ψ

=
∂

∂Ψ

n∑
x=1

W t
x log Ux(Ψ) =

n∑
x=1

W t
x

∂ log Ux(Ψ)

∂Ψ
= 0. (2.12)

For some underlying models, Equation (2.12) can be turned into a system of linear

equations. The exact form of the system of linear equations depends on the definition

of Ux(Ψ). In general, if the complete-data probability belongs to the class of the

regular exponential family, the solution to the system is easily determined [69].

An example of such a model is one where the conditional probability has the

Gaussian distribution P (ox|hx = ej, Ψ) v N (µx(ej, Ψ), Υj). The mean µx(·, ·) de-

pends on the complete data model, and the variance Υj on the hidden data hx = ej.

If µx(ej, Ψ) is differentiable with respect to Ψ then Equation (2.12) changes for this

example to
n∑

x=1

W t
x

(
(ox − µx(ej, Ψ))tΥ−1

j

∂µx(ej, Ψ)

∂Ψ

)

j=1,..., l

= 0 (2.13)

and the EM algorithm is defined as

E-Step: Calculate the Weights W based on Equation (2.10).

M-Step: Update the approximation Ψ′ by the solution of Equation (2.13) with

respect to Ψ.

Note, that the above definition of the EM algorithm never explicitly determines

the lower bound or objective function Q(·, ·) of Equation (2.8). However, the function

11Bayes Rule
12Independence assumption between H and Ψ
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is fully defined by the weights W as all other parameters are fixed. As EM is only

interested in the maximum of the objective function an explicit definition of Q(·, ·) is

unnecessary.

In the next two subsections, we apply the previous approach to the segmenta-

tion problem of MR images. This results in two slightly different methods as each

subsection makes different modeling assumptions.

2.3.2 Image Inhomogeneity Correction of MR Images as Max-

imum Likelihood Problem

The model derived in this section is closely related to the work by Van Leemput [103].

The approach simultaneously approximates the image inhomogeneities and generates

soft assignment of the voxels to the structure of interests, which was originally sug-

gested by Wells [112]. When the algorithm converges, the soft assignments are turned

into labelmaps, which segment the anatomical regions on the MR images.

To apply the method derived in the last section to the segmentation problem of

MR images, the incomplete data model has to be defined. Similar to the example for

Definition 1 of Section 2.1 the observed data O represents the log intensities of the

MR images, where ox is the log intensity of voxel x. The remainder of this thesis will

only consider log intensities of MR images and will simply refer to them as intensities.

The parameter space Ψ captures the image inhomogeneities in the image. The

image inhomogeneities are caused by the radio frequency coil of the MR scanner and

are slowly varying (Figure 2-2 (b).) In Van Leemput’s model, the slowly varying

values are represented by the spline function

νx(Ψ) ,
k∑

i=1

fi(ox) ·Ψ(i) (2.14)

At each voxel x, the image inhomogeneity is defined by a linear combination of the

polynomial functions fj(·) and the weight Ψ(i). The dimension of Ψ is equal to the

number of smoothing functions fi.
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The optimal parameter setting Ψ̂ of the image inhomogeneities with respect to

the image data O is defined in Van Leemput’s model by the most likely setting of the

incomplete log likelihood

Ψ̂ , arg max
Ψ

L(Ψ) = arg max
Ψ

log P (O|Ψ) (2.15)

Equation (2.15) defines an incomplete problem as the relationship between observed

data O and parameter space Ψ generally too complex to allow an analytical solution.

(a) (b) (c)

Figure 2-2: Image (a) shows an MR image corrupted by image inhomogeneities,
noise, partial voluming and other image artifacts. The image inhomogeneities of (a)
are shown in (b). Unlike noise, image inhomogeneities are characterized by a slowly
varying values within the brain. Image (c) is as image inhomogeneity corrected MR
image of (a).

Finding the solution to Equation (2.15) is simplified if we add the labelmap of

the image to the model. The labelmap assigns each voxel x to an anatomical region

inside the brain. Combining the intensity pattern of each structure of interest with

the labelmap of the unknown true segmentation defines the ideal MR image without

image artifacts. The pattern of image inhomogeneities, which is a multiplicative field

to the MR images, is then defined by the difference between the log intensities of

the real and ideal MR images. This definition oversimplifies the problem as MR

images are corrupted by noise, partial voluming effects and other image artifacts.

Nevertheless, Van Leemput indirectly accounts for these artifacts as Equation (2.14)

enforces the smoothness constraints of the inhomogeneities.

From now on, our complete model is defined by the MR images O, image inhomo-
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geneities Ψ, and the hidden data H, which capture the labelmap of the image. The

indicator random variable hx represent the assignment of voxel x to an anatomical

structure, such as gray matter or corticospinal fluid. To keep the concept general,

we refer to an anatomical structure by a number instead of explicitly mentioning

the name. For example, if we would like to segment the image O into l anatomical

structures and hx = ea then voxel x is assigned to the anatomical structure a, where

a ∈ {1, . . . , l}.

Having defined the parameters and data, we focus on the relationship between

these components of the complete model. In our framework, their relationship is

characterized by the following maximum likelihood problem:

Ψ̂ , arg max
Ψ

Lc(Ψ) = arg max
Ψ

log P (O, H|Ψ)

where the complete log likelihood Lc(Ψ) is equivalent to Equation (2.5).

According to Section 2.3.1 the solution to the previous maximum likelihood es-

timation problem can be computed by an instance of the EM algorithm. Vector

Vx of Equation (2.6) is defined by the structure specific spatial prior P (hx = ea).

This is the probability of structure a being present at voxel x. The vector Ux of

Equation (2.7) represents the likelihood of the image inhomogeneity, which is defined

by P (ox|hx = ea, Ψ) v N (µa + νx(Ψ), Υa). The mean µa and variance Υa define the

intensity pattern of the ideal MR images within the region of the anatomical structure

a. These parameters characterize the Gaussian distribution, which best captures the

structure specific intensity patterns in the training data.

In the last section, the E-Step calculates the weights Wx, which captures the pos-

terior probability P (hx = ea|ox, Ψ
′). Based on the current estimate of the incomplete

model defined by O and Ψ′,Wx(j) represents the posterior probability that structure

j is present at voxel x. Thus, the E-Step defines the soft assignment of structure j to

voxel x.

To derive the M-Step, we must specify Equation (2.13) to turn it into a system

of linear equations. The mean of the distribution is composed of the image inhomo-
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geneities of Equation (2.14) and the structure specific means, so it has the form

µx(ea, Ψ) , µa + νx(Ψ) = µa +
k∑

i=1

fi(ox) ·Ψ(i).

The derivative of the mean is ∂µx(ea,Ψ)
∂Ψ(i)

= fi(ox). If we define

f(ox) , (fi(ox))i=1,...,k, then Equation (2.13) turns into system of linear equations of

the form

0 =
n∑

x=1

W t
x

[
(ox − µa − f(ox)

t ·Ψ)tΥ−1
a fi(ox)

]
a=1,..., l

=
n∑

x=1

(
W t

x

[
(ox − µa)

tΥ−1
a −Ψtf(ox)Υ

−1
a

]
a=1,..., l

)
fi(ox)

with i = 1, . . . , k.

Because Υa is symmetric, the equation can be rearranged, so that for i = 1, . . . , k:

n∑
x=1

fi(ox)
t

(
l∑

a=1

Wx(a)Υ−1
a

)
f(ox)

t ·Ψ =
n∑

x=1

fi(ox)
t

(
l∑

a=1

Wx(a)Υ−1
a (ox − µa)

)
.

If we define the mean covariance at voxel x as Υ(x) ,
(∑l

a=1Wx(a)Υ−1
a

)
then the

above equation is for i = 1, . . . , k equivalent to

n∑
x=1

fi(ox)
tΥ(x)−1f(ox)

tΨ=
n∑

x=1

fi(ox)
tΥ(x)−1

(
ox−Υ(x)

(
l∑

a=1

Wx(a)Υ−1
a µa

))
. (2.16)

To further simplify Equation (2.16) we define the derivative of the mean µ over the

entire image space as

M ,
(

∂µx(e1, Ψ)

∂Ψ(i)

)

x=1,...,n;i=1,...,k

with
∂µx(e1, Ψ)

∂Ψ(i)
= fi(ox), (2.17)

the mean covariance over the entire image space as

Υ

13

, diag
(
Υ(x)

)
, (2.18)
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and the mean residual as

R̄ ,
(

ox −Υ(x)

(
l∑

a=1

Wx(a)Υ−1
a µa

))

x=1,...,n

. (2.19)

Equation (2.16) is equivalent to

M t Υ
−1

MΨ = M t Υ
−1

R̄

so that the solution for Ψ is defined as

Ψ =
(
M t Υ

−1
M

)−1

M t Υ
−1

R̄.14 (2.20)

In summary, this section developed an EM-approach specific to the problem of

segmenting MR images. We first defined the complete model and then applied the

model to the generic EM approach of Section 2.3.1. This instance of an EM algorithm

is now of the form:

Expectation Step (E-Step): Calculate the weights Wx according to

Equation (2.10), which are a soft assignment of voxel x to the structures of

interest based on the MR images O and the current setting of the image inho-

mogeneities Ψ.

Maximization Step (M-Step): Calculate the new parameter setting

Ψ← (M tΥ−1M)−1M tΥ−1R̄

13The diagonal matrix over Gx is defined as diag(Gx) , (gij)i=1,...,n;j=1,...,n with

gij ,
{

Gi , if i = j

0 , otherwise

14For simplicity, the previous definition of M, Υ, and R̄ are given for the case where O captures
the log intensities of a single input channel. If, however, the observed data O represents the log
intensities of m input channels then the column of M and R̄ are of dimension n ·m as each voxel
is defined by an entry of dimension m. Υ is a band matrix of dimension n ·m × n ·m with the
covariance matrixes Υx along the diagonal. These changes, however do not impact Equation (2.20).
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based on the matrix M defined by the image inhomogeneity smoothing fi in

Equation (2.17), the mean inverse covariance matrix Υ−1 defined by the weights

W in Equation (2.18), and the mean residual R̄ defined by the weights W in

Equation (2.19).

W
ei
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t
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m

ap

Black White
High

Low

Figure 2-3: The labelmap in the second row is based on the weights of each structure
in the first row. The label of each voxel in the labelmap corresponds to the structure
(black and white) with the largest weight at that location. Areas in red represent
high values of the weights and blue shows low values.

When the algorithm converges, we turn the final weightsWx from a soft to a hard

assignment L:

L(x) , arg max
a
Wx(a) (2.21)

In other words, a voxel x is assigned to the structure j with the largest posterior

probability defined by Wx(j). For example, Figure 2-3 shows the labelmap resulting

from the synthetic weights W of ’Black’ and ’White’.

51



2.3.3 Image Inhomogeneity Correction of MR Images as a

Maximum a Posteriori Probability Estimation Prob-

lem

In this section, a maximum a posteriori probability estimation problem defines the

relationship between the image inhomogeneity, the labelmap, and the intensity pat-

terns of the images[112]. Like Van Leemput’s complete data model, the hidden data

H defines the labelmap, the observed data O represents the MR images, and Ψ cap-

tures the parameter space. Unlike the example of Section 2.3.2, the parameter space

Ψ is constrained by the pre-defined Gaussian Distribution P (Ψ) v N (0, ΥB), where

ΥB is the variance of the image inhomogeneities. In addition, the dimension of Ψ is n,

the number of voxels in the image. The maximum a posteriori probability estimation

problem is defined as

Ψ̂ = arg max
Ψ

P (Ψ|O) = arg max
Ψ

log P (Ψ|O). (2.22)

This section first reiterates the derivations of Section 2.3.1 to apply the EM algo-

rithm to the current problem. As in Section 2.3.2, we then derive the M-Step specific

to our current problem.

The adaptation of the approach of Section 2.3.1 starts with a careful analysis of

the posterior log probability of Equation (2.22). Applying Bayes rule, we interpret

the posterior log probability as

log P (Ψ|O) = log

(
P (O|Ψ) · P (Ψ)

P (O)

)
= log L(Ψ) + log P (Ψ)− log P (O). (2.23)

In Section 2.3.1, the objective function Q(·, ·) of Equation (2.4) characterizes the

instance of the EM algorithm. Based on the posterior probability of Equation (2.23)

and the fact that log P (O) does not depend on Ψ, the objective function QMAP for

the current model is defined as

QMAP (Ψ, Ψ′) = EH|O,Ψ′(log P (Ψ|H,O)) = Q(Ψ, Ψ′) + log P (Ψ).
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QMAP (Ψ, Ψ′) defines estimation problem of

Ψ̂ = arg max
Ψ

P (Ψ, O),

which has the same solution as Equation (2.22).

With respect to the version of Section 2.3.2, this objective function is extended

by the term log P (Ψ). The additional log prior over the parameter space transforms

Ψ into a random variable, which is characterized by the prior P (Ψ). The convergence

properties of the algorithm with respect to log P (Ψ, O) do not change. By using the

result of Corollary 7, we first show that QMAP (·, Ψ′) is a lower bound of log P (Ψ, O)

QMAP (Ψ, Ψ′) = Q(Ψ, Ψ′) + log P (Ψ)
15

≤ L(Ψ) + log P (Ψ) = log P (O|Ψ) + log P (Ψ)

= log P (Ψ, O).

Similarly, we prove that QMAP (·, Ψ′) touches log P (Ψ, O) at least in one point using

Corollary 8:

QMAP (Ψ′, Ψ′) = Q(Ψ′, Ψ′) + log P (Ψ′)
16

= L(Ψ′) + log P (Ψ′) = log P (Ψ′, O).

In the remainder of this section we derive an EM approach that is very similar

to the one of Section 2.3.2. To do so we apply Equation (2.11) to the new objective

function

QMAP (Ψ, Ψ′) =
n∑

x=1

W t
x log Vx +

n∑
x=1

W t
x log Ux(Ψ) + log P (Ψ)

15Result of Corollary 7
16Result of Corollary 8
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so that the zero-condition for the maximum is defined as

∂QMAP (Ψ, Ψ′)
∂Ψ

=
∂

∂Ψ

n∑
x=1

W t
x log Ux(Ψ) + log P (Ψ)

=
n∑

x=1

W t
x

∂ log Ux(Ψ)

∂Ψ
+

∂ log P (Ψ)

∂Ψ
= 0.

Similar to Equation (2.13) the M-Step is characterized by

n∑
x=1

W t
x

(
(ox − µx(ea, Ψ))tΥ−1

a

∂µx(ea, Ψ)

∂Ψ

)

a=1,..., l

+
∂ log P (Ψ)

∂Ψ
= 0 (2.24)

This completes the revision of Section 2.3.1.

Similar to Section 2.3.2, we turn Equation (2.24) into a system of linear equations

using the definition of the weightsW , the vector V , and vector U of Section 2.3.2. In

contrast to Section 2.3.2, the parameter space Ψ directly represents the image inho-

mogeneities. The smoothness constraints of the image inhomogeneities are encoded

in the prior of the parameter space P (Ψ) v N (0, ΥB). Thus, the variance ΥB defines

the degree of smoothness as any large deviations from the zero mean are penalized.

Different from Section 2.3.2, the distribution of conditional intensity probability

is defined by [112] as P (ox|hx = ea, Ψ) v N (µa + Ψ(x), Υa). The mean function

changes to µx(ea, Ψ) , µa + Ψ(x), so that its derivative turns into

∂µx(ea, Ψ)

∂Ψ(y)
=





1 , y = x

0 , otherwise

(2.25)

In addition to the derivative of the mean function, Equation (2.24) requires the

derivative of the log prior with respect to voxel x, which is defined as

∂ log P (Ψ)

∂Ψ(x)
= −ΨtΥ−1

B ex.
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The system of linear equations Equation (2.24) simplifies for voxel x = 1, . . . , n to

W t
x

(
(ox − µa −Ψ(x))tΥ−1

a

)
a=1,..., l

−ΨtΥ−1
B ex = 0

The symmetry of Υa and ΥB allows us to further resolve the system of linear equations

for voxel x = 1, . . . , n to

[
k∑

a=1

Wx(a)Υ−1
a (ox − µa)

]
−

[
k∑

a=1

Wx(a)Υ−1
a

]
Ψ(x)− et

xΥ
−1
B Ψ = 0 (2.26)

If we define the mean inverse covariance Υ
−1

as in Equation (2.18) and the mean

residual R as in Equation (2.19), then Equation (2.26) turns into the following linear

equation system

Υ
−1 ·R− (Υ

−1
+ Υ−1

B )Ψ = 0

so that Ψ is defined as

Ψ = (Υ
−1

+ Υ−1
B )−1Υ

−1 ·R (2.27)

Equation (2.27) is very similar to the results of Section 2.3.2 presented in

Equation (2.20). If we extend Equation (2.27) with the derivative matrix M of

Equation (2.17), which is the identity matrix according to Equation (2.25), the solu-

tion to the parameter space is defined as

Ψ =
(
M t Υ

−1
M + Υ−1

B
)−1

M t Υ
−1

R̄

This solution only differs from Equation (2.20) by the inverse covariance of the image

inhomogeneity Υ−1
B . In this section Υ−1

B defines the smoothness constraints of the

image inhomogeneities instead of the spline function ν of Equation (2.14) in the last

section.

In summary, this section defined the problem of segmenting MR images as a max-

imum a posteriori probability estimation problem. We adjusted the instance of the

EM algorithm of Section 2.3.1 to our new problem. We then compared the approach

of this section to Section 2.3.2. The comparison highlighted the dependency between
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the modeling the image inhomogeneities and resulting system of linear equations.

2.4 Discussion

This chapter described the EM algorithm as a lower boundary optimization tech-

nique. The algorithm is in general superior to gradient-based methods for incomplete

data problems where the introduction of hidden data greatly simplifies their solution.

Choosing the correct hidden data, which simplifies the problem, is often quite chal-

lenging. However, Section 2.3.1 gives an example for a class of models, for which the

EM algorithm is quite simple to implement. We then apply the results of Section

2.3.1 to two popular modeling approaches in medical imaging. The model by Van

Leemput [103] describes the segmentation of MR images as a maximum likelihood

problem whereas the model by Wells [112] defines it as a maximum a posteriori prob-

ability estimation problem. For the first time in the medical imaging community, we

are able to show the similarity of the two approaches.

The model of Van Leemput described in Section 2.3.2 slightly differs from its orig-

inal publication [103] as the parameter space is extended by the structure specific

mean and variance. Due to the definition of the parameter space in Section 2.3.1, the

image inhomogeneity and the structure specific mean statistically depend on each

other. Thus, the resulting system of linear equations has generally no unique and

closed form solution. To overcome this problem, Van Leemput maximizes the ob-

jective function Q in two steps. First, Q is maximized with respect to the structure

specific mean and variance. Next, the algorithm optimizes the parameters repre-

senting the image inhomogeneities. The resulting algorithm is an implementation

of the General-Expectation-Maximization algorithm, which determines an improved

instead of optimal parameter setting at each iteration. The implementation with the

extended parameter space can be applied to a larger class of image acquisition se-

quences compared to the approach of Section 2.3.2. The risk of getting stuck in local

maxima due to the definition of the structure dependent intensity pattern is reduced.

On the downside, the algorithm converges more slowly.
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Wells’ final EM approach [112] also differs from the derivation in Section 2.3.3

as the covariance matrix defining the prior of the image inhomogeneities Ψ is diffi-

cult to compute. Wells [112] simplifies the model by assuming that the distribution

of the image inhomogeneities is stationary. As a result, the prior is replaced by a

computationally more efficient low pass filter.

If the structure specific distribution is voxel-wise independent, the methods of

Section 2.3.2 and Section 2.3.3 fail to consider the noise in MR images. This causes

both methods to produce fragmented segmentations [104, 51]. This issue has been

addressed by modeling the structure specific posterior probability as a Markov ran-

dom field [27]. Markov random fields can smooth over the noise, which violates the

spatial neighborhood relationships of anatomical structures. Excluding the binary

case, determining the exact behavior of the Markov random field is an intractable

problem. A solution to the Markov random field is approximated using simulated

annealing [44, 74], iterated conditional modes [33, 117, 44], Newton descent methods

[65], or mean field approximation [51, 104].

Another possible solution to reduce the fragmentation in the segmentations is the

use of non-stationary spatial priors as done by Van Leemput [104]. The spatial priors

clearly define the inside of a structure, which favors uniform labeling in this region.

In addition, the method can also handle anatomical structures with weakly visible

boundaries.

As outlined by [104, 33, 80], the use of spatially varying priors in combination

with Markov random fields can smooth over subtle differences in images such as

the thin sulci located between the folds of the outer cortex. Spatial priors of an

anatomical structures are normally characterized by high values inside the structure,

which enforce uniform labeling in this region and therefore reduces fragmentation.

Only along the boundaries of structures, where spatial priors are not certain about the

labeling, Markov random fields reduce the fragmentation. However, most methods in

medical image segmentation related to Markov random fields [51, 103, 44] are defined

by stationary pair potentials, which assign high probabilities to uniform labeling

independent of the location. These methods do not distinguish between the inside
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and the boundary of a structure, which causes them to neglect subtle differences in

the image.

Instead, Fischl [34] advocates the use of non-stationary pair potentials. However,

non-stationary pair potentials are hard to generate because manual segmentations of

all structures of interest must be present in each training subject. In addition, this

framework does not guarantee a segmentation without the unwanted fragmentation.

We end this discussion with the approach by Marroquin et al. [65]. This pub-

lication suggests that his gradient projection Newtonian descent method is superior

to EM approaches like the one of Van Leemput [103]. Unfortunately, the paper is

not convincing as it only proves the efficiency of the approach but fails to properly

compare it to other EM approaches in the field.

In conclusion, we base the remainder of this thesis on the method by Wells [112].

As suggested by Van Leemput [103], we extend the approach by using non-stationary

priors, which allow us to segment structures with similar intensity patterns. We

exclude Markov random fields, as the reduction of fragmentation can be achieved

with simpler filters. We also will not estimate the structure dependent intensity

patterns within the EM framework as suggested by Van Leemput [103]. Using Wells’

approach, we were able to adjust the method to different image acquisition protocols

through a histogram-normalization filter [9].
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Chapter 3

Integration of Spatial Prior into

EM Framework

Many neuroscience studies rely on accurate segmentations of cortical and subcortical

gray matter. In MR images, most of these anatomical structures have weakly visible

boundaries because they are surrounded by structures with similar intensity patterns.

For example, the thalamus has a very similar intensity pattern to the neighboring

white matter so that the boundary between them is mostly invisible on MR images

(Figure 3-1).

(a) MR Image (b) Manual Outline (c) Spatial Priors

Figure 3-1: The MR image (a) shows the region around the thalamus. The corre-
sponding segmentation (b) identifies the right thalamus as pink and the left thalamus
as blue. In (a) the boundary of the thalamus is not clearly defined because it has
a very similar intensity pattern to the neighboring white matter. The image in (c)
shows the spatial priors of both anatomical structures with red indicating higher prior
probability of the right thalamus and blue of the left thalamus. Spatial priors capture
the spatial variation of an anatomical structure across a population. Many algorithms
use them for segmenting structures with weakly visible boundaries.
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In the last decade, the medical imaging community has been advocating the use

of spatial priors to overcome this problem (Figure 3-1.) Spatial priors define the

probability of the presence of an anatomical structure with respect to each individual

voxel in the image space. This prior is often captured by an atlas, which defines the

probability in accordance with a specific population.

This chapter carefully analyzes the integration of spatial priors into the EM frame-

work of Section 2.3.3. A detailed discussion of this topic is important as the spatial

priors not only guide the EM approach in the segmentation of anatomical structures

with weakly visible boundaries but also increase the risk of systematic biases in the

resulting segmentation.

In this chapter we first discuss a method that generates a spatial atlas from a

set of manual segmentations. Next, we describe two different approaches for the

integration of the atlas into the EM framework. The first approach uses a non-rigid

registration method to align the atlas to the patient and then segments the MR

images into anatomical structures. The second algorithm simultaneously registers

the atlas to the MR image and segments the MR image into anatomical structures.

To our knowledge, this is the first published EM approach to have these capabilities.

Each method is validated on various segmentation tasks to show its strengths and

weaknesses.

3.1 Defining Spatial Priors of Anatomical Struc-

ture

This section describes a method that transforms a set of manual segmentations into

an atlas capturing the spatial probability of a specific structure. It is not obvious how

to produce these types of atlases, as they should properly represent spatial variations

across the training set and not favor characteristics present in a subgroup of subjects.

To generate the atlas, we first select one case from the training set as shown in

Figure 3-2. This case, which we call the generic case, defines the coordinate sys-
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Figure 3-2: The graph visualizes the approach, which produces spatial priors of
anatomical structures. First, the MR images of the training set are aligned to a
generic subject. Second, the resulting deformation is used to align the corresponding
segmentations of the structures of interest to the coordinate system of the generic
subject. Finally, the spatial priors capture the ratio between the number of subjects
where a specific structure is present at a voxel and the total number of training cases.

tem of the atlas. The choice for the generic case has to be carefully considered as

any uncommon characteristics of the generic case might be favored by the atlas and

consequently misguide our segmentation method.

The atlas is computed in three steps. First, the training data are aligned to the

atlas coordinate system. We do so by individually registering each training case to the

generic case. The choice of registration approach is important. The method has to

project the anatomy of the specific training subject into the coordinate system of the

atlas without significantly altering the shape of the anatomical structure. One choice

for this task is affine registration methods, which naturally enforce this constraint as

they only scale, displace, and rotate the source to the target. In the remainder of

this thesis we will always refer to affine alignment methods being constrained to these

three types of deformations.

The second step applies the subject-specific deformation map to the corresponding

segmentation of the anatomical structures. As a result, the subject as well as its
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segmentation are aligned to the generic case. The final step determines the spatial

prior of the anatomical structure at each voxel by the ratio between the entire training

set and those subjects that label the voxel with the anatomical structure.

In our specific experiment, we use a data set of 80 subjects where a few structures

of interest are manually outlined in each subject. The subjects are registered to a

generic case using the affine registration algorithm by Warfield [107]. The method

is based on a minimum entropy metric of the labelmaps and has proven to be quite

robust [47].

(a) (b) (c)

Figure 3-3: Examples of atlases defining the spatial prior of white matter (a), gray
matter (b), and corticospinal fluid (c). Blue indicates high and red low probability of
a structure being present at that voxel. We refer to the text for more detail.

After each segmentation is aligned to the coordinate system of the generic case,

the structure specific spatial prior is computed. At each voxel x, the probability of x

being labeled as the anatomical structure of interest a is defined by the ratio between

the number of subjects where a is present at voxel x, and the total number of training

cases. For example, if we use a training set of 80 volumes to generate the spatial prior

of white matter and 40 volumes assign a specific voxel x to white matter then the

spatial prior of white matter at voxel x is 50%.

Examples from our set of atlases are shown in Figure 3-3. Blue represents high

and red, as well as black, low probability of the anatomical structure being present

at that location. All three atlases are generally characterized by slowly varying val-

ues indicating the spatial variability of the exact boundary of the structure across a

population. In difference to the other two anatomical structure, large areas of the
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MR image Spatial Prior

Figure 3-4: The image to the left shows a part of an MR image with blue highlighting
the thin sulci filled with corticospinal fluid. Due the great variance of the thin sulci
the spatial priors under-represent the structure. This is also shown in the right image,
where red indicates low spatial probability of corticospinal fluid being present.

spatial prior of white matter (a) are shown in blue because most of the white matter

is defined by a relative large body that does not greatly vary spatially across pa-

tients. Most of the gray matter, however, is defined by the relatively thin folds of

the outer cortex (indicated in green) that greatly vary across a population. Only the

subcortical structures are fixated, which are indicated by blue in spatial priors. A

similar phenomena is observed in the corticospinal fluid (Figure 3-3(c)), where most

of the area close to the skull is shown in red as the structure is defined by very thin

and spatially varying sulci located between the folds of the outer cortex. Figure 3-4

focuses on a small part of the corticospinal fluid with blue lines outlining the thin

sulci in the MR image and corresponding spatial prior. In Figure 3-3 (c) only the

ventricles are shown in blue as they do not greatly vary across patients.

In summary, we generated an atlas capturing the spatial distribution of anatomical

structures by first aligning 80 data sets to one generic case and then measuring the

correspondence between manual segmentations across the set of training cases. The

remainder of this chapter discusses different EM approaches utilizing the spatial atlas.
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3.2 Separate Framework for Registration and Seg-

mentation

This section integrates the atlas generated in Section 3.1 into the EM framework of

Section 2.3.3 by first registering the atlas to the patient and then segmenting the

patient MR into the anatomical structures of interest. We initially focus on the im-

plementation itself by discussing two different registration methods and revisiting the

approach of Section 2.3.3. Afterwards, we test the approach by segmenting different

substructures of the gray matter and comparing the results to manual segmentations.

Most of the work presented in this section originally was published by us in [81]. At

that time, we presented for the first time in medical image analysis an approach that

couples a non-rigid registration method with an EM model for the segmentation of

subcortical structures.

3.2.1 A Sequential Approach

As mentioned, the algorithm developed in this section is defined in two steps. First,

the atlas of each structure is aligned to the subject. In the second step, the EM

algorithm of Section 2.3.3 segments the subject into the structures of interest. We

now review these two steps in detail.

1. Step: Registration of Atlas

The alignment of the atlas to the patient is similar to the registration of the test cases

to the atlas coordinate system in Section 3.1. As shown in Figure 3-5, we first register

the MR images of the generic case to the MR images of the patient. This process

results in a correspondence field, which maps points from the coordinate system of

the atlas defined by the generic case to the patient coordinate system. The alignment

of the structure specific spatial priors to the patient is achieved by applying the

previously generated correspondence field to the spatial priors themselves.

To highlight the dependency between the accuracy of the atlas registration and ro-
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Figure 3-5: The figure shows the registration of the atlas to the patient. The MR
images of the generic subject are initially registered to the MR images of the patient.
The resulting correspondence field is re-applied to the atlases to align the spatial
priors with the patient.

bustness of the segmentation approach we develop two different implementation. The

first implementation (EM-Affine) uses the affine registration method of Warfield et

al. [107], which we previously used for the alignment of the training cases to the atlas

coordinate system. The registration method is useful for generating an atlas because

it preserves the shape of each anatomical structure. However, for the alignment of

the atlas to the subject we need a method that deforms each anatomical structure of

the atlas space to its shape in the subject. For this task, affine registration methods

are generally too constrained [88]. Instead of an affine method, the second implemen-

tation (EM-NonRigid) utilizes the non-rigid registration approach of Guimond et al.

[41].

Originally proposed by Thirion [92], the method initially performs an intensity

mapping to transform the intensity histogram of the source to that of the target image.

The algorithm then determines the displacement between source and target using

the demons algorithm (see also Section 1.2). Applied to our atlas, the registration

approach essentially turns the spatial priors of a population into a patient specific

one. As we will show later in Section 3.2.2, the approach robustly registers cortical

structures, such as the superior temporal gyrus, but has too many degrees of freedom

for subcortical structures, such as the thalamus.
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2. Step: EM Segmentation

After aligning the atlas to the MR images, we segment the images into the anatomical

structures of interest. For this purpose, we use the instance of the EM algorithm

defined in Section 2.3.3. While Section 2.3.3 focuses on the similarity between Wells’

and van Leemput’s approach, this section describes the EM approach with respect to

structure specific parameters.

We revisit the derivation of Section 2.3.3 by substituting the rather general nota-

tion for the complete data model of Chapter 2 with variables more easily associated

with terms in medical imaging. The observed log image data I replaces O, the

labelmap T replaces H, and the image inhomogeneities or bias B represents the pa-

rameter space Ψ. As in Chapter 2, ’a’ represents an anatomical structure of interest

and ’x’ defines a voxel in the image.

Within the segmentation model, the intensity distribution of each anatomical

structure a is defined by a Gaussian distribution N (µa, Υa). While Gaussians do not

properly represent the distribution of large anatomical structures, like gray matter,

this representation simplifies the calculations in the M-Step as discussed in Section

2.3. Each anatomical structure a is also characterized by the aligned spatial prior

fa(·), which are defined by the atlas. The aligned spatial prior defines the prior

probability of a voxel x being assigned to specific anatomical structure a, which is

represented in our statistical framework as

P (Tx = ea) , fa(x). (3.1)

Another important relationship in our model is expressed by the likelihood

P (Ix|Bx, Tx = ea), which is the probability of the log intensity Ix at voxel x condi-

tioned on image inhomogeneities Bx and the anatomical structure a. As mentioned in

Section 2.3.3, the likelihood P (Ix|Bx, Tx = ea) is defined by the Gaussian distribution

N (µa + Bx, Υa), which is equivalent to

P (Ix|Bx, Tx = ea) , 1√
(2π)n|Υa|

e−
1
2
(Ix−Bx−µa)tΥ−1

a (Ix−Bx−µa) (3.2)
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After defining the structure dependent probabilities of the segmentation model,

we now reiterate the EM approach of Section 2.3.3.

Expectation Step (E-Step)

The E-Step calculates the weights W , which is the structure specific posterior prob-

ability with respect to the current estimate of the image inhomogeneity B′ and the

image data I. According to Equation (2.10) the weights W are defined as

Wx(a) , P (Ix|B′x, Tx = ea) · P (Tx = ea)∑
a′ P (Ix|B′x, Tx = ea′) · P (Tx = ea′)

, (3.3)

which is the soft assignment of a voxel x to the anatomical structure a based on the

current model. If we apply Equation (3.2) and Equation (3.1) to Equation (3.3), and

define the normalization factor

Zx ,
∑

a′
|Υa′ |− 1

2 · e− 1
2
(Ix−B′x−µa′ )

tΥ−1
a′ (Ix−B′x−µa′ ) · fa′(x)

then the weights at voxel x for the anatomical structure a become

Wx(a) =
1

Zx

|Υa|− 1
2 · e− 1

2
(Ix−B′x−µa)tΥ−1

a (Ix−B′x−µa) · fa(x). (3.4)

In summary, the E-Step updates the weightsWx based on the current estimate of the

inhomogeneity B′ as all other parameters in Equation (3.4) are fixed.

Maximization Step (M-Step)

The M-Step updates the approximation of the image inhomogeneities B′ based on the

results of the E-Step. As mentioned in Section 2.4, modeling the inhomogeneities as a

Gaussian distribution and determining B based on Equation (2.27) is computationally

relative expensive. Instead, we achieve good results with the approach suggested by

Wells [112]. The “inverse variance” (Υ−1+Υ−1
B )−1 in Equation (2.27) is approximated

by a simple low pass filter F , which enforces the smoothness constraint of the image

inhomogeneities. The approximation of the image inhomogeneity B′ is updated by
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the product between the J and a weighted residual R̃:

B′ ← J · R̃ (3.5)

where the residual is defined as R̃(x) ,
∑

aWx(a)Υ−1
a (Ix − µa).

Algorithm 1: EM Segmentation with Spatial Priors()

procedure Registration(ATLAS)

define correspondence field C ← align MRIs of ATLAS to image I
define the structure specific spatial prior of the subject:

for all structures a ∈ {1, . . . , N}
define fa ← apply C to the specific spatial prior of structure “a”

defined byATLAS

return (f1, . . . , fN)

procedure Segmentation(f1, . . . , fN)

repeat

E-Step: Calculate Wx(a)← 1
Z
P (Ix|Tx(a) = 1,B′x) · fa (x) ,

where P (Ix|Tx(a) = 1,B′x) is defined as in Equation (3.2)

M-Step: Update B′ ← J ·∑aWx(a)Υ−1
a (Ix − µa)

where J is a low pass filter

and (µa, Υa) are structure specific intensity parameters

until B′converges

define labelmap: Tx ← arg maxaWx(a)

main

define aligned spatial priors f ← Registration(ATLAS)

define labelmap T ← Segmentation(f)

The EM approach iterates between the E- and M-Step until the algorithm con-
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verges to a local maximum (see [25].) To determine the final labelmap L according

to Equation (2.21), we assign each voxel x to the structure a with the largest weight

Wx(a).

This completes the review of the EM approach, which first aligns the atlas to the

subject and then segments the MR images of the subject into anatomical structures.

We derived two different implementations in order to assess the accuracy of our ap-

proach with respect to the alignment method. The first implementation, EM-Affine,

uses an affine registration approach and the second approach, EM-NonRigid, uses a

non-rigid method. An abstract representation of both implementations is given in

Algorithm 1.

3.2.2 Validation

We focus on two different experiments, which analyze the accuracy of each imple-

mentation. In each experiment, the automatic segmentation results are compared to

manual segmentations, which substitute for the missing ground truth. The first ex-

periment uses four test cases on which the superior temporal gyrus is outlined by five

different experts. The superior temporal gyrus (Figure 3-6) defines a complex shape

whose boundary is often difficult to define because it is adjacent to structures with

similar intensity patterns. The second experiment uses 22 test cases on which the

thalamus is manually outlined by a single expert. Compared to the superior temporal

gyrus, the thalamus has a much simpler shape (see Figure 3-8.) Unlike the superior

temporal gyrus, the thalamus is difficult to register because it is mostly outlined by

weakly visible boundaries on MR images.

A Multiple Rater Experiment of the Superior Temporal Gyrus

The multiple rater experiment is based on four test cases generated by different brain

MRIs (Gradient-echo T1-weighted: 256x256x124, resolution of 0.9375mm x 0.9375mm

x 1.5 mm; T2-weighted: 256x256x62, resolution of 0.9375mm x 0.9375mm x 3.0 mm.)

For the experiment, both implementations as well as five experts outline the right
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SPGR/EM-NonRigid Rater A Rater B Rater C

Figure 3-6: Comparing manual and automatic segmentation of the right superior
temporal gyrus. In comparison to the different manual segmentations, blue indicates
areas of overestimation of EM-NonRigid, light blue represents agreement between the
two segmentations, and white shows areas underestimated by EM-NonRigid. While
all three manual segmentations differ, they agree that the area outlined by EM-
NonRigid to the left is not part of the structure.

and left superior temporal gyri. The experts differ in their level of expertise.

The superior temporal gyrus was chosen because its intensity pattern does not

clearly indicate the boundary of the structure. For example, in Figure 3-6 the struc-

tures are segmented by three different experts and EM-NonRigid. All four segmen-

tations differ and EM-NonRigid seems to have mislabeled the “arm” to the left of

the structure because of the superior temporal gyrus’ similar intensity pattern to the

neighboring cortical structures.

The superior temporal gyrus is also ideal for testing the strengths and weaknesses

of automatic methods because of its relatively large variation across patients and its

small volumetric size. Its large variations are reflected in the slowly varying spatial

priors. The spatial priors do not clearly indicate the boundary of the structure, which

reduces their efficiency in guiding the automatic segmentation of this structure. As

the superior temporal gyrus only defines about 1% of the brain volume [87], volumetric

comparison studies of this structure are very sensitive to segmentations with outliers.

To compare the segmentations, three slices around the centroid of the structure

are chosen. We would prefer to conduct the experiment for a larger set of slices but it
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is quite time consuming to manually outline this structure. The five experts manually

outlined the superior temporal gyrus on all three slices. The resulting segmentations

are then used by STAPLE to generate a reference standard. STAPLE is an instance

of the EM algorithm, which estimates the reference standard in the E-Step and rates

each segmentation in the M-Step (see Section 1.5.) Afterwards, we compare the

automatic segmentations to the reference standard using the volume overlap measure

DICE of Section 1.5. The metric is defined by the volume of the intersection between

automatic segmentation and reference standard normalized by the volumes of the

segmentation and the reference standard. The measure is zero if two regions do not

overlap and one if they are equivalent.

right - Affine right - Non-Rigid left - Affine left - Non-Rigid

Figure 3-7: The images compare the reference standards (in blue and red) to the
spatial prior (the white areas in the background indicate high likelihood) of EM-
Affine and EM-NonRigid. The global affine registered spatial priors of EM-Affine
show large displacement to the reference standards. The areas, however, favored by
the non-rigidly aligned spatial priors of EM-NonRigid correspond to the reference
standard of the anatomical structure.

The accuracy of the two methods greatly differs for this task. EM-Affine only

receives an average score of 61 ±5.3% (mean ± standard error) for the left and

65.4 ±3.4% (mean ± standard error) for the right superior temporal gyrus where

EM-NonRigid receives an average score of 79.3 ±2.0% (mean ± standard error) and

80.7 ±0.7% (mean ± standard error) accordingly. The very poor performance of

EM-Affine is caused by initial alignment errors of the affine registration method.

These alignment errors are also visualized in Figure 3-7, which compares the reference

standards based on the manual segmentations to the aligned spatial priors. Blue

defines the reference standard for the right and red for the left superior temporal

gyrus; the white areas indicate spatial priors with high likelihoods.
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Clearly visible in these images is the displacement between the reference standard

and the spatial priors used by EM-Affine. Consequently, EM-Affine is misguided by

the spatial priors, which explains the relative low score of the method. The folds of the

cortex are characterized by large spatial variations across a population. The affine

registration approach of EM-Affine is apparently too constrained to capture these

variations. In contrast, the spatial priors of EM-NonRigid are accurately aligned to

the reference standards. The non-rigid registration method of EM-NonRigid performs

well as the clearly visible folds properly constrain the alignment process. Unlike

the affine approach, EM-NonRigid has enough degrees of freedom to capture the

corresponds between the folds in the atlas space to the image space.

In conclusion, this experiment shows how sensitive atlas based EM methods are

with respect to errors in the spatial priors. EM-Affine performs poorly here, because

the affine registration method is too constrained to properly align the atlas to the

patient. EM-NonRigid, however, achieves high quality segmentations of the superior

temporal gyrus, because the non-rigid registration method accurately defines the

displacement between the atlas and image space.

A Large Experiment Based on the Thalamus

For this experiment, both implementations segment 22 test cases into white matter,

gray matter, corticospinal fluid and further parcellate gray matter into right and left

thalamus. To simplify the task, both methods first skull strip the images so that only

the brain itself is visible on the MR images. Afterwards, the methods segment the

brain region into the anatomical structures of interest. Chapter 5 describes in detail

how to perform such a task in an EM framework.

After all cases are segmented, we compare the automatic segmentations of the

thalamus to manual ones. The experiment focuses on the thalamus because most of

its boundary is weakly visible on MR images so that it is a challenging structure for

registration and segmentation. The weakly visible boundary is caused by the large

amount of fiber tracts passing through the thalamus, which create a very similar

intensity pattern to the neighboring white matter (Figure 3-8.) EM without spatial
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Figure 3-8: The labelmap to the right shows the thalamus in purple and red. The
white matter is segmented in white. As can be observed in the MR image to the
left, the boundary between white matter and thalamus is only weakly visible as both
structures are defined by very similar intensity patterns in this area. Segmentation
and registration methods therefore have difficulties in properly analyzing this region.

priors fails and EM with spatial priors heavily relies on these priors. Thus, registration

errors greatly influence the segmentation quality of our implementations.

To measure the quality of the automatically generated results, we compare them

to the manual segmentations using DICE, the volume overlap measure described in

Section 1.5. Unlike the last experiment, each subject is only segmented by one human

expert. The experiment can only compare both methods with each other; it cannot

indicate how well the methods perform in relation to human experts.

In general, EM-NonRigid performed worse than EM-Affine with an average DICE

measure of 82.4 ±1.2% (mean ± standard error.) As visible on Figure 3-9, the EM-

NonRigid method greatly underestimates the structure because the intensity-based

registration method is too unreliable for structures with smooth boundaries. On

average, we found a volume decrease of 10% when comparing the automatic to the

manual segmentations.

EM-Affine is more reliable, with an average score of 87.3 ±1.2% (mean ± standard

error.) Unlike the non-rigid approach, the alignment method of EM-Affine defines the

mapping between atlas and image space globally so that the mapping is not greatly

influenced by the weakly visible boundaries between the thalamus and white matter.

However, errors in the initial alignment influence the quality of the results as the

segmentation approach assigns voxels to the wrong structure based on the misaligned
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Manual / SPGR EM-Affine EM-NonRigid

Figure 3-9: The images to the left show the manual segmentation of the thalamus
in 3D and outlined in black on the slice of the MR image. The other two columns
feature the segmentation of the two implementations EM-Affine and EM-NonRigid.
EM-NonRigid underestimates the size of the thalamus as the non-rigid registration
approach cannot properly register this region due to the similar intensity pattern
between thalamus and white matter. EM-Affine performed much better but a mis-
registration along the vertical direction is visible in the images.

spatial priors. For example, the segmentation shown in Figure 3-9 shows an offset

along the vertical direction of the image that is caused by the misalignment between

the generic case to the image space.

Method Superior Temporal Gyrus Thalamus

EM-Affine too constrained good

EM-NonRigid good too flexible

Table 3.1: The table summarizes the results of the two experiments of this section.
EM-Affine performs poorly on the superior temporal gyrus but does well for the
thalamus. The opposite is true for the EM-NonRigid. We refer to the text for more
detail.

In summary, this section integrated a spatial atlas into an EM framework by first

registering the atlas to the MR images and then segmenting the subject into the

structures of interest. We generated two different implementations of the pipeline

approach by using an affine and a non-rigid registration method. To determine the

accuracy of each approach we applied them to two experiments whose results are

summarized in Table 3.1. While the experiments highlighted the necessity of spatial

priors for the automatic detection of cortical and subcortical structures, they also

74



brought to the surface the problems associated with our pipeline approach. In order

to segment these anatomical structures, both implementations rely on an accurate

alignment of the atlas to the subject. While EM-NonRigid is reliable for the superior

temporal gyrus, it is less accurate for the segmentation of the thalamus, because the

non-rigid registration method greatly underestimates this area. The opposite is true

for EM-Affine. However, the quality of the superior temporal gyrus segmentation is

negatively influenced by the overconstrained affine registration method.

3.3 Integrated Registration Framework

In the previous section we encountered problems with our application due to the

sequential execution of atlas registration and image segmentation. Active contour

methods, such as [59, 100], have addressed this issue by joining these two steps within

one framework. They integrate atlas registration into their model by extending the

definition of the evolving shape to include its pose.

Motivated by their success, we now propose a novel EM framework joining at-

las registration and image segmentation. Unlike Bayesian frameworks developed for

active contour methods, our approach considers the anatomical structure associated

with each voxel within image. In addition, we explicitly model the image inhomo-

geneities of MR images to segment large data sets without manual intervention.

In Section 3.3.1, we develop a Bayesian framework targeted towards atlas regis-

tration, inhomogeneity correction, and segmentation of anatomical structures. We

use the EM approach to solve the resulting estimation problem. The method uses an

initial imperfect estimation to converge to a good approximation for these problems.

In Section 3.3.2, we apply the concept to a hierarchical registration framework,

which models global- and structure-dependent deformations. With the exception of

the background, each anatomical structure is associated with an individual set of

affine registration parameters. The mapping of the background to the MR images is

modeled as a non-rigid deformation to further increase the accuracy of our approach.

In Section 3.3.4 we perform two different experiments. We first test different
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variations of our approach on synthetic images. Afterwards, we repeat the validation

experiment of the thalamus of Section 3.2.2 to compare the accuracy of our new

approach to the pipeline approaches of the last section.

3.3.1 Derivation of the EM Framework Coupling Registra-

tion and Segmentation

The accuracy of our EM approach outlining structures with indistinct boundaries on

MR images significantly depends on properly modeling the image inhomogeneities

as well as correctly registering the atlas to the subject. To model the image in-

homogeneities, Chapter 2 points out the complicated relationship between the image

inhomogeneities B and the MR images I. In this section, we extend their relationship

by the registration parameters R. R defines the mapping of the structure specific

spatial priors to the MR images. The spatial priors do not contain any information

about the inhomogeneities B so that without additional assumptions it is very diffi-

cult to extract the inhomogeneities B and the registration parameters R from the MR

images I. However, this problem is greatly simplified when the solution is determined

for the incomplete model within an EM framework.

The incomplete model is defined by observed data I and parameter space (B,R).

Their relationship is captured by the maximum a posteriori probability estimation

problem

(B̂, R̂) = arg max
B,R

log P (B,R|I) (3.6)

In general, this framework results in a system of equations for which there is no

analytical solution.

Similar to Chapter 2, we simplify the problem by adding the labelmap T to the

model. Comparing the images generated from T to the observed MR images I, we

determine the solution to Equation (3.6). We restate Equation (3.6) by marginalizing

with respect to all possible labelmaps T

(B̂, R̂) = arg max
B,R

log
(∑

T
P (B,R, T |I)

)
. (3.7)
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Next, we incorporate P (T |I,B′,R′), where (B′,R′) are estimates of (B̂, R̂), into

Equation (3.7)

(B̂, R̂) = arg max
B,R

log

(∑
T

P (B,R, T |I)P (T |I,B′,R′)
P (T |I,B′,R′)

)

= arg max
B,R

log ET |I,B′,R′
(

P (B,R, T |I)
P (T |I,B′,R′)

)
.

(3.8)

The purpose of these operations is to put Equation (3.8) into a form such that we

can exploit the following bound derived via Jensen’s Inequality from Corollary 7

log ET |I,B′,R′
(

P (B,R, T |I)
P (T |I,B′,R′)

)
≥ ET |I,B′,R′

(
log

P (B,R, T |I)
P (T |I,B′,R′)

)
. (3.9)

The right side of Equation (3.9), which defines a lower bound on the objective function

log ET |I,B′,R′
(

P (B,R,T |I)
P (T |I,B′,R′)

)
, is more easily maximized using an EM approach. The

Expectation Step (E-Step) computes the objective function

Q [(B,R); (B′,R′)] , ET |I,B′,R′
(

log
P (B,R, T |I)
P (T |I,B′,R′)

)
. (3.10)

The Maximization Step (M-Step) updates the approximations B′ and R′ with the

maximum of the lower bound

(B′,R′)← arg maxB,RQ [(B,R); (B′,R′)] . (3.11)

Finding the solution to Equation (3.11) is complicated as we simultaneously es-

timate the independent inhomogeneities B and registration parameters R. We will

make certain assumptions to simplify the problem. Before we do so, we rewrite
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Equation (3.11) by applying Bayes’ rule

(B′,R′)
1

← arg maxB,R ET |I,B′,R′ (log P (B,R, T |I)− log P (T |I,B′,R′))
2

= arg maxB,R ET |I,B′,R′ (log P (B,R, T |I))
3

= arg maxB,R ET |I,B′,R′(log P (B,R|T , I) + log P (T |I))
4

= arg maxB,R ET |I,B′,R′(log P (B,R|T , I))
5

= arg maxB,R ET |I,B′,R′ (log P (I|T ,B,R) + log P (B,R|T )− log P (I|T ))

6

= arg maxB,R ET |I,B′,R′ (log P (I|T ,B,R) + log P (R|T ,B) + log P (B|T ))

(3.12)

As mentioned, finding a solution to the equation is simplified by making cer-

tain independence assumptions. The first factor in Equation (3.12) is the likelihood

P (I|T ,B,R). In the last section, the likelihood P (Ix|Tx = ea,Bx) is defined by the

Gaussian distribution N (µa + B(x), Υa) of Equation (3.2). In this framework, the

structure dependent parameters µa and Υa are spatially independent so that the pa-

rameters are not influenced by the registration parameters R. This leads us to the

assumption that I is independent of R conditioned on T and B. Based on the same

reasoning, we also assume that the registration parameters R are independent of B
conditioned on T . The last factor in Equation (3.12) is the conditional inhomogene-

ity probability P (B|T ) for which we assume independence between B and T as the

image inhomogeneities are caused by the radio frequency coil of the scanner [108].

Based on three independence assumptions, Equation (3.12) simplifies to

(B′,R′)← arg maxB,R ET |I,B′,R′ (log P (I|T ,B) + log P (R|T ) + log P (B)) (3.13)

We demonstrate the utility of the independence assumptions in the experiment of

1Replace Q[·; ·] with its definition of Equation (3.10)
2P (T |I,B′,R′) does not depend on B and R
3Apply Bayes’ rule
4P (T |I) does not depend on B and R
5Apply Bayes’ rule
6P (I|T ) does not depend on B and R and apply Bayes’ rule on P (B,R|T )
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Section 3.3.4 when we segment 22 subjects into subcortical structures.

In its current form, Equation (3.13) is characterized by an expected value, which

sums over all possible settings of T . To further simplify the problem, we assume

spatial independence of T and independence between R and B on the basis of the

previous discussion. Equation (3.13), which characterizes the EM approach, is re-

stated as the sum over all voxels x of the expected value with respect to Tx

(B′,R′)← arg maxB,R
∑

x
ETx|I,B′,R′ (log P (I|T ,B) + log P (R|T ) + log P (B))

7

= arg maxB,R
∑

x

∑
a
ETx|I,B′,R′(Tx(a)) [log P (Ix|Tx = ea,Bx)

+ log P (R|Tx = ea) + log P (B)]

= arg maxB,R
∑

x

∑
a
Wx(a) [log P (Ix|Tx = ea,Bx)

+ log P (R|Tx = ea) + log P (B)] .

(3.14)

The weights, which are calculated in the E-Step instead of Equation (3.10), cap-

ture the posterior probability of the structure a being present at voxel x and are now

defined as

Wx(a) , P (Tx(a)|I,B′,R′) =
P (Ix|Tx(a) = 1,B′x) · P (Tx(a) = 1|R′)

P (Ix|B′x,R′)
. (3.15)

As each factor in Equation (3.14) only depends on either R or B, the M-Step updates

the approximations of the inhomogeneities and the registration parameters separately

R′ ←arg maxR
∑

x

∑
α
Wx(a) · log P (Tx = ea|R) + log P (R) (3.16)

B′ ←arg maxB
∑

x

∑
α
Wx(a) · log P (I|Tx = ea,B) + log P (B) (3.17)

Before we focus on the modelling of the registration parameter R we must point

7At this point, we assume that the two conditional probabilities P (I|Tx,B) and P (R|T ) are
defined by the product of the corresponding conditional probabilities over all the voxels in the
image space. For the likelihood P (I|Tx,B) =

∏
x P (Ix|Tx,Bx) this assumption was previously

stated in [112] and for the conditional registration probability P (R|T ) =
∏

x P (R|Tx) we describe
a distribution in Section 3.3.2 that fulfills this constraint.
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MR Image Segmentation

Figure 3-10: For this MR image our novel approach achieved a suboptimal result as
it failed to differentiate the neck from the brain (outlined in red.) See text for detail
discussion.

out the method’s sensitivity towards uncommon characteristics favored by the at-

las; a minor drawback of this formulation. The aligned atlas is represented in

Equation (3.16) and Equation (3.15) by P (Tx = ea|R). To match the atlas with the

segmentation problem, the algorithm compensates for any biases through intensity

correction and atlas realignment. For example, if the atlas does not properly capture

the brain intensity distribution, the algorithm might identify the neck as part of the

brain such as in Figure 3-10. The inhomogeneity correction will then normalize the

intensity pattern of the neck to the ones inside the brain and the registration might

scale the atlas of the brain to cover both brain and neck. This causes the algorithm

to converge to a suboptimal solution but a re-calibration of the atlas to the intensity

pattern of the MRI protocol can overcome this problem.

Figure 3-11 shows another example of the influence of a biased atlas on the seg-

mentation results. The first row in Figure 3-11 presents a biased spatial prior of white

matter and the resulting average error in the thalamus over 22 test cases. In compar-

ison to the normal spatial prior in the second row, the biased spatial prior strongly

favors white matter in the area of the left thalamus. This unevenness between the

right and left brain hemisphere causes an offset in the horizontal direction of the
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Prior Error (Front) Error (Back)

Biased

Normal

low prior / underestimation high prior/ overestimation

Figure 3-11: This example highlights the effect of a biased spatial prior on the overall
performance of the segmentation method. The first row shows a biased spatial prior
of the white matter (biased area is indicated by white arrow head) and the result-
ing average error in the thalamus over 22 test cases. In comparison to the normal
spatial prior in the second row, the biased spatial prior over-represents white matter
in the area of the left thalamus. This unevenness between the right and left brain
hemisphere causes an offset in the horizontal direction in the automatic segmentation
of the thalamus. While the average error of the normal segmentation occurs almost
symmetrically with respect to both brain hemispheres, the average error of the bi-
ased distribution shows an underrepresentation (shown in blue) on one side of both
thalamus and an over-representation (shown in red) to the other side.

resulting thalamus segmentations. This offset is also shown in the average error of

the thalamus to the left of the corrupted spatial prior, where blue indicates an under

- and red an over-representation by the automatic segmentations in comparison to

the manual ones. While the average error of the normal segmentation, shown in the

second row, occurs almost symmetrically with respect to both brain hemispheres, the

average error of the biased distribution shows an underrepresentation on one side and

an over-representation to the other side of right and left thalamus.

In summary, this section defines the problem of accurately mapping the atlas to

the image space as a maximum a posteriori probability estimation problem. Finding

the solution to this problem is generally too difficult so that we iteratively solve the
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simpler lower bound optimization problem of Equation (3.9) in an instance of an EM

algorithm. Even computing the solution to the optimization problem is generally

too complicated as we simultaneously have to maximize the underlying objective

with respect to the image inhomogeneity B and the registration parameters R. We

therefore split Equation (3.9) into two separate estimation problems for B and R by

making certain simplifying independence assumptions. The resulting EM approach

is composed by an E-Step determining the W of Equation (3.15) and the M-Step,

which solves the estimation problems of Equation (3.16) and Equation (3.17). While

Section 3.2 discusses in detail the solution to Equation (3.17), the next section focuses

on finding the optimal registration parameter setting of Equation (3.16).

3.3.2 The Registration Parameters R
To solve the estimation problem of Equation (3.16), we first define the registration pa-

rametersR and the conditional log probability log P (T |R). We model the parameters

R as a hierarchical registration framework, which distinguishes between global- and

structure-dependent deformations. We then apply the registration framework to the

estimation problem and determine its solution with another optimization algorithm.

The hierarchical registration parameters R capture the correspondence between

atlas, brain, and structures within the brain. The mapping of the atlas to the image

space is performed by an interpolation function r(R, x), which maps voxel x into the

coordinate system defined byR. r(R, ·) can be rigid, affine, or more general non-rigid.

As a rigid registration can be interpreted as a special case of an affine transformation,

we focus our discussion on affine and non-rigid registration methods.

The parameters R can be structure-dependent or -independent. The structure-

independent parameters capture the correspondence between atlas and image space

without knowledge of the underlying brain anatomy. Based on the discussion of Sec-

tion 3.2, an affine interpolation model is too constrained to capture the characteristics

of individual brain structures. The alternative is a non-rigid framework, which often

has problems aligning structures with weakly visible boundaries. Instead, we favor an

approach that registers each anatomical structure based on the specific requirements
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of that structure.

Structure-dependent registration parameters treat the relationship between the

atlas and image space for each structure independently. Since most of the misalign-

ment is structure-independent, e.g the head of the subject is not aligned with the

atlas space, we expect small differences between structure-dependent parameters of

different structures. However, forcing the parameters to be similar across structures

is difficult to express in Equation (3.16) so that we need a framework that consists of

structure-dependent and -independent parameters.

Local DeformationImage SpaceShape Atlas

RG

RG Rar(     ,     ,  ).

Ra

Figure 3-12: The graph represents the hierarchical affine registration framework de-
veloped throughout this section. In this approach, the registration parameter RG

captures the global and Ra the structure specific alignment of the spatial prior to the
location of the structure in the image space.

We model dependency across structures with a hierarchical registration framework

R = (RG,RC) as shown in Figure 3-12. RG are the global registration parameters,

which describe the non-structure dependent deformations between atlas and image.

The structure dependent parameters RC , (R1, . . . ,RN) are defined in relation to

RG and capture the residual structure-specific deformations that are not adequately

explained by RG. In the remainder of this thesis, we refer to Ra, the ath entry of RC ,

as the registration parameters specific to structure a with a ∈ {1, . . . , N}.
The similarity between structure specific parameters is encoded in Equation (3.16)

through the prior probability P (R). Section 3.3.3 definesR explicitly and then model

P (R) with a simple Gaussian distribution. The distributions enforce tight bounds on
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RC and weak constraints on RG.

To further specify the model, we define the conditional probability P (Tx = ea|R).

While in Section 3.2, fa captures the spatial distribution of structure a in the image

space, fa is now defined in atlas space. Instead fa (r(RG,Ra, ·)) defines the spatial

distribution in the structure specific coordinate system of the patient. We can model

the conditional structure probability:

P (Tx = ea|R) , fa (r(RG,Ra, x))∑
a′ fa′ (r(RG,Ra′ , x))

, (3.18)

which is the conditional probability of the presence of an individual structure nor-

malized by the spatial prior probability of all structures. The normalization across

all structures is necessary as the coordinate system of each structure is character-

ized by the structure dependent registration parameters Ra. Unlike global affine

registration methods, this results in structure dependent coordinate systems that

are not aligned with each other. In other words, multiple voxels in the atlas space

can be mapped to one location in the image space so that the hierarchical mapping

(r(RG,R1, ·), . . . , r(RG,RN , ·)) does not define a homeomorphism.

Substituting Equation (3.18) into Equation (3.16) changes the maximum a poste-

riori probability estimation problem to

R′ ← arg maxR
∑

x

(∑
a
Wx(a) ·

(
log fa [r(RG,Ra, x)]

− log
∑

a′
fa′ [r(RG,Ra′ , x)]

))
+ log P (R)

= arg maxR
∑

x

(∑
a
Wx(a) · log fa [r(RG,Ra, x)]

)

− log
(∑

a
fa [r(RG,Ra, x)]

)
+ log P (R)

(3.19)

Finding a closed form solution to Equation (3.19) is generally difficult. Instead, we

express Equation (3.19) through a objective function Q(·) for which the maximum is

found in Section 3.3.3. We replace log fa(r(RG,Ra, x)) by log(fa(r(RG,Ra, x)) + ε)

with ε > 0, so that the estimation problem is defined for fa(r(RG,Ra, x)) = 0. If we
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define Q(·) as

Q(R) ,
∑

x

[∑
a
Wx(a) · log(fa [r(RG,Ra, x)] + ε)

− log
(∑

a′
fa′ [r(RG,Ra′ , x)] + ε

)]
+ log P (R)

(3.20)

then Equation (3.19), which represents the M-Step, changes to

R′ ← arg maxRQ(R). (3.21)

To get a better understanding of the objective function Q(·), let ya , r(RG,Ra, x)

be the coordinate of voxel x in the atlas space of structure a. If voxel x is clearly

assigned to structure a′ then Wx(a
′) = 1 and fa′(ya′) =

∑
a fa(ya) so that

∑
a
[Wx(a) log(fa(ya) + ε)]− log(fa′(ya′) + ε)

= log(fa′(ya′) + ε)− log(fa′(ya′) + ε) = 0.

In this case, the value of Q(·) is not influenced by x as the sum over all structures at

this voxel is zero. In other words, Q(·) is determined by all voxels that are not clearly

assigned to one structure.

Figure 3-13 shows a practical example of how the misalignment between atlas and

image space impacts the analysis of the EM approach. The intensity of the images

corresponds to the value of the underlying function with white indicating high and

black low values. In this example, we especially focus on the region around the

ventricles, whose location in the MR image in (a) is pointed out by the blue arrow

head and in the spatial atlas in (b) by the red arrow head. The misalignment between

(a) and (b) impacts the weightsW of the brain in (c) as it detects the ventricles twice

- once according to the location of the image and once according to the spatial prior.

The initial objective function Q(·) defined by the M-Step in (d) detects this ambiguity

as it measures the disagreement between spatial prior of the brain fa(·) in (b) and

the weightsWa(·) in (c). The objective function shows large disagreement in the area

around the blue arrow head as (b) assigns this region to the brain and (c) does not.
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(a) MR image (b) fa(·) (c) Wa(·) (d) Q(·)
Figure 3-13: We applied the EM approach to the MR image (a) and the misaligned
spatial atlas in (b). The result of the analysis are shown in (c), which is the weights
W of the E-Step, and (d), which is the initial objective function Q(·) of the M-Step.
The impact of the misalignment between atlas and image space is especially apparent
in the region of the ventricles, whose location are pointed out in the image space by
the blue arrow head and in the atlas space by the red arrow head. We refer to the
text for more detail.

In order to resolve this disagreement the EM approach aligns the atlas to the image

space as we will observe later in the example of Figure 3-15.

In summary, this section developed an EM approach based on the newly de-

fined registration parameters R. The E-Step calculates the weights W at voxel x of

Equation (3.15) based on the aligned spatial priors fa (r(R′G,R′a, ·)), intensity I, and

image inhomogeneities B′:

Wx(a) =
P (Ix|Tx(a) = 1,B′x)P (Tx(a) = 1|R′)

P (Ix|B′x,R′)
=

P (Ix|Tx(a) = 1,B′x) · P (Tx(a) = 1|R′)∑
a′P (Ix|Tx(a′) = 1,B′x) · P (Tx(a′) = 1|R′)

=
|Υa|−0.5 · e− 1

2
(Ix−Bx−µa)T ·Υ−1

a ·(Ix−Bx−µa) · fa (r(R′G,R′a, x))
∑

a′ |Υa′ |−0.5 · e− 1
2
(Ix−Bx−µa′ )

T ·Υ−1
a′ ·(Ix−Bx−µa′ ) · fa′ (r(R′G,R′a′ , x))

The M-Step updates the approximation of the inhomogeneities B′ and registration

parameters R′ based on the current weights W . As in Equation (3.5), the inhomo-

geneity B is approximated by the product between the simple low pass filter J and

the weighted residual R̃:

B′ ← J · R̃ = J
∑

a
Wx(a)Υ−1

a (Ix − µa)
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R′ is updated by the maximum of objective functions Q(·) as defined in Equation (3.21)

R′ ←arg maxRQ(R)

= arg maxR
∑

x

[∑
a
Wx(a) · log(fa [r(RG,Ra, x)] + ε)

− log
(∑

a
fa [r(RG,Ra, x)] + ε

)]
+ log P (R)

The solution to this update rule is approximated by a maximization algorithm that

we discuss in detail in the next section.

3.3.3 An Implementation of the Joint Registration and Seg-

mentation Model

This section describes an implementation of the previously derived EM approach.

We give an example for the interpolation function r(·, ·, ·), the corresponding reg-

istration parameters R, a probability density function P (R), and a maximization

algorithm to solve the maximum a posteriori probability estimation problem defined

in Equation (3.21).

The interpolation function r(·, ·, ·) of Equation (3.21) can represent a variety of

mapping approaches. For simplicity, we choose an restricted affine interpolation func-

tion so that the parameters for Rz = (
−→
tz

t,−→rz
t,−→sz

t)t with z ∈ {G, 1, . . . , N} define

displacement
−→
tz , rotation −→rz , and scaling −→sz . The mapping is defined by the function

r(·, ·, ·) : IR 9×9×3 → IR 3, (RG,Ra, x)→ ARG
· ARa · (xt, 1)t

where ARz is an affine transformation matrix based on the parameter setting Rz.

This framework makes no assumptions about the correspondence between the at-

las and the image space by uniformly distributing the global registration parameter

RG. As opposed toRG, the structure or class specific parametersRC , (R1, . . . ,RN)

describe the residual of structure specific deformations that are not well explained by

RG. In general, our model should penalize large deviations of RC from the expected

mean, which is approximated by the average structure-specific registration parame-
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Synthetic Image Atlas of GREY Atlas of WHITE

Figure 3-14: This is an synthetic example, where the structures of the foreground -
GRAY and WHITE - are of different scale in the image but not in the atlas space.
To secure statistical consistency within our affine warping framework, the atlas of the
background, which is black in the image, is implicitly defined by the foreground.

ters of the training data. We enforce this penalty by modeling the probability density

function of RC as a Gaussian distribution N(µRC
, ΥRC

) with structure dependent

mean µRC
and variance ΥRC

based on the mapping parameters of the training data.

We choose a Gaussian distribution as small variance ΥRC
discourages large deforma-

tions from the mean µRC
. In addition, Gaussian distributions simplify the calculations

in the M-Step as discussed in Section 2.3.

A problem with this modeling approach is shown in Figure 3-14. WHITE and

GRAY are defined by spatial distributions of equivalent size but their scale in the

image space differs. The black structure, the background (BG), is the opposite of

the foreground composed by WHITE and GRAY. The affine registration parameters

of BG are too constrained to cope with the enlarged WHITE and shrunken GRAY

object. To solve this problem and therefore increase the statistical consistency of

the model, the spatial distribution of BG is determined implicitly. If we define the

structure-specific coordinates in the atlas space as ya , ARG
· ARa · (xt, 1)t then the

spatial distribution of BG is

fBG(x) ,





1−∑
a 6=BGfa(ya) , if

∑
a 6=BGfa(ya) < 1

0 , otherwise

.

The impact of implicitly defined spatial probability on the robustness of our method

will be further investigated in Section 3.3.4, where we perform a experiment on the

88



MRI 1 Iteration 10 Iterations 30 Iterations 60 Iterations

Agree

Disagree

Figure 3-15: The first row shows a slice of an MR volume with black lines outlining
the thalamus and the caudate. The segmentations to the right are the segmentation
results of our approach after 1, 10, 30, and 60 iterations. The images in the row
below are the corresponding objective function Q(·). Red indicates large and blue
small disagreement measured by the objective function values. Initially, only the
ventricles and corticospinal fluid close to the neck are correctly outlined, which is also
indicated in bright red and yellow in the image of the objective function. In the final
iteration, the atlas is aligned to the image space so that disagreement is mostly due
to the smooth boundaries of the spatial priors.

synthetic images of Figure 3-14.

Based on the previous modeling assumptions, the objective function Q(·) of

Equation (3.20) is defined as

Q(R) ,
∑

x

(∑
a
Wx(a) · log

[
fa(ARG

· ARa · (xt, 1)t) + ε
]

− log
[∑

a
fa(ARG

· ARa · (xt, 1)t) + ε
])

− 1

2
(RC − µRC

)tΥ−1
RC

(RC − µRC
)

(3.22)

The example of Figure 3-15 illustrates the dependency between the accuracies of

both registration and segmentation. The first row shows a slice of a MR volume

with black lines outlining the thalamus and the caudate. The segmentations to the

right are the result of our algorithm after 1, 10, 30, and 60 iterations. To show the

strength of our model we initialized the approach with an unusual position of the
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atlas space. This also explains why the method needs 60 iterations instead of the

normal 20 iterations until convergence.

The second row shows objective function Q(·) corresponding to the segmentations

above. Red indicates high and blue low disagreement between the atlas space and

the weights of the M-Step. Initially, the area around the ventricles and corticospinal

fluid close to the neck are highlighted in red, as they are correctly segmented regions

that disagree with their location within the atlas space. As the method progresses,

the overall accuracy of the registration as well as segmentation increases. The dis-

agreement captured by the objective function in the final iteration is mostly caused

by the smooth boundaries of the spatial priors.

The remainder of this section focuses on how to determine a solution for the a

posteriori probability estimation problem defined by Q(·). First, we decouple the

search for RG and RC , as dependencies between these two parameter settings can

cause instability. We then estimate the solution to these problems with the help of

a maximization algorithm that finds the optimal solution without the derivative of

Q(·). Such methods include the Downhill Simplex algorithm and Powell’s method

[82], whose performance is tested with respect to the accuracy of our segmentation

approach in Section 3.3.4.

The Downhill Simplex method is initialized by a simplex, which is a geometrical

figure consisting of N + 1 points or vertices in N dimensions. The edges of the figure

connect all vertices directly with each other. At each iteration, the Downhill Simplex

method moves the simplex towards the extremum of the function by re-scaling the

simplex or reflecting the simplex along one of its edges. As the method gets easily

stuck in local extrema, the algorithm is often repeatedly applied to the same problem

by initializing the algorithm with slightly varying simplices to the best known solution.

The method is generally easy to implement but computationally not efficient.

An often faster method is Powell’s algorithm, which turns the N-dimensional opti-

mization problem into N separate line maximizations. At each iteration, the method

first determines the line maxima along each of the N orthogonal directions from the

current maximum. The new maximum is then defined by the combination of these N
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line maxima. Like the Downhill Simplex method, the algorithm is easy to use. We

complete this section with the pseudo code below, which describes the integration of

Powell’s method into our approach.

Algorithm 2: Segmentation and Registration()

repeat

E-Step: Update soft assignment of anatomical structures

Wx(a)← 1
Z
P (Ix|Tx(a) = 1,B′x) · fa (r(R′G,R′a, x))

with R′a being the structure specific entry of a in vector R′C
M-Step: Update parameter space

B′ ← J ·∑aWx(a)Υ−1
a (Ix − µa)

R′G ← Result of Powell’s method with Q((·,R′C))

R′C ← Result of Powell’s method with Q((R′G, ·))
until B′ and (R′G,R′C) converge

define labelmap: Tx ← arg maxaWx(a)

3.3.4 Validation

This section evaluates the previously derived approach in two steps. The first experi-

ment applies variations of the approach discussed in Section 3.3.3 to synthetic images.

The second experiment uses a 22 brain MRI set to evaluate different mapping strate-

gies of the atlas to the image space within an EM segmentation framework.

Experiment on Synthetic Images

To illustrate the reliability of our approach, we apply variations of the implemen-

tation discussed in Section 3.3.3 to synthetic images similar to Figure 3-14. The

images are composed of three structures: WHITE, GRAY, and BLACK. Unlike in
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Scale 0.5 Scale 1.0 Scale 1.5 Scale 2.4

Figure 3-16: The synthetic images are examples of our experiment, which tests the
accuracy of various implementations from Section 3.3.3. In this experiment, only the
scale of object WHITE changes. The atlas space of Figure 3-14 remains constant and
corresponds to the image with scale 1.0.

Figure 3-14, the structures WHITE and GRAY have the same intensity pattern in

the synthetic images (see Figure 3-16.) All structure specific parameters stay fixed

with the exception of WHITE in the image space.

The accuracy of the various implementations is tested with respect to the scaling

of structure WHITE in the synthetic image. The structure is scaled within a range of

0.1 to 2.5 of its original size for which the atlas space in Figure 3-14 was constructed.

For each test image, the automatically generated segmentations are compared to the

ground truth by using the volume overlap measure DICE of Section 1.5.

The first experiment shown in Figure 3-17 (a) compares the reliability of our ap-

proach using Powell to one using the Downhill Simplex method. Powell’s method

outperforms the Downhill Simplex method, when comparing their robustness with

respect to the scaling of structure WHITE. The Downhill Simplex method fails on

images where WHITE and the non-aligned atlas (Figure 3-14) do not overlap. Pow-

ell’s method is unreliable for scaling parameters greater than 2.4 for which WHITE

almost disappears from the synthetic image (see Figure 3-16.)

The experiment in Figure 3-17 (b) compares the robustness of global- to structure-

specific registration parameters. As expected, structure specific registration parame-

ters are superior because they can better capture the scale differences between WHITE

and GRAY.

The graph in Figure 3-17 (c) shows the performance of an implicitly- and an

explicitly-defined spatial distribution of BLACK structure. The superior implicit
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spatial distribution is the inverse of the spatial distribution of the aligned foreground,

which is defined by WHITE and GRAY. As mentioned, the explicit spatial distribu-

tion increases the risk of statistical inconsistency within our model. This also compli-

cates the search for the solution of the maximum a posteriori probability estimation

problem of Equation (3.21), which greatly reduces the reliability of our implementa-

tion.
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(a) Simplex vs. Powell (b) Global vs. Structure (c) Explicit vs. Implicit

Figure 3-17: The graphs show the robustness of different implementations proposed in
Section 3.3.3. The robustness of the method is determined by the quality of the auto-
matic generated result with respect to the scaling of structure WHITE (Figure 3-16.)
The graph in (a) shows that Powell’s method is more robust than Simplex approach
for our registration problem. The graph in (b) indicates that our approach should use
structure specific registration parameters as it is more robust than just using global
registration parameters. (c) displays the impact of the explicitly defined spatial back-
ground prior on the robustness of our approach. In general, using an implicitly defined
spatial prior for the background increases the robustness of our method.

In summary, the most robust approach uses a hierarchical registration framework,

an implicitly defined spatial background, and determines the solution to the maximum

a posteriori probability estimation problem using Powell’s method.

Comparative Experiment on 22 Test Cases

This section repeats the experiment of Section 3.2.2 but compares the accuracy of the

pipeline approaches to the novel method of this section. The two pipeline approaches,

EM-Affine and EM-NonRigid of Section 3.2, first map the atlas to the subject to

initialize the EM approach. In contrast, our new algorithm, EM-Simultaneous-Affine,

solves the registration and segmentation problem simultaneously.
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Manual / SPGR EM-Affine EM-NonRigid EM-Simultaneous

Figure 3-18: The images show the segmentation results of four different methods on
the thalamus (red /purple) and the caudate (green/blue.) We refer to the text for
further detail.

The three methods segment 22 test cases into the three brain tissue classes and

further parcellate gray matter into the subcortical structures of the thalamus and the

caudate. In order to determine the accuracy of the automatic segmentations with

respect to the two subcortical structures we compare them to manual segmentations,

which we view as ground truth. The overlap between automatic and manual seg-

mentation is measured using volume overlap measure DICE of Section 1.5. Using

DICE we can compare the accuracy of the automatic methods but we cannot make

any conclusion about the accuracy of the automatic methods with respect to manual

segmentations. We do so later in Chapter 5.

This experiment focuses on the thalamus and caudate as they are challenging

structures for registration and segmentation. Purely intensity based segmentation

methods, such as EM without spatial priors, cannot outline these structures because

part of the boundary is invisible on MRI (Figure 3-18.) Consequently, EM relies

heavily on spatial priors making it sensitive towards any misalignment between atlas

and image space. In addition, the registration of the spatial priors to the subcortical

area is challenging. As we observed in Section 3.2.2, the intensity based non-rigid reg-

istration of EM-NonRigid has difficulties mapping the priors to the thalamus because

of the structure’s similar intensity pattern to the neighboring white matter. The
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caudate, on the other hand, is defined by two “horns” (Figure 3-18,) whose subject

specific bending is difficult to capture with an affine registration model such as used

by EM-Affine and EM-Simultaneous-Affine. In conclusion, automatic segmentation

and registration methods have difficulties in correctly identifying both anatomical

structures so that this experiment highlights the strength and weaknesses of each

implementation.
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Figure 3-19: The graph shows the average DICE score over 22 cases for the pipeline
based approaches EM-Affine and EM-NonRigid (EM-NRigid), and the new method
EM-Simultaneous-Affine (EM-Sim-Af), which simultaneously performs registration
and segmentation. Out of the three methods, EM-Simultaneous-Affine is the only
approach that performs well for the thalamus and the caudate.

The results of the experiment are summarized in the Figure 3-19. The graph

shows the mean and standard error of the DICE measure for the three algorithms

in the 22 cases. For the thalamus, EM-NonRigid (EM-NRigid) performed worst

(82.4±1.2% - average DICE score ± standard error) because the intensity based reg-

istration method is too unreliable for structures with smooth boundaries. As men-

tioned, the method often overestimates white matter and underestimated the thala-

mus in this region, which can be also observed by the segmentation in Figure 3-18

(EM-NonRigid). EM-Affine performs much better than EM-NonRigid (87.3 ±1.2%)

but the method is sensitive towards initial misalignments. In Figure 3-18 (EM-

Affine), this sensitivity causes a vertical offset in the segmentation generated by
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EM-Affine. For the thalamus, both methods are outperformed by EM-Simultaneous-

Affine (EM-Simultaneous-Affine: 88.7 ±0.4%). Our new approach performed much

better than the other two methods on cases where the deformation between atlas

and image space was difficult. Unlike the other two methods it can overcome initial

misalignment issues and therefore increase the accuracy of the segmentation.

The observations made with respect to the thalamus cannot be generalized to all

anatomical structures in the brain. For example, the caudate is more accurately seg-

mented by EM-NonRigid (86.0 ±1.0%) than EM-Simultaneous-Affine (85.0 ±0.7%.)

Unlike the thalamus, the caudate has a different intensity profile than white mat-

ter. Only the relatively small portion of the boundary neighboring the putamen,

another subcortical structure, is invisible on MRI. Thus, the intensity based registra-

tion method of EM-NonRigid correctly registers the spatial priors to this region and

allows the EM segmenter to perform well.

As mentioned, the affine registration methods of EM-Affine (83.2 ±1.7%) and EM-

Simultaneous-Affine are too constrained to capture the bending of the horn-shaped

caudate. This causes both methods to misclassify voxels especially at the tip of the

structure, which is also visible in the 3D models in Figure 3-18 and explains the lower

score. However, EM-Simultaneous-Affine performs much better than EM-Affine.

We believe that EM-Simultaneous-Affine outperforms EM-Affine on both anatom-

ical structures because modeling the dependency between segmentation and registra-

tion further constrains our approach. The constraints reduce the space of possible

solutions, which simplifies the search for the optimal solution. In addition, the spatial

priors of the structures are directly mapped to the segmentation model. In contrast,

EM-Affine aligns an MR image in the atlas space to the image of the patient. It uses

the resulting deformation map to align the spatial priors, which inherently increases

the risk of systematic biases in the model.

We end the discussion by further investigating the previously made observation

with respect to the ventricles. As pointed out in Section 3.3.2, the ventricles are very

important in guiding the joint registration and segmentation method. In order to

validate this statement, we repeat the previous experiment but ignore the ventricles
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in the registration model. This change in our model reduces the average DICE score

for the two structures by 5.2% and the standard error increases by factor of 2.5.

We therefore conclude that the accuracy of our new approach greatly depends on

anatomical structures that are easily identifiable in the segmentation problem.

In summary, this section developed a statistical framework combining atlas regis-

tration, segmentation, and inhomogeneity estimation of MR images. We implemented

this framework using a hierarchical affine mapping approach for explicit anatomical

structures in combination with an implicit spatial distribution for the background.

Our approach was validated by automatically segmenting 22 sets of MR images into

the thalamus and caudate. We then compared our results to other EM methods as

well as manual segmentations. For the caudate our novel approach is not as reliable

as EM-NonRigid as the underlying affine registration model cannot properly cap-

ture the bending of the horns of the caudate. However, our approach was the only

automatic method performing well on both anatomical structures. It achieved the

lowest standard error, implying a higher predictive power than the other two meth-

ods. In addition, the method outperforms the pipeline approaches for the thalamus.

The improvement is primarily due to the joint registration-segmentation estimation

problem.

3.4 Conclusion

In summary, spatial priors increase the capability of our EM segmentation method.

On the downside, they also increase the risk of systematic biases in our framework.

This chapter showed the importance of carefully analyzing the influence of spatial pri-

ors in automatic segmentation methods. It discussed two very different philosophies

for the integration of a spatial prior into the segmentation process of MR images.

In Section 3.2, we presented an approach that coupled a non-rigid registration

method with an EM approach by first aligning the spatial prior to the MR images

and then segmenting the MR images into structures of interest. While the approach

enables the segmentation tool developed in Section 2.3.3 to segment cortical and
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subcortical structures, it is generally too unreliable for neuroscience studies.

The second EM approach developed in Section 3.3 directly couples segmentation

and registration. The approach achieves accurate results on the thalamus and the

caudate unlike the previously mentioned EM approach. The improved accuracy is

caused by joining registration and segmentation into a unified Bayesian framework.
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Chapter 4

Modeling Shape Constraints

The segmentation methods of Chapter 3 define anatomical structures by their inten-

sity patterns and spatial distributions. As mentioned, spatial priors do not properly

capture the anatomical variability of many structures in the brain. For example,

Figure 4-1 shows the average segmentation error of EM-Affine in the experiment of

Section 3.3.4. The average error indicates a bias by EM-Affine to overestimate the

caudate’s superior (in red) and underestimate its inferior surface (in blue.) This

bias is due to the subject specific spatial prior, which does not properly capture the

bending of the horns.

Another drawback of spatial priors of this sort is their ”soft” boundaries repre-

senting the large spatial variability of a structure within a population (Figure 3-3.)

Spatial priors are mostly needed when the boundary between two structures is not

clearly defined as in the example of the thalamus in Figure 3-1. In this scenario,

neither the slowly varying spatial prior nor the intensity pattern clearly define the

boundary, which reduces the accuracy of the EM approach.

Deformable models offer an alternative type of prior information as they capture

the shape and permissible modes of variation within a population. In contrast to

simple space-conditional label probabilities, deformable models capture the structure

specific boundary conditions such as the smoothness of its boundary or the length of

the boundary in relation to others.

In this chapter, we improve the discriminatory power of our method by adding a
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Figure 4-1: This image shows the average segmentation error of EM-Affine segmenting
the caudate in 22 cases. The blur in the image represents the spatial variability of the
error function. The average error indicates a general overestimation of the caudate’s
outer (in red) and underestimation (blue) of its inner surface by EM-Affine. This bias
is due to the subject specific spatial prior.

deformable model to our segmentation approach. Inspired by the work of Tsai et al.

[100], the boundary of the entire caudate and thalamus will be guided by the clearly

defined border of the neighboring ventricles. This integration of shape constraints

into the EM approach is divided into several steps. In Section 4.1, we describe a

shape atlases based on the principal component analysis on signed distance maps. In

Section 4.2, we discuss the integration of the how the atlas into the EM approach

of Section 3.2. Motivated by the success of the joint registration and segmentation

approach described in Section 3.3, we derive an EM method in Section 4.3, which

simultaneously registers the shape atlas to the patient MR images, estimates the

image inhomogeneities, and segments the MR images into the anatomical structures of

interest. Each approach is validated by comparing it to other automatic segmentation

methods as well as to manual segmentations. Finally, in Section 4.4 we review the

results of this chapter.
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Figure 4-2: The signed distance map in (b) corresponds to the labelmap in (a). The
value of each voxel in (b) is determined by distance of the voxel to the boundary
between black and white in (a). To distinguish voxels inside the white object from
those outside, the value in the distance map of voxels outside the object is negated.

4.1 Shape Atlas

This section describes an approach to generate a shape atlas with respect to the

representation of signed distance maps. This atlas captures the shape variability

over the training data, which consists of manual segmentations. Section 4.1.1 briefly

discusses the representation of signed distance maps before Section 4.1.2 details the

construction of the shape atlas.

4.1.1 Shape Representations

It is challenging to characterize the shape differences and similarities for a specific

anatomical structure over an entire population. One can choose from a variety of

shape descriptors, such as skeleton based representations [79, 37] or distance trans-

forms [38]. The proper choice greatly depends on the application as each method

differs in terms of degree of manual interaction, mathematical properties, and sen-

sitivity to noise. A detailed review of the current developments within the field of

shape descriptors is given by Bouix [8]. This section will briefly explain the concepts

behind distance transforms, as this is our choice of shape representation for the EM

approaches developed later in this chapter.

EM segmenters, like the one presented in Chapter 3, belong to the class of voxel-
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based classification methods, which consider the anatomical structure associated with

each voxel within a Bayesian framework. In order to incorporate shape constraints

into this Bayesian framework, we favor shape representations that operate in a similar

manner to our EM approach by characterizing each voxel in the image space rather

than by using dynamic meshes. One such representation is that of signed distance

maps [20] (see Figure 4-2,) which we refer to as distance maps in the remainder of

this thesis. The value of each voxel in a distance map is determined by its distance to

an object’s boundary and its relative location with respect to this object. If a voxel

is inside the object, its value in the distance map is the distance to the closest voxel

along the boundary of the object. However, if the voxel is outside the object its value

is the negated minimum distance to the boundary.

Based on this definition, signed distance maps are composed of three types of

voxels. The first type are voxels with value zero. They represent the boundary of

the object. Voxels with positive values compose the second type, which embody the

inside of the object. The third type are voxels with negative values that define the

outside of the object. In other words, distance transforms represent the boundary of

an object as a zero-level set function.

With respect to our segmentation algorithm this representation has the advantage

of not requiring manual interaction in order to represent the shape of anatomical struc-

tures. In addition, we will show in Section 4.2 that signed distance maps implicitly

define spatial probabilities. The integration of the shape representation in an EM

approach therefore closely relates to the experience of the previous chapter where we

extended our Bayesian framework with spatial priors.

4.1.2 Principal Component Analysis on Distance Maps

This section discusses a method that transforms segmentations of brain structures

into a shape atlas based on signed distance maps [100]. An important task in this

process is finding a training set large enough to represent the shape variations of an

anatomical structure across a population. As this is a typical problem in medical

imaging, we make the simplifying assumption that the variations within the shapes
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of brain structures are Gaussian in nature. With this assumption, we can generate

the shape atlas using Principal Component Analysis (PCA) [16].

PCA is based on the assumption that its input data are samples from a Gaussian

distribution, whose variations are defined by a small subspace. The method defines

these modes of variation by transforming the training data into a lower dimensional

eigenvector space. The significance of an eigenvector capturing common variations

within the training data is defined by its corresponding eigenvalue. The sum of

eigenvalues defines the total energy of the PCA model and the set of eigenvalues

composes the diagonal covariance matrix of a Gaussian distribution that defines the

probability of a shape within this space.

The resulting shape atlas is defined by the mean shape, the eigenvectors, and the

eigenvalues. The specific shape of a subject is represented by the atlas as the weighted

sum of the eigenvectors to the mean shape. We will describe this representation in

detail later in this section.

EigenvectorMean

PCA

Labelmap

Distancemap

Figure 4-3: The graph shows the relation between the labelmaps in the training data
sets and the resulting mean and eigenvector of the PCA approach. In general, red
indicates positive and blue negative values. To determine the shape variations across
the training data, the labelmaps are first converted into the signed distance maps,
the shape representation of choice for our EM approach. The signed distance maps
are then the input of the PCA, which determines the mean and the eigenvector. See
the text for further detail.
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Figure 4-3 shows an example of PCA applied to synthetic images. The training

data consists of three images composed of differently sized rectangles. The corre-

sponding distance maps are input to the PCA approach in order to determine the

major shape variations across the training data. In the images of Figure 4-3, red

indicates positive and blue negative values. Resulting from the PCA approach are

the mean distance map and an eigenvector. As expected, the eigenvector captures

the difference in size between the three different training images, as it only contains

positive values.

In the remainder of this section, we apply the previously described concept to the

manual segmentations of anatomical structures.

Preprocessing Training Data

Before applying PCA, we preprocess the training data, which consists of manual

segmentations of the structures of interest. We exclude pose issues from the analysis

by registering the data set to one central pose with the affine registration method

developed by Warfield [107]. We performed this kind of alignment previously in

Section 3.1, when we generated spatial priors from the segmentations. Next, we

convert the labelmap of each data set i = 1, . . . , m into a distance map, such as in

the synthetic example of Figure 4-3. D(i)
a defines the distance map of structure a for

test case i. Each entry in D(i)
a captures the distance of a voxel to the boundary (see

Figure 4-2.)

The preprocessing of the training data concludes by calculating the mean shape

Da and subtracting it from each training set. This step is necessary as PCA assumes

that the training data set is a sample from a zero-mean Gaussian distribution. For

non-linear spaces, like the one defined by distance maps, the mean is defined with

respect to a distance function d(·, ·) as

Da , arg min
D̂

∑
i

d
(
D(i)

a , D̂
)

. (4.1)

Da corresponds to the shape with the minimum amount of distance to all training
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subjects. However, finding the solution to Equation (4.1) is a problem, as current

research in medical imaging shows [49, 70].

An alternative is the approximation of the mean Da of an anatomical structure a

by the arithmetic mean

Da , 1

n

∑
i

D(i)
a (4.2)

and then project the approximated mean to its closest member on the manifold of

distance maps. However, this approach would corrupt the PCA analysis as the first

eigenmode would represent the difference between the mean of Equation (4.2) and

its projection on the manifold. Instead, we simply assume that distance maps define

a linear space and the mean is given by Equation (4.2); a reasonable assumption for

small shape deformations. We complete the preprocessing of the training data by

computing training example i, represented by

D̃(i)
a , D(i)

a −Da,

which is the mean-corrected distance map of training example i = 1, . . . , m. In the

remainder of this thesis D̃(i)
a will be represented in the form of a vector so that we can

apply it to the PCA method. Each entry in the vector represents the mean corrected

distance map value of a specific voxel.

Definition of the Atlas

Similar to Tsai et al. [98] we apply PCA to vectors of distance maps across structures

D̃(i) , (D̃(i)t

1 , . . . , D̃(i)t

N )t with i = 1, . . . , m. This analysis captures the covariance of

structures, which is defined by the matrix of eigenvectors U = (U (1), . . . , U (m−1)) and

eigenvalues Λ. To reduce computational cost, U and Λ are only defined by the first

K eigenvectors and eigenvalues, where K is selected so as to represent 99% of the

eigenvalues’ energy.

Figure 4-4 shows the outcome of PCA when applied to the ventricles, the cau-

date, and the thalamus. The images in the figure are different perspectives of the

first eigenmode with red indicating an expansion and blue a compression along the

105



Front Side Back

Figure 4-4: The images show different perspectives of the first eigenmode of the joint
PCA model of the caudate, thalamus, and ventricles. Red indicates an expansion and
blue a compression along the boundary of each structure relative to the mean shape.

boundary of the mean. For this example, we used 22 mean corrected distance map

vectors D̃(i). Each vector D̃(i) consists of three distance maps representing the ven-

tricles, the caudate, and the thalamus of the specific test case i. As mentioned, PCA

analyzes the combined shape variations across the three structures so that resulting

eigenvectors U (1), . . . , U (5) describe the covariance of the three structures within the

training data set. We choose to define the shape atlas by the first five of the 21

eigenvectors as they represent most of the variability within the training data.

Later in Section 4.2, we develop an EM approach that uses this structure-related

dependency to further constrain the space of possible solutions. In the case of the

three anatomical structures, the EM approach is guided by the ventricles, an easily

identifiable anatomical structure, in order to automatically segment the thalamus and

caudate, two structures with weakly visible boundaries.

Now that we have defined a shape atlas, we can describe the structure specific

shapes by the atlas-related expansion coefficient or shape parameter S instead of the

rather large shape vector Da. The relationship between S and the structure specific

distance map Da is defined as

Da ≈ Da + Ua · S (4.3)

where Ua are the entries in eigenvector U that are associated with the anatomical

structure a. Note, that the single shape vector S with K components represents the
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shape of all structures by defining the weighted sum of the eigenvectors to the mean

shape.

With respect to the example of Figure 4-4, S represents the shape across all three

anatomical structures. To relate the parameter S to the specific shape of one of the

three structures we extract the entries from the five eigenvectors that represent the

anatomical structure. We then apply Equation (4.3) to this shape model in order to

generate the structure specific distance map.

As mentioned in the introduction of this section, an additional feature of PCA is

the association of the following prior probability to the shape parameter S:

P (S) =
1√

(2π)K |Λ̂|
exp

(
−1

2
StΛ̂−1S

)
(4.4)

where Λ̂ is a diagonal matrix composed by the first K eigenvalues Λ of the PCA

analysis. The prior P (S) captures the probability of the shape of all structures and

is grounded in the assumption that our training data are samples from a Gaussian

distribution.

In summary, this section discussed a shape atlas based on distance maps. We

generated the atlas using the PCA method to address the lack of training data. In

the remaining two sections, we integrate this atlas into the EM approach of Section

2.3.3 and Section 3.3.

4.2 Coupling Shape Deformation with Brain MRI

Segmentation

It is challenging to define an EM model that properly represents the relationship

between the shape parameters S, the labelmap T , the image inhomogeneities B, and

the MR images I. Specifically the interaction between the shape parameters and the

labelmap is complicated, as the shape parameters S capture global characteristics of

structures and the hidden labelmap T individually defines the value of each voxel.
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However, we faced similar problems in Section 3.3 when we extended the EM model

with the registration parameters. As a result, we closely relate the integration process

of the shape constraints to the derivation of Section 3.3.1. As in Section 3.3.1, we

will first develop a Bayesian framework and then determine an EM model, which

calculates a solution within this framework.

A variety of active contour methods have advocated the use of PCA models on

signed distance maps for the accurate segmentation anatomical structures. For exam-

ple in [100, 60], active contour methods represent the shape by a level set function in

an higher dimensional space. Yang et al. [115] further improved this line of research

by developing a level set approach not restricted to the low-dimensional PCA space.

Inspired by the work of Yang, the main contribution of this section is that while

we make use of an implicit low-dimensional PCA-of-distance-maps representation of

shape variations, we additionally derive from that an explicit space-conditioned prob-

ability model by way of the logistic function. Unlike the previous mentioned level set

approaches, the space-conditioned probability model is combined with image-coupling

and other terms in a unified Bayesian framework. This Bayesian framework accurately

identifies shapes not captured by the prior model.

In contrast to other EM approaches [112, 51, 103, 80], our method explicitly models

the boundary via the shape model. Consequently, we achieve smooth segmentations

without underestimating fine structures; a common problem in EM approaches [80].

To integrate the shape constraints into our method, we first derive the EM ap-

proach using the Kullback-Leibler divergence. Note, that Section 3.3.1 already dis-

cussed a derivation we could apply to the shape parameters S. However, this section

presents an alternative viewpoint of the EM algorithm. We then define in Section

4.2.2 the relationship between the hidden data T and the shape space S. The last

Section validates the approach by comparing the automatic generated segmentations

of the caudate and thalamus to the ones created by human experts.
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4.2.1 Unified Framework for Image Inhomogeneity Correc-

tion, Shape Modeling, and Segmentation

We now incorporate a shape atlas based on signed distance maps into the EM ap-

proach of Section 2.3.3. This EM approach determines a solution within the complete

data model characterized by the observed MR image data I, the hidden data T repre-

senting the labelmap, and the parameter space defined by the image inhomogeneities

B. The shape constraints S can be added to the complete model as an extension of

the hidden data or the parameter space. Similarly to the image inhomogeneities B,

S can be extracted from the hidden data T and vice versa. This dependency would

define a challenging estimation problem if the corresponding hidden data is composed

by the labelmap T and the shape S. This leads us to the conclusion that the shape

S should be added to the parameter space.

Without additional assumptions, it is a complex problem to extract the inho-

mogeneities B and the shape parameters S from the MR images I. However, this

problem is greatly simplified when formulated as an incomplete data problem and

a solution is iteratively determined via EM. Within this framework, we define the

following maximum a posteriori probability estimation problem:

(Ŝ, B̂) = arg max
S,B

log P (S,B|I). (4.5)

Similar to Equation (3.6), this results in a system of equations for which there is

no analytical solution. To simplify the problem, we combine the observed image

intensities I with the unknown true segmentation T . If T is known, B and S are more

easily estimated from I. Using the Kullback-Leibler divergence D[·‖·] (or relative

entropy) [56] we improve the estimates (S ′,B′) of (Ŝ, B̂) of Equation (4.5) though

(B′′,S ′′) = arg max
S,B

D[P (T |I,S,B)‖P (T |I,S ′,B′)] + log P (S,B|I). (4.6)

This update rule guarantees that the new estimates (B′′,S ′′) are equal or better than
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the old (S ′,B′) due to the properties of the Kullback-Leibler divergence

log P (S ′′,B′′|I)
1

= −D[P (T |I,S ′′,B′′)‖P (T |I,S ′′,B′′)] + log P (S ′′,B′′|I)
2

≥ −D[P (T |I,S ′′,B′′)‖P (T |I,S ′,B′)] + log P (S ′′,B′′|I)
3

≥ −D[P (T |I,S ′,B′)‖P (T |I,S ′,B′)] + log P (S ′,B′|I)
4

= log P (S ′,B′|I).

To see how the above derivation relates to an instance of the EM algorithm we

substitute the divergence with its definition of the expected value

D[P (Y )‖P (Z)] , EZ

(
log P (Y )

P (Z)

)
and apply Bayes’ rule, so that Equation (4.6) changes

to

(S ′′,B′′) = arg max
S,B

ET |I,S′,B′
(

log
P (T |I,S,B)

P (T |I,S ′,B′)
)

+ log P (S,B|I)

= arg max
S,B

ET |I,S′,B′
(

log
P (T ,S,B|I)
P (T |I,S ′,B′)

)
,

(4.7)

which is the M-Step of an EM approach as discussed in Section 3.3.1.

Even though finding the solution to the maximum a posteriori probability esti-

mation problem of Equation (4.7) is simpler than to Equation (4.6), we still need to

simultaneously update the shape parameters S and the image inhomogeneities B. To

split Equation (4.7) into two separate maximum a posteriori probability estimation

problems, we return to the derivations of Section 3.3.1 as Equation (3.11) is equiva-

lent to Equation (4.7) when replacing the registration parameter R with the shape

parameter S. Based on Equation (3.12), Equation (4.7) is equivalent to

(S ′,B′)← arg maxB,SET |I,S′,B′ (log P (I|T ,S,B)+log P (S|T ,B)+log P (B|T )) (4.8)

1The Kullback-Leibler divergence is zero for two equivalent distributions: D[P (y)‖P (y)] = 0
2The Kullback-Leibler divergence is non-negative for any two distributions
3(S ′′,B′′) maximizes Equation (4.6)
4The Kullback-Leibler divergence is zero for two equivalent distributions: D[P (y)‖P (y)] = 0

110



Similar to Section 3.3.1, the optimization procedure decomposes nicely as a con-

sequence of the following independence assumptions: First, we assume independence

of I with respect to S conditioned on T and B because knowing I and B is enough

to produce T . Next, we assume independence of S with respect to B conditioned on

T , as the image inhomogeneities are caused by the radio frequency coil of the scan-

ner and the shape of a structure is defined by the subject itself. Finally, we assume

independence of B with respect to T , and T with respect to the voxel x. As a result

Equation (4.8) simplifies to

(S ′,B′)← arg max
S,B

∑
x

ETx|I,S′,B′ [log P (I|Tx,B) + log P (S|Tx)] + log P (B)

As the previous equation is equivalent to Equation (3.14) the EM approach is

defined according to Section 3.3.1 by:

- E-Step calculates the weights W :

Wx(a) , ETx|I,S′,B′(Tx(a)) =
P (Ix|Tx(a) = 1,B′x) · P (Tx(a) = 1|S ′)

P (Ix|B′x,S ′)
(4.9)

- M-Step updates the approximations of (B′,S) by finding the solution to the

following two maximum estimation problems

S ′ ←arg maxS
∑

x

∑
a
Wx(a) · log P (Tx = ea|S) + log P (S) (4.10)

B′ ←arg maxB
∑

x

∑
a
Wx(a) log P (I|Tx = ea,Bx) + log P (B) (4.11)

Equation (4.11) defines the approximation of the image inhomogeneities B′ based

on the current definition of the weights W . The solution to this problem was derived

in Section 2.3.3. Equation (4.10) defines the approximation of the shape parameters

S, which strongly depends on the modeling assumptions of the relationship between

the labelmap T and the shape parameters S expressed by the conditional probability

P (Tx = ea|S). The next section will define a distribution for P (Tx = ea|S) and

approximate the solution to Equation (4.10).
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4.2.2 Estimating the Shape

This section defines the distribution of the conditional labelmap probability

P (Tx = ea|S) as a logistic function on distance maps. The logistic function is fa-

vorable for our EM approach as it provides an implicit representation of the shape

and an explicit space conditioned probability model. In addition, the resulting model

captures a broader class of shapes than those methods that are restricted to the PCA

model.

To determine the solution to Equation (4.10) we first define the relationship of

the unknown true segmentation T and the shape parameter S captured by the con-

ditional probability P (Tx = ea|S). The task is not straightforward because unlike

active contour methods such as [100, 60, 115], we also model the hidden labelmap T
and the image inhomogeneities B explicitly. The shape parameters S capture global

characteristics of structures, while T and B characterize local properties. In addi-

tion, the relationship between S and T is generally too complicated for finding a

closed form solution to Equation (4.10). We model the relationship between S and

T by a non-Gaussian distribution, for which a solution to Equation (4.10) can be

approximated.

In our model, this relationship is captured in the unknown labelmap probability

P (Tx = ea|S) conditioned on the shape parameter S (which corresponds to a signed

distance map.) Since the random variable Tx is discrete, we can further simplify the

definition of the conditional probability in terms of a generic shape function A(·, ·) to

P (Tx = ea|S) ≡ A(a,DS,a(x))∑
a′ A(a,DS′,a(x))

Given the motivation above, a natural choice for this formulation is the logistic func-

tion

A(a, v) ≡ 1

1 + e−cav
,

which maps the distance map to the range [0,1]. A(a,DS,a(·)) depends on ca, which

captures the certainty of the method with respect to the shape model. As shown
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(a) Segmentation (b) Distance Map (c) ca < 1 (d) ca > 1

Figure 4-5: Image (a) is the segmentation of a circle whose distance map is shown in
(b). Based on the distance map, two different logistic functions A(a, ·) are plotted in
(c) and (d). The logistic function of (c) is defined by a large slope (ca < 1) and the
plot of (d) represents a logistic function with a steep one slope (ca > 1.)

in the example of Figure 4-5, uncertainty about the shape model is represented by

relatively small values of ca. This results in a wide slope of the spatial distribution,

which allows greater mobility of the boundary. Large ca defines spatial priors with

steep slopes, which tend to fixate the boundary of a structure. Currently, ca is set

manually but we would ultimately like to include ca into the parameter space so that

EM approach determines the value.

The probability of the labelmap conditioned on the shape is defined as

P (Tx = ea|S) ≡ A(a,DS,a(x)))∑
a′ A(a′,DS,a′(x))

=

1

1+e
−caDS,a(x)∑

a′
1

1+e
−ca′DS,a′ (x)

. (4.12)

Equation (4.12) models the relationship between the labelmap T , which is defined on

the lattice of the image space, and the shape parameters S, which are defined within

the space spanned by the Eigenvector of the PCA analysis. In other words, the

probability defines the relationship of an anatomical structure a at a voxel location

x with respect to the global parameter S capturing the shape constraints of the

boundaries across structures.

To integrate this shape model into our EM approach, we substitute the conditional

probability of the unknown labelmap T with respect to the shape parameters S
of Equation (4.12) in the maximum a posteriori probability estimation problem of
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Equation (4.10)

S ′ ← arg max
S

∑
x

∑
a
Wx(a) · log P (Tx = ea|S) + log P (S)

= arg max
S

∑
x

[∑
a
Wx(a) · log (Aa(DS,a(x)))− log

(∑
a′
Aa′(DS,a′(x))

)]

− 1

2
StΛ̂−1S

= arg min
S

∑
x

[∑
a
Wx(a) · log

(
1− e−caDS,a(x)

)
+ log

(∑
a′

1

1− e−ca′DS,a′ (x)

)]

+
1

2
StΛ̂−1S

According to Section 4.2.1 the EM approach is defined as

E-Step Calculates the weights W :

Wx(a) =Wx(a) =

1√
|Υa|

e−
1
2
(Ix−B′x−µa)tΥ−1

a (Ix−B′x−µa) 1

1−e
−caDS′,a(x)

∑
a′

1√
|Υa′ |

e
− 1

2
(Ix−B′x−µa′ )

tΥ−1
a′ (Ix−B′x−µa′ )

1

1−e
−ca′DS′,a′ (x)

where (µa, Ψa) define the Gaussian intensity distribution of structure a.

M-Step Updates the parameters (S ′,B′) based on the weights W .

The inhomogeneity B is approximated by applying the simple low pass filter J ,

represented by a large matrix, to the weighted residual (see Section 2.3.3):

B′ ← J ·
∑

a
Wx(a)Υ−1

a (Ix − µa)

The shape parameters S ′ are updated by

S ′ ← arg min
S

∑
x

[∑
a
Wx(a) · log

(
1− e−ca′DS,x(a′)

)
+ log

(∑
a′

1

1− e−ca′DS,x(a′)

)]

+
1

2
StΛ̂−1S,

(4.13)

for which a solution is found by using Powell’s method [82].
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Front Side

Figure 4-6: A 3D model generated by EM-Shape of the right (red) and left thalamus
(purple,) right (green) and left caudate (blue,) and the right (pink) and left ventricle
(turquoise.)

4.2.3 Validation

This section focuses on the impact of two different types of atlases on the robustness of

the EM approach. We will compare the performance of EM-Affine - guided by spatial

priors - to our new approach EM-Shape - constrained by a shape atlas. Both methods

use the same initial affine alignment from the atlas to the image space to guarantee

a fair comparison between the different types of atlases. As in Section 3.3.4, both

methods segment 22 test cases into the three brain tissue classes - white matter, gray

matter and corticospinal fluid. The ventricles (pink/turquoise) are extracted from

the corticospinal fluid as shown inFigure 4-6. In addition, the parcellation of the the

gray matter into thalamus (red/purple) and the caudate (green/blue) is compared to

the manual segmentations using the DICE measure.

We showed in Section 3.3.4 that EM-Affine can accurately segment the thala-

mus but has problems identifying the caudate. The initial affine registration is too

constrained to properly adjust the spatial priors to the horn-shaped caudate. The

goal of this experiment is to find out if the shape constrained EM-Shape can accu-

rately segment both anatomical structures. This would indicate that the variations

of anatomical structures are better captured in a shape atlas than by spatial priors.

Figure 4-7 shows the average DICE measures and standard error for the two meth-

ods with respect to the thalamus and caudate. For the thalamus both approaches
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Figure 4-7: The graph shows the average DICE score and standard error over 22
cases for EM-Affine, which is guided by spatial priors, and the new method EM-
Shape, which is constrained by a shape atlas. EM-Shape is superior to EM-Affine in
segmenting the caudate because the variations of the caudate are better captured in
the shape atlas than the spatial priors.

perform equally well ( 87.3 ±1.2%; mean DICE score ± standard error.) For the cau-

date, however, EM-Shape (84.9 ±1.4%) is significantly more accurate than EM-Affine

(83.2 ±1.7%) as the shape variation of the horns of the caudate are better captured

by the shape atlas than the spatial priors.

Generally, EM-Shape starts with a lower DICE score than EM-Affine as the initial

shape model does not properly describe the patient specific structures. For example,

Figure 4-8 shows the outcome of EM-Shape after every fifth iteration. Initially, the

segmentation is noisy, which indicates discrepancy between the initial shape model

defined by the mean shape and the patient specific shape. With each iteration, the

arch of the caudate widens and the segmentations get smoother. After 20 iterations

the method converges to a solution that generally outperforms EM-Affine.

As mentioned, it is difficult to determine the exact shape of a structures with

weakly visible boundaries. The shape of the thalamus, for example, is oval with a

hook attached to it (Figure 4-6 and Figure 4-8.) From the MR images, the size of the

ellipse and the position of the hook are often not clearly defined. The top-left image

of Figure 4-9 shows an example of such a scenario. The segmentations are the results
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Initial 5 Iterations 10 Iterations 20 Iterations

Figure 4-8: The 3D models are based on the segmentations generated by our new
method through 20 iterations. The method is initialized with the mean shape of
each structure. The noisy initial segmentation is an indication of the disagreement
between the mean and the patient specific shape. As the algorithm proceeds the
shape of the caudate and thalamus adjusts to the patient specific situation. After
about 20 iterations the algorithm converges to a smoother segmentation.

of the two automatic segmentation methods where black indicates the outline of the

human expert. In this example, EM-Affine underestimates the hook of the thalamus,

which we found to be true throughout this experiment. EM-Shape can better cope

with this problem as the shape model adds global constraints to the local analysis of

the intensities. An example of a global constraint is the explicit definition of shape

dependencies across anatomical structures. This causes the shape of the thalamus to

be proportional to one of the easily segmentable ventricles. This impacts the accuracy

of EM-Shape as it further constrains the space of possible segmentations.

The other structure of interest in this experiment is the caudate, which is defined

by long, thin horns (Figure 4-8.) The structure is adjacent to the putamen, another

subcortical structure with an identical intensity distribution. In the MR image of the

middle column of Figure 4-9 the putamen is located on the outside of image. Neither

the intensity pattern nor the spatial prior can properly separate these two structures,

as indicated by the noisy segmentations of EM-Affine. The outliers visible in EM-

Affine violate the shape constraints of EM-Shape as the boundary has to satisfy the

conditions set by the ventricles and the thalamus.

For both structures, EM-Affine did not adequately segment the ends of the struc-

ture. In the right column of Figure 4-9 EM-Affine underestimates the tip of the

caudate. The opposite is true for the thalamus where EM-Affine overestimates the
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Thalamus Caudate Tip of Caudate

MR Image

EM-Shape

EM-Affine

Figure 4-9: The figure is a collection of different subcortical regions. The black lines
in the automatic segmentations are the thalamus or caudate outlined by the human
expert. The left column shows a MR image with corresponding segmentations of the
oval shaped body of the thalamus with attached hook. The middle column unveils
part of the caudate, which is adjacent to the putamen, another subcortical structure
with identical intensity distribution. The right column presents the tip of the caudate,
which generally is underestimated by EM-Affine. In all three examples, EM-Affine
performs worse than EM-Shape because the shape prior better adopts to the boundary
of the structure.

ends. Again, spatial and intensity distributions do not allow discrimination between

anatomical structures in this area.

To better understand the drawbacks of EM-Shape, Figure 4-10 shows the average

error over the 22 test cases throughout the volume. The blurriness in the images

represents the spatial variation within the average error. Blue indicates an under-

estimation and red an overestimation of the approach with respect to the manual

segmentations.

With respect to EM-Shape, (Figure 4-10 (a)) shows an overestimation of the cau-

date’s superior and underestimation of its inferior surface. (Figure 4-10 (c)) displays

the highest underestimation in the region of the thalamus’ hook. These artifacts are

properly caused by the PCA based shape model. PCA defines the shape variations in

a linear space characterized by quadratic cost function. The substantial bending of
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(a) Caudate (EM-Shape) (b) Caudate (EM-Affine)

(c) Thalamus (EM-Shape) (d) Thalamus (EM-Affine)

Figure 4-10: Average error of the EM-Shape and EM-Affine with respect to the
caudate (a+b) and thalamus (c+d.) The red areas indicate an overestimation where
the blue areas show an underestimation of the structures. The blurriness in the
image represents the variations within the error. We refer to the text for a detailed
discussion.

the caudate’s horns, however, are difficult to capture in a linear model. We therefore

conclude that the PCA model is not perfect for representing anatomical shapes. The

alternative prior of this experiment, spatial priors, causes even greater average under-

and overestimation (Figure 4-10 (b) and (d).) Especially the caudate’s inferior sur-

face is greatly underrepresented in the segmentations of EM-Affine (Figure 4-10 (b))

compared to the results of EM-Shape (Figure 4-10 (a).)

In summary, this section developed a statistical framework for the segmentation

of anatomical structures in MR images. The approach is especially well suited for

structures with weakly visible boundaries as it simultaneously estimates the image

inhomogeneities, explicitly models the boundaries through a deformable shape model,

and segments the MR images into anatomical structures. Our approach was validated

by automatically segmenting 22 sets of MR images. We then compared our results to
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a similar EM approach that does not use shape priors. In general, our new method

performs significantly better. The improvement is due primarily to shape constraints

on the boundary.

4.3 Modelling Atlas Registration and Shape De-

formation within a EM Segmentation Method

The derivation of the EM framework in the previous Section was based on the as-

sumption that the shape atlas is aligned to the MR images. In order to achieve this

alignment, we first register the atlas to the image coordinate system and then use the

EM approach to partition the MR images into anatomical structures. This two step

process was originally introduced in Section 3.2.1, where we needed to align spatial

priors to the image space.

We showed in Section 3.3 that we can increase the accuracy of our automatic seg-

mentations if we perform the atlas registration within an EM segmenter. Motivated

by these observations, Section 4.3.1 extents the estimation problem of the previous

section so that it simultaneously registers the shape atlas to the patient, detects the

shape of a specific anatomical structure, segments the image into the structures of

interest, and performs an image inhomogeneity correction.

Similar to Section 3.3 we propose a hierarchical registration framework to capture

the deformation between the shape atlas and the coordinate system of the image.

In Section 3.3, this framework was composed by global and structure specific affine

registration parameters. In this section, however, the global registration parameters

will represent a rigid mapping as the PCA shape atlas of Section 4.1.1 is incompatible

to scaling. The structure specific deformations are now captured by the shape param-

eters S. This results in a registration model, which is related to the class of non-rigid

registration algorithms incorporating structure specific deformation models.

Section 4.3.3 revisits the experiment of Section 4.2.3 segmenting 22 subjects into

the three major brain tissue classes as well as the ventricles, the thalamus, and the cau-
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date. We compare the accuracy of our approach with respect to other EM approaches

by measuring the overlap to manual segmentations of the subcortical structures.

4.3.1 A Formulation of Shape Based Segmentation and Reg-

istration

The previous Section defined the parameter space by the shape model S and the image

inhomogeneities B. This section extends this space with the registration parameters

R. The optimal setting (B̂, Ŝ, R̂) for these three instances is defined by the solution

to the following maximum a posteriori probability estimation problem, where we are

given the image data I, and marginalize over all possible labelmaps T :

(R̂, Ŝ, B̂) = arg max
R,S,B

log
(∑

T ′
P (R,S,B, T ′|I)

)

As it is not clear how to find a solution to this problem, we simplify the search for

the solution by deriving an EM framework. For this purpose, we determine a lower

bound for the objective function via Jensen’s Inequality

(R′,S ′,B′)← arg max
R,S,B

ET |I,R′,S′,B′ (log P (R,S,B, T |I))
5

= arg max
R,S,B

ET |I,R′,S′,B′ (log P (R,S,B|T , I) + log(P (T |I)))
6

= arg max
R,S,B

ET |I,R′,S′,B′ (log P (R,S,B|T , I))

Applying Bayes’ rule similar to Equation (4.8), the previous equation expands to

(R′,S ′,B′)← arg maxR,S,B ET |I,R′,S′,B′( log P (I|T ,R,S,B)

+ log P (R,S|T ,B) + log P (B|T ))
(4.14)

Equation (4.14) defines an estimation problem, which is still too complicated to be

5Bayes’ rule
6P (T |I) does not depend on R, S, or B.
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solved as the maximum over the entire parameter space has to be found. In order to

simplify the problem, we first restate the independence assumptions of Section 4.2.1.

As such, the image intensities I are independent of the shape parameter S conditioned

on T ,R,and B. In addition, the image inhomogeneities B are independent from the

labelmap T so that Equation (4.14) simplifies to

(R′,S ′,B′)← arg maxR,S,B ET |I,R′,S′,B′(log P (I|T ,R,B) + log P (R,S|T ,B))

+ log P (B)

The solution to this estimation problem strongly depends on the coordinate system

in which it is computed. For instance, if we perform the calculations in the atlas

space, then the registration parameters R map the images I into the atlas coordinate

system. We could simply use the hierarchical affine registration approach of Section

3.3.2 to define the correspondence between atlas and image space. However, since B
is defined in the atlas space, the likelihood P (I|T ,R,B) is not independent of R. As

such, a closed form solution no longer exists for the image inhomogeneities B.

Instead, if we solve the estimation problem in the image space, then I is inde-

pendent of R conditioned on T and B according to Section 3.3.1. The registration

parameters R now define the mapping from the atlas to the image space. We con-

strain R to the class of rigid transformations as the distance maps defining the atlas

are generally not invariant to scaling or local deformations. In addition, the first mode

of variation of the shape atlas normally encodes implicitly the scaling of the struc-

ture. If we further assume independence of R and S to the image inhomogeneities B
conditioned on the labelmap T , of the registration parameters R with respect to the

shape parameters S, and voxel vise independence within the labelmap T then the
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problem simplifies to

(R′,S ′,B′)← arg maxR,S,B ET |I,R′,S′,B′(log P (I|T ,B) + log P (R,S|T ))

+ log P (B)

7

= arg maxR,S,B ET |I,R′,S′,B′ [log P (I|T ,B) + log P (T |R,S)]

+ log P (R,S) + log P (B)

8

= arg maxR,S,B
∑

x

ETx|I,R′,S′,B′ [log P (I|Tx,B) + log P (Tx|R,S)]

+ log P (R) + log P (S) + log P (B).

(4.15)

Note that the update rule comprises two separate maximum a posteriori probability

estimation problems, one with respect to the parameter B and the other with respect

to the parameter (R,S). This separation greatly simplifies the problem.

The explicit formulation of the EM algorithm based on Equation (4.15) is char-

acterized by the E-Step, which calculates the weights W capturing the probability of

structure a being assigned to x,

Wx(a) , ETx|I,R′,S′,B′(Tx(a)) = P (Tx = ea|I,R′,S ′,B′)
9

=
P (I|Tx = ea,R′,S ′,B′) · P (Tx = ea|R′,S ′,B′)

P (I|R′,S ′,B′)
10

=
P (I|Tx = ea,B′) · P (Tx = ea|R′,S ′)

P (I|R′,S ′,B′)
11

=
P (I|Tx = ea,B′) · P (Tx = ea|R′,S ′)∑
a′ P (I|Tx = ea′ ,B′) · P (Tx = ea′ |R,′ S ′)

7Apply Bayes’ rule,; log P (R,S) is independent from T .
8Spatial independence of T ; independence between S and R.
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and the M-Step, which improves the estimates (R′,S ′,B′) of the parameter space,

(R′,S ′)← arg maxR,S
∑

x

∑
α
Wx(a) · log P (Tx = ea|R,S)

+ log P (R) + log P (S)
(4.16)

B′ ← arg maxB
∑

x

∑
α
Wx(a) · log P (I|Tx = ea,B) + log P (B). (4.17)

The solution to Equation (4.17) is solved according to Section 3.2. The remainder of

this section focuses on the definition of the conditional probability P (Tx = ea|R,S)

of Equation (4.16), which models the relationship of the labelmap with respect to the

registration and shape parameters.

4.3.2 A Non-Rigid Registration Model

The hierarchical affine registration approach of Section 3.3.3 is not necessary anymore

when using a shape atlas. Instead, we propose a rigid registration model, where the

registration parameters R represent the rigid global mapping between the atlas and

the image space. The local deformations are captured by shape parameters S. (R,S)

therefore represents a non-rigid registration framework of the mean shape that is

constrained by the structure specific shape model (see Figure 4-11.)

In order to properly characterize a rigid mapping between the atlas and image

space, the registration parameters R = (
−→
t t,−→r t)t are composed by

−→
t ∈ IR3 repre-

senting the displacement and −→r ∈ IR3 representing the angles of the rotations along

the three axis. The interpolation function r(·, ·) captures the rigid mapping between

two coordinate systems

r(·, ·) : IR 6×3 → IR 3, (R, x)→ AR · (xt, 1)t

where AR ∈ IR 4×4 is the rigid transformation matrix based on the parameter R.

9Apply Bayes’ rule
10We extent the previously made independence assumption of P (R,S|T ,B) with respect to B to

the conditional probability PT |R,S,B)
11Apply Bayes’ rule

124



R S

Shape Atlas Local DeformationImage Space

Figure 4-11: The graph shows the design of our non-rigid registration framework.
In this approach, the registration parameter R captures the global alignment of the
shape based atlas to the image space. The local deformations are captured by the
shape parameters S.

We now apply this concept to the estimation problem of Equation (4.16). We

focus on the definition of the condition probability P (Tx = ea|R,S) as it describes

the relationship between shape parameters S, registration parameters R, and the

labelmap T . In Section 4.2, the conditional labelmap probability with respect to the

shape P (Tx = ea|S) was defined by the aligned shape atlas, which is represented by

the distance map DS,a. In our current model DS,a is given in the atlas space. As the

interpolation function r(R, ·) maps a voxel from the image space to the corresponding

coordinates in the atlas space, DS,a(r(R, ·)) represents the aligned distance map in

the image space. Based on Equation (4.12), we define the conditional probability of

the labelmap with respect to the registration parameters R and the shape model S
as

P (Tx = ea|S,R) =

1

1+e
−caDS,a(r(R,x))∑

a′
1

1+e
−ca′DS,a′ (r(R,x))

(4.18)

Note, that if R is the identity matrix then Equation (4.18) defines the spatial distri-

bution of the structure a in the atlas induced by the shape parameters S.

With the help of Equation (4.13), we reformulate our original maximization prob-

lem of Equation (4.16) to define the following update rule of the M-Step

(R′,S ′)← arg maxR,S
∑

x

∑
α
Wx(a) · log P (Tx = ea|R,S) + log P (S)

= arg maxR,S
∑

x

[∑
a
Wx(a) · log

(
1− e−ca′DS,r(R,x)(a

′)
)

+ log

(∑
a′

1

1− e−ca′DS,r(R,x)(a
′)

)]
+

1

2
StΛ̂−1S.
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We dropped the prior of the registration parameters R as it is a uniform distribution

and therefore does not influence the outcome of the optimization problem.

We must note that the implementation used for our test results in the next section

slightly differs from the proposed framework. First, we separated the search for R
and S as it made our implementation five times faster. Second, we do not determine

a closed form solution for the above equation but instead find an approximation

for the estimation problem via Powell’s method [82]. Despite these changes, the

principle idea behind the method has not been altered as the shape constrained

method simultaneous segments the image and registers the atlas to the image space.

4.3.3 Validation

The experiment described in this section compares the new approach to other EM

implementations of this thesis. The first two methods applied to this experiment are

the pipeline based approaches EM-Affine and EM-NonRigid of Section 3.2.1, which

initialize the EM segmenter by aligning spatial priors to the image space using affine

and non rigid registration methods. The third implementation, EM-Simultaneous-

Affine of Section 3.3, performs the alignment of the spatial atlas and the segmentation

of the medical images simultaneously. The fourth algorithm, EM-Shape of Section

4.2, uses the same alignment strategy as EM-Affine but guides the segmentation

via a shape model. Our new approach, EM-Simultaneous-Shape, uses the shape

deformation concept of EM-Shape but also registers the shape model to the image

space. As in Section 4.2.3 each method segments the 22 test cases into the major brain

tissue classes and extracts the ventricles, the thalamus, and the caudate. We measure

the accuracy of each method’s resulting automatic segmentations by comparing them

to manual segmentations using the volume overlap measure DICE of Section 1.5.

The results of the DICE comparison are presented in Figure 4-12 (a). Our new

approach EM-Simultaneous-Shape (EM-Sim-Shape) outperforms the other four meth-

ods on the thalamus and caudate. In specifics, the standard error of EM-Simultaneous-

Shape is much smaller than EM-Shape because the global rigid alignment by EM-

Simultaneous-Shape more accurately aligns the shape atlas to the image space than
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Figure 4-12: Graph (a) shows the mean and standard error for the four methods seg-
menting the thalamus and caudate in 22 cases. Our new approach EM-Simultaneous-
Shape (EM-Sim-Sh) achieves a higher accuracy than any of the other approaches with
respect to automatically segmenting the thalamus and caudate. Graph (b) shows the
average convergence behavior for the caudate of the four methods. EM-Simultaneous-
Affine (EM-Sim-Affine) and EM-Simultaneous-Shape (EM-Sim-Shape) start with a
bad initial score but converge to a solution, which is closer to the manual segmenta-
tions than EM-Affine and EM-Shape.

than initial global affine registration of EM-Shape. EM-Simultaneous-Shape outper-

forms EM-Simultaneous-Affine because the shape prior better captures the variability

of these anatomical structures than the structure specific affine registration parame-

ters of EM-Simultaneous-Affine. Based on the previous two observations it is therefore

not surprising that the two pipeline based approaches EM-Affine and EM-NonRigid

receive a lower score than EM-Simultaneous-Shape. These methods cannot recover

from initial misalignment errors (similar to EM-Shape) and have to rely on the spatial

prior (like EM-Simultaneous-Affine.)

For the remainder of this section we will exclude EM-NonRigid from the discussion

as it is the only method relying on a more general non-linear global registration. For

both structures, our joint registration and segmentation methods (EM-Integrated

and EM-Hybrid) achieve a higher average mean score than the methods EM-Affine

and EM-Shape, which sequentially perform this task. This increased performance is

mainly caused by two test subjects, for which the affine registration approach (used

by EM-Affine and EM-Shape) performs poorly. The first row in Figure 4-13 shows
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Manual EM-Affine EM-NRigid EM-Sim-Af EM-Shape EM-Sim-Sh

Figure 4-13: The figure shows the manual and automatic segmentations for one case
where the initial affine registration of EM-Affine and EM-Shape as well as the non-
rigid registration of EM-NonRigid performed suboptimally. The black lines in the
second row outline the manual segmentation for this slice. Comparing those with
the automatic segmentations, an offset in the vertical direction of the segmentations
produced by EM-Affine and EM-Shape is clearly visible. This offset is caused by poor
initial registration of the atlas to the image space. EM-Nonrigid slightly overestimates
the subcortical structures in this area as it cannot recover from any misalignment
performed in the initial non rigid registration method.

the 3D segmentation results of all five methods in one of the two subjects. The

second row shows an example slice of these segmentations indicating in black the

boundary of the manual segmentation. An offset in the vertical direction is visible

when comparing EM-Affine and EM-Shape to the manual segmentations. This offset

is caused by the poor initial alignment.

Figure 4-14 shows the progress of EM-Simultaneous-Shape with respect to this

specific case. The first row lists the segmentations starting with an initial bad guess

and converging to a good approximation of the manual segmentation outlined in

black. This observation is also captured in the objective function of the registration

parameters (second row) and shape parameters (third row.) Red indicates large

disagreement between atlas and image space. With each iteration, the number of

voxels in red reduces, implying a better alignment of the atlas to the segmentation

environment.

The graph of Figure 4-12(b) indicates that the previous observation holds for the

22 test cases. The graph lists the average DICE score at each iteration with respect to
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Disagree

Agree

Figure 4-14: This sequence shows the improvement of our new method EM-
Simultaneous-Shape in the case of Figure 4-13. Initially, our method starts with
a bad initial guess which is evident in the objective function of the registration pa-
rameters (second row) and the shape parameters (third row.) The color red in the
objective functions indicates large disagreement between the atlas and the segmenta-
tion environment defined by the weights of the E-Step. At each iteration, the method
improves its estimate of the alignment parameters which is also indicated by the
reduction in red areas in the objective function. The final segmentation accurately
identifies the structures of interest as it mostly agrees with the manual segmentation
outlined in black.

caudate for four methods. In general, the two pipeline based approaches EM-Affine

and EM-Shape start with a good initial guess but do not greatly improve the results.

The opposite is true for EM-Simultaneous-Affine and EM-Simultaneous-Shape, which

start with a poor initial segmentation to converge to a solution close to the manual

ones. This increase in performance is due to our modelling approach based on the

principle of least commitment between atlas registration, inhomogeneity correction,

and image segmentation.

In summary, we developed a joint registration and segmentation framework, which

was guided by the image inhomogeneity correction as well as the shape model. In

order to compute a solution within this framework, we slightly simplified the model
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and developed an EM approach to estimate its solution. We then compared our

approach to other EM approaches, which do not simultaneously register and deform

a shape model. The new approach achieves a higher accuracy than any of the other

approaches in segmenting the thalamus as well as the caudate. In general, our new

approach underlines the advantages of the EM framework as it turns an even a bad

initialization within the complex segmentation model into a good solution.

4.4 Discussion

This chapter described the integration of shape constraints into an EM approach

to increase the discriminatory power of the model with respect to the segmentation

of brain structures with weakly visible boundaries. Unlike any other approaches

in medical imaging, our framework simultaneously estimates the shape of multiple

brain structures as well as the inhomogeneities of the image. To estimate the shape

variations across a population, we use distance maps to describe the shape within

the training set of manual segmentations. We first derive an approach defining the

parameter space of the EM model with a shape atlas based on signed distance maps

and the estimation of the image inhomogeneity. We then extend this concept to

register the shape atlas to the MR images while segmenting the MR images into the

structures of interest. Both implementations generate high quality segmentations of

structures with weakly visible boundaries. Furthermore, we validate their accuracy

by comparing them to other EM-like methods as well as manual segmentations.

The advantages of our approaches are numerous. First, our novel approaches

are not restricted to variations defined by the shape atlas, which is normally under-

trained. Instead, the algorithms define a boundary based on the intensity pattern,

spatial distribution, and the shape constraints. Unlike many other shape based meth-

ods, our approaches may model patient specific abnormalities not captured in the

shape atlas. Second, the generic design of our approaches is not customized towards

a specific structure so that the automatic method can simultaneously segment brain

tissue types as well as their substructures. Third, the approaches can be applied to a

130



1 Iteration 7 Iterations 14 Iterations 20 Iterations

Figure 4-15: The 3D models are the segmentation results of EM-Simultaneous-Shape
after a certain number of iterations. They represent the thalamus (dark green/purple,)
the caudate (blue/light green) , and the ventricles (orange/yellow.) The noisy initial
segmentation is caused by the misalignment of the atlas to the image space and the
incorrect deformation of the shape model. As the method progresses the quality of
the segmentation improves. The experiment of Section 4.3.3 showed that the final
segmentation is generally more accurate than the result of other EM approaches. The
greater accuracy is due to the underlying uniform framework which simultaneously
registers and deforms the shape atlas to the subject, determines the image inhomo-
geneities, and segments the images into structures of interest.

variety of imaging protocols as they simultaneously estimate image inhomogeneities

as well as shape constraints. This results in a very robust segmentation approach

that can recover from a bad initial guess to converge to a good solution as shown in

Figure 4-15.
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Chapter 5

Hierarchical Segmentation

The preceding two chapters focused on outlining structures with weakly visible bound-

aries. However, most segmentation problems also include boundaries that are clearly

defined in MR images. For example in Figure 5-1, the algorithm has to determine

the invisible boundary between two neighboring cortical structures and the visible

boundary of the sulci. While spatial priors are essential for the determination of the

invisible border, they reduce the accuracy of the outlining of the sulci. The smooth

spatial priors under-represent sulci as discussed in detail in Section 3.1. This mis-

representation increases the likelihood of bridges or cavities across adjacent banks of

sulci. Partial voluming in MR images, particularly with low-resolution T2-weighted

data as shown in Figure 5-1, further amplifies this effect. One solution to this problem

is a hierarchical approach, where the method divides the problem into much simpler

subproblems.

Most hierarchical methods in the field [65, 34, 74] solve the problem through

a sequence of separate operations. However, the dependency between the different

approaches can make it difficult to adjust these methods to new segmentation sce-

narios. Instead, this chapter suggests a method where the division of the problem is

decomposed into the segmentation of substructures having mutual constraints. These

constraints are defined by the hierarchical relationship between anatomical structures

and the influence of the prior information within the segmentation of these structures.

Section 5.1 focuses on the development of a segmentation algorithms guided by the
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Figure 5-1: The graph shows the MR images, the corresponding automatic segmen-
tation, and spatial priors of the region around the middle temporal gyrus. Based
on T1- as well as T2-weighted data, the method relies on the spatial prior to detect
the boundary between middle (blue) and superior temporal gyrus (red). The spatial
priors, however, cause the algorithm to smooth over the clearly visible sulci between
the two structures. This is due to the method’s inability to properly individualize the
prior model to the segmentation problem.

hierarchical relationship of anatomical structures. The section starts with a method

combining the class of segmentation methods related to EM with a data tree repre-

senting the anatomical relationships between structures. Afterwards, we alter an EM

approach to determine the solution for the subproblems defined by the tree.

Section 5.2 expands the algorithm by adjusting the influence of the intensity and

spatial prior information to each subtree of the tree. This regularization enables

the method to accurately segment structures with weakly visible and clearly defined

boundaries.
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Section 5.3 tests the algorithm on a variety of experiments. The first experiment

segments the brain into 32 structures. We then compare our new approach to other

segmentation methods for the detection of the three major tissue classes of the brain.

The third experiment is a repetition of the multi-rater experiment of Section 3.2.2

determining the accuracy of an EM approach with and without a hierarchical frame-

work. For the last experiment, the joint registration and segmentation algorithms

described in Section 3.3 and Section 4.3 are integrated into the hierarchical approach

automatically segmenting the thalamus and caudate. The advantages of our new

approach are discussed in Section 5.4.

5.1 An Anatomically Guided EM Approach

The section develops a hierarchical approach, which divides the segmentation problem

into simpler subproblems. This devision process is guided by a tree that represents

the anatomical dependencies between structures. The solution to each subproblem

is a labelmap computed by a segmentation approach. The final segmentation of the

original problem is a combination of all the labelmaps of the corresponding subprob-

lems.

The example of Figure 5-2 illustrates the dependency between the complexity of

the problem and the accuracy of an EM approach. The smooth segmentation to the

left was produced by an algorithm separating the left superior temporal gyrus from

the rest of the image. The fragmented segmentation to the right was generated by

the same approach but the algorithm outlines all the neighboring structures of the

superior temporal gyrus, i.e. white matter, corticospinal fluid, and other cortical

structures. The more complicated second problem generally results in less accurate

segmentation by the EM approach.

In section 5.1.1 we develop a method guided by a tree, which represents the

hierarchical relationship between anatomical structures. Section 5.1.2 discusses the

population of prior information throughout the tree and Section 5.1.3 adopts the EM

approaches of this thesis to the tree structure.
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Figure 5-2: The graph shows the superior temporal gyrus and the corresponding
segmentations. The image to the left is a “binary” segmentation, where the method
separates the image into superior temporal gyrus versus non-superior temporal gyrus.
The image to the right is produced by automatically segmenting the region into
multiple structures, where the method separates the image into superior temporal
gyrus, white matter, corticospinal fluid, and the other cortical structures. The lower
accuracy of the multiple structure setting is caused by an increase in the statistical
complexity of the segmentation problem.

5.1.1 Represent Anatomical Hierarchy in a Tree

We now introduce an algorithm, which is guided by the hierarchical relationship of

anatomical structures of interest. This relationship is modelled as a tree as shown

in Figure 5-3. In this tree X is a descendent of Y, when an anatomical structure X

(e.g. white matter) is part of another structure Y (e.g. ICC.) The theory of trees is

discussed in detail in Cormen et al. [18].

The segmentation algorithm proposed in this section uses the tree to recursively

divide the initial segmentation problem into simpler subproblems (see also Algorithm

3.) It does so by first segmenting the region of interest associated with the root of

the tree into the children of the root. Afterwards, a subproblem is defined for each

child with a nonempty subtree. The subproblem associated with a child is composed

by a subtree (TREE) rooted in the child and a region of interest (ROI). The region of

interest is defined by those voxels assigned to the child in the current segmentation.

This process of segmentation and dividing the problem into subproblems is repeated
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Figure 5-3: The tree is an example of the hierarchical ordering between different
anatomical structures. Here, background (BG) and intracranial capacity (ICC) define
the tree’s top level while corticospinal fluid (CSF), gray matter (GM), and white
matter (WM) compose the second level.

until the entire tree is traversed.

Algorithm 3: Hierarchical Segmentation(ROI, TREE)

define labelmap L ← Segment ROI into structures of the TREE

for each child a of the root of the TREE further segment ROI

into the children of a

define ROI ′ ← Each voxel with Lx = a

define TREE ′ ← The subtree rooted in a

if ROI ′ 6= ∅ and TREE ′ 6= ∅
then Hierarchical Segmentation(ROI ′, TREE ′)

For example, if the hierarchical approach defined in Algorithm 3 is guided by the

tree of Figure 5-3 then the segmentation problem is divided into two subproblems. It

first segments the region of interest composed by the entire MR image into the children

background (BG) and intracranial capacity (ICC). The second problem is defined with

respect to the intracranial capacity. The region of interest for this problem are all the

voxels associated to intracranial capacity (in red) and the subtree is defined by the

root ICC and the children corticospinal fluid (CSF), white matter(WM), and gray
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matter(GM). After determining the solution to this problem the tree is traversed

and the final labelmap is defined by the three children of the previous tree and the

background.

5.1.2 Populate Information within the Tree

A class of segmentation methods, such as [34, 65, 103], can be integrated into Al-

gorithm 3. The implementation of an EM segmenter into Algorithm 3 requires the

population of the prior model to each of the subproblems. Doing so is not without

risk, as the prior information might not be independent from each other. This might

increase the amount of training amount necessary to properly define the model. For

example, in the previous scenario (see Figure 5-3) we could define different atlases for

the intracranial capacity and its substructures. This framework would increase the

redundancy in our model as the substructures should contain the information that

defines intracranial capacity. In addition, each task could be run separately by first

separating the the image into background and intracranial capacity (Level 1) and

then separating the intracranial capacity into its tissue classes (Level 2.) Essentially,

two algorithms would have to be trained as is common in the field [65, 34]. This

would limit the impact of the tree structure within the segmentation algorithm. We

therefore further constrains Algorithm 3 to overcome this deficiency.

Instead of defining the atlas for each structure within the tree, the hierarchical

segmentation approach propagates the information from the leafs to the internal

nodes. In the previous scenario, the atlas of the ICC would be defined by the atlases

of the corticospinal fluid, gray matter, and white matter. This concept is integrated

into Algorithm 3 by defining two structure specific lists. The first list captures all

children of an anatomical structure a and is defined as aSUB , {a′|a is parent of a′}.
According to the example of Figure 5-3 the list of substructures for structure IMAGE

is IMAGESUB , {BG, ICC}. The second list captures all the leaves in the subtree of
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a structure, which is defined as

a
ŜUB

, {a′|a′SUB = ∅ ∧ a′ is on a descendent of a}
= {a′|a′SUB = ∅ ∧ (∃a1, . . . ak : a1 = a ∧ ak = a′ ∧ ai+1 ∈ aiSUB for i < k)}

Note, that in the above definition k-1 corresponds to the depth of the leave a′ within

the subtree of structure a. In the example of Figure 5-3, the list of all the leaves of

the structure IMAGE is defined as IMAGE
ŜUB

, {BG, WM, GM, CSF}.
The structures associated to the nodes of tree can be divided into two groups.

The first group are all leaves (aSUB = ∅.) They are characterized by the structure

specific parameters of the atlas. The second group is composed by the internal nodes

(aSUB 6= ∅,) which are characterized by the atlas information of all their descendent

in a
ŜUB

.

Algorithm 4: Hierarchical Segmentation(ROI, TREE)

define the two lists of substructures â
ŜUB

and âSUBfor root â of TREE

define weights W ← Run EM on ROI and structures defined by â
ŜUB

define labelmap L ← Assign voxels to structures of âSUB based on W
for each structure a in âSUB further segments ROI into substructures

define ROI ′ ← Each voxel x with Lx = a

define TREE ′ ← The subtree rooted in a

if ROI ′ 6= ∅ and TREE ′ 6= ∅
then Hierarchical Segmentation(ROI ′, TREE ′)

Algorithm 4 is a possible implementation of the previous described concept. As

an extension of Algorithm 3, the approach recursively solves and divides the segmen-

tation problem into subproblems until the entire tree is traversed. At each recursion,

the method first defines the list of leaves â
ŜUB

and the list of children âSUB based

on the tree TREE rooted in structure â. Afterwards, an EM approach computes the

weights W of the leaves in â
ŜUB

with respect to region of interest (ROI) and the
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prior information of the leaves. It then turns the weights into a label map L. These

two steps will be discussed in more detail in the next section. Finally, it partitions

the segmentation problem into the subproblems with respect to all internal nodes in

aSUB. This process is repeated for all the subproblems until the tree is traversed.

5.1.3 Integrate EM Approach into Hierarchical Segmenta-

tion

This section focus on the definition of the weightsW and the labelmap L of Algorithm

4. As the weights are the results of an EM segmenter, we are specifically interested in

adjusting the EM approaches of this thesis in order explicitly model the constraints

defined by the tree TREE and the region of interest ROI. For this purpose, we now

derive a new instance of an EM algorithm that is easily customizable to any of the

other EM segmenters of this thesis. We first describe a complete data model with

respect the hierarchical concept of Section 5.1.2. Afterwards, we briefly derive an

instance of an EM algorithm that determines a solution within this complete data

model.

In Algorithm 4, the EM approach determines the weights W with respect to the

region of interest (ROI) and the structures given by TREE. In order to adjust our

previous EM approaches to these new constraints, we define the method’s underlying

complete data model with respect to ROI and TREE. The observed data is now

composed of the image I and the hierarchy specific data H , {ROI, TREE}. The

labelmap T embodies the hidden data and Ψ represents the parameter space. To

closely relate this model to the ones of the previous chapters, we are interested in

finding the solution to the maximum a posteriori probability estimation problem of

the complete data

Ψ̂ = arg max
Ψ

log
(∑

T
P (Ψ, T |I,H)

)
. (5.1)

In general, Equation (5.1) describes a set of equations for which there is no analytical

solution. This motivates the use of the EM algorithm that iteratively determines a

solution for the estimation problem. We will now briefly describe the relationship
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between Equation (5.1) and the resulting EM segmenter. More detailed derivations

of similar EM frameworks have been presented in Chapter 2 to Chapter 4.

According to the derivations of Section 3.3.1, the corresponding EM approach to

Equation (5.1) is characterized by the update rule

Ψ′ ← arg max
Ψ

ET |I,H,Ψ′ (log P (Ψ, T |I,H))

1

= arg max
Ψ

ET |I,H,Ψ′ (log P (Ψ|T , I,H) + P (T |I,H))

2

= arg max
Ψ

ET |I,H,Ψ′ (log P (Ψ|T , I,H)) .

As in the previous chapters, we assume voxel-wise independence of the labelmap T
so that the update rule changes to

Ψ′ ← arg max
Ψ

∑
x
ETx|I,H,Ψ′ (log P (Ψ|Tx, I,H)) . (5.2)

Based on Equation (5.2), the E-Step calculates the weights W , which capture the

posterior probability of an anatomical structure a being present at a specific voxel x

with respect to the current estimate of the parameter space Ψ′ and the image I:

Wx(a) , ETx|I,H,Ψ′(Tx(a)) = P (Tx = ea|I,H, Ψ′)

=
P (I|Tx = ea, Ψ

′,H) · P (Tx = ea|Ψ′,H)

P (I|Ψ′,H)

(5.3)

Note, that the conditional probability P (Tx = ea|Ψ′,H) was represented in the pre-

vious chapters by the structure specific atlases, which were explicitly defined by the

leaves of the tree. The integration of this constraint in our current implementation is

done in the E-Step by calculating the weights for all leaves a ∈ â
ŜUB

of the root â.

The M-Step determines an improved estimate Ψ′ based on the weights W and

1Bayes’ rule
2P (T |I,H) does not depend on Ψ.
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Equation (5.2), which is defined as

Ψ′ ← arg max
Ψ

∑
x

∑
a∈â

ŜUB

Wx(a) · log P (Ψ|Tx = ea, I,H). (5.4)

Up to this point, the EM approach defined by Equation (5.3) (E-Step) and

Equation (5.4) (M-Step) only takes limited advantage of the hierarchical relationships

defined by TREE as it computes the weights for all leaves a ∈ â
ŜUB

. To change this,

we now simplify the solution to the maximum a posteriori probability estimation

problem in the M-Step by just considering the first degree children ã ∈ âSUB of the

root â in Equation (5.4). We do so by by making the simplifying assumption that

the posterior probability P (Ψ|Tx = ea, I,H) is the same for all structures a ∈ ã
ŜUB

that have the same ancestor ã ∈ âSUB. We then define the hierarchical weights W̃ for

all ã ∈ âSUB by the weights of all descendent of a ∈ ã
ŜUB

:

W̃x(ã) ,





∑
a∈ã

ŜUB
Wx(a

′) , ã
ŜUB
6= ∅

Wx(a) , otherwise.

(5.5)

This allows us to reduce Equation (5.4) to

Ψ′ ← arg max
Ψ

∑
x

∑
ã∈âSUB

W̃x(ã) · log P (Ψ|Tx = eã, I,H). (5.6)

The choice between the update rule defined by Equation (5.4) or Equation (5.6)

solely depends on the parameter Ψ. In practice, we have found it useful to apply

Equation (5.4) for updating the current estimates of the image inhomogeneity B′,
shape parameter S ′, and structure specific registration parameters R′C as the simpli-

fying assumption incorporated into Equation (5.6) negatively impacts the accuracy

of the method.

This observation is not true, however, for the global registration parameter RG,

which is intensity and structure independent. In order to increase the computa-

tional performance of our algorithm, we update the registration parameter R′G by

Equation (5.6). Even for our simple example of Figure 5-3 finding the solution to
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the estimation problem of the first level of the tree is less complicated. The estima-

tion problem defined by Equation (5.6) now only considers BG and ICC instead of

summing over the four structures BG, CSF, WM, and GM as in Equation (5.4).

High

Low

(a) (b)

Figure 5-4: The images show different registration objective function defined for
the global affine registration model of Section 3.3.3. Image (a) is generated by ap-
plying the registration model to Equation (5.4) and image (b) is computed from
Equation (5.6). Red indicates high and blue low disagreement between the aligned
spatial prior and the segmentation environment. See text for a detailed discussion.

Based on the previous example, Figure 5-4 shows the impact on the objective

function of the global affine registration parameters of Section 3.3.3 defined through

Equation (5.4) (Figure 5-4 (a)) and Equation (5.6) (Figure 5-4 (b).) Both images

show the disagreement between aligned spatial prior and the weights of the EM seg-

menter after the algorithm converges. Red indicates high and blue low disagreement.

Image (a) is composed of a large number of voxels representing disagreement between

the aligned atlas space and the image. This disagreement is mostly caused by the

uncertainty of the spatial priors of WM, GM, and CSF. This uncertainty of the spa-

tial priors represents the spatial variability of anatomical structures in a population.

A detailed discussion of this topic is given in Section 3.1. Image (b) displays the

objective function of Equation (5.6), which only considers BG and ICC. The negative

impact on the objective function of the uncertainty of the spatial priors is reduced

as we only consider two anatomical structures with relatively low spatial variability.
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The objective function therefore considers fewer voxels, which reduces the complexity

of determining a solution for the estimation problem.

Before we complete the discussion of the EM approach in this section, we provide

an additional interpretation of the hierarchical weight W̃ defined by Equation (5.5).

We do so by substituting the weight Wx(a) of Equation (5.5) with its definition of

Equation (5.3), which formalizes the hierarchical weight for a structure ã with children

a ∈ ã
ŜUB

and normalization term Zx as

W̃x(a) =
1

Zx

∑
a∈ã

ŜUB

P (Ix|Tx = ea, Ψ
′,H) · P (Tx = ea|Ψ′,H).

To relate the current EM approach to the solutions of the previous chapters, the

likelihood P (Ix|Tx = ea, Ψ
′,H) is defined by a Gaussian distribution. For structures

with children the soft assignment of structure W̃x(ã) is therefore a non-stationary

Gaussian mixture model with respect to the intensities I where the posterior proba-

bility P (Tx = ea|Ψ′,H) defines the relative weight within the model.

Equation (5.5) captures the notion that large structures with children, such as

gray matter, are defined by spatially varying intensity patterns. In the previous

chapters, we implicitly modeled this characteristic by the slowly varying image in-

tensity correction or intensity inhomogeneities B. With the hierarchical model, we

can incorporate this constraint explicitly in the atlas space and thereby increase the

realism of our model.

After integrating an EM method into the hierarchical approach, we focus on turn-

ing the hierarchical weights W̃ into the region specific segmentation L. In order to

adopt Algorithm 4 to the new definition of W̃ , the segmentation of a specific ROI is

now defined as

L(x) , arg max
ã∈âSUB

W̃x(ã).

Determining the labelmap L, Algorithm 4 further divides L by recursively applying

itself to each structure ã with non empty subtree ã
ŜUB

. The process is repeated until

all leaves of the tree are reached.

In summary, this section integrated an EM approach into a hierarchical segmen-
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tation model. A possible implementation of this hierarchical segmentation method

is presented in Algorithm 5. The algorithm partitions an initial difficult problem

into less complicated subproblems. The devision is guided by a tree representing the

hierarchical relationship between anatomical structures. Within the tree, prior infor-

mation is populated from the leaves to the ancestors in order to reduce the training

effort necessary to adjust the model to a different segmentation scenario. In the next

section, we focus on further specifying Algorithm 5 in order to implementing con-

straints into the hierarchical framework that explicitly control the influence of the

prior information on the segmentation results.

Algorithm 5: Hierarchical Segmentation(H)

define TREE and ROI based on H
define the two lists of substructures â

ŜUB
and âSUB for root â of TREE

repeat EM iteration for structures defined by a ∈ â
ŜUB

and ã ∈ âSUB

The E-Step: Calculate Wx(a) = 1
Zx

P (Ix|Ψ′, Tx = ea,H) · P (Tx = ea|Ψ′,H)

W̃x(ã)← Define hierarchical weights according to Equation (5.5)

The M-Step: Update Ψ′ ← arg maxΨ

∑
x

∑
ã∈âSUB

W̃x(ã) · log P (Ψ|Tx = eã, I,H)

until Ψ′ converges in ROI

define labelmap L ← Assign voxels to structures of ã ∈ âSUB based on W̃
for each structure ã in âSUB further segment ROI into substructures

define ROI ′ ← Each voxel x with Lx = ã

define TREE ′ ← The subtree rooted in ã

if ROI ′ 6= ∅ and TREE ′ 6= ∅ then

define H′ ← {ROI ′, TREE ′}
Hierarchical Segmentation(H′)
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5.2 Incoporate Prior Information into the Tree

Algorithm 5 is a segmentation algorithm guided by the hierarchical relationship of

anatomical structures. The approach reduces the computational complexity of seg-

mentation problems by partitioning them into small tasks and explicitly defining the

spatially varying intensity pattern of large structures. The solution for each subprob-

lem is determined by an EM approach. However, the hierarchical approach does not

define the influence of the prior information with respect to the subproblem so that

it fails to properly address the issue of outlining structures with weakly visible and

clearly defined boundaries. This section addresses this issue by introducing into the

framework confidence parameters that control the importance of the observed data

and prior information in the EM approach.

Before we develop this EM framework we make two observations with respect to

weights of Equation (5.3), which are defined as

Wx(a) =
1

Zx

· P (I|Tx = ea, Ψ
′,H) · P (Tx = ea|Ψ′,H).

The first important component of the product is the conditional intensity probability

P (I|Tx = ea, Ψ
′,H). In the implementations of the previous chapters the depen-

dence of the image I with respect to the entire parameter space was reduced to the

image inhomogeneity B. We now make the same independence assumptions for our

hierarchical model so that the structure specific weights are defined as

Wx(a) =
1

Zx

· P (I|Tx = ea,B′,H) · P (Tx = ea|Ψ′,H). (5.7)

The second observation concerns the conditional probability

P (Tx = ea|Ψ′,H). The hierarchical independent approaches of this thesis describe

P (Tx = ea|Ψ′) by a spatial prior function, which we name F(Ψ, a, ·). For example, in

the approach of Section 4.3 F(Ψ, a, ·) represents the spatial prior of Equation (4.18)

and for the EM approach of Section 3.2.1 F(Ψ, a, ·) simplifies to the spatial atlas

distribution fx(a).
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After having made these two observations, we focus the remainder of this section

on the integration of confidence parameters into the EM method used by Algorithm

5.

5.2.1 Develop Intensity Based Confidence Parameters

The visibility of the structure specific boundaries often depends on the acquisition

sequence of the MR images. Many medical imaging protocols acquire several channels

of the same modality to properly detect these structures. However, the modalities

are often different in terms of resolution, where lower resolutions increase the risk of

partial volume effects.

For example, Figure 5-1 shows a T1- and T2-weighted image of the same cortical

region. While the T2-weighted image provides good contrast for corticospinal fluid,

the T1-weighted image clearly outlines white and gray matter. However, the T2-

weighted image has lower spatial resolution compared to T1-weighted image so that

the greater risk of partial voluming effect on T2-weighted images might negatively

impact the accuracy of our approach. As this is common knowledge in the field, it

has motivated researchers to generate two different methods, one for the detection of

the outer boundary of the corticospinal fluid through brain stripping, and one for the

detection of the boundary between gray and white matter [65]. We suggest instead

to model both scenarios in the atlas space where the influence of each input channel

or image modality depends on the segmentation task.

In order to regulate the influence of the input channels, we extend the definition

of H by ci, the influence parameter of the input channel i with respect to the TREE.

In order to incorporate ci into our EM approach, we now modify the conditional in-

tensity probability P (Ix|Bx, Tx = ea,H) of Equation (5.7). According to the previous

chapters P (Ix|Bx, Tx = ea,H) is defined as a Gaussian distribution of the form

P (Ix|Tx = ea,Bx,H) , 1√
(2 · π)n|Υa|

e−
1
2
(Ix−Bx−µa)T Υ−1

a (Ix−Bx−µa). (5.8)

With respect to the example of Figure 5-1, the intensities of Ix are defined by T1-
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and T2-weighted images so that the previous equation represents a two dimensional

Gaussian distribution.

To add the influence parameter ci into this Gaussian model, the diagonal matrix

γH is introduced. The entries in the matrix are defined as γH(i, i) = c−1
i for ci > 0

and γâ(i, i) = 0 otherwise. Applied to the example of Figure 5-3, we set cT2 = 1 for

the Level 1 segmentation as T2-weighted images clearly show the boundary between

background and brain. For the Level 2 segmentation, T2-weighted images can be

neglected and thus cT2 = 0. If cT1 = 1 then the resulting diagonal matrix for the

Level 2 segmentation is defined as

γH =


 1 0

0 0




The rank of γH is defined as n′, where n′ can be smaller than the number of input

channels. This allows us to selectively eliminate certain channels from taking influence

in the segmentation process at this level of the tree. However, n′ has to be greater

than zero because otherwise the algorithm would totally ignore the MR images.

In the remainder of this section we define a variance for Equation (5.8) that takes

into account the confidence parameters ci. Simply multiplying γH with the structure

specific variance Υa generally defines a matrix that is not regular, such as in the

previous example. However, if we defined the transition matrix

ζH(i, j) ,





1 , if ci > 0 and the number of ck > 0 for k ≤ i is equal to j

0 , otherwise

then we can define a regular matrix based on the product between ζH, γH, and Υa.

Note, that the matrix ζH is composed by all columns in γH that do have entries greater

than zero. In ζH, these entries are replaced by one. With respect to our previous
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example of Figure 5-3, ζH is defined for the Level 2 segmentation as

ζH =


 1

0


 .

If we now characterize for each structure a ∈ â
ŜUB

the hierarchy specific variance

by the regular matrix

Υ′
H,a , ζT

HγHΥaγHζH

then the spatially conditional intensity probability is defined as

P (Ix|Tx = ea,Bx,H) , 1√
(2 · π)n′|Υ′

H,a|
e−

1
2
(Ix−Bx−µa)T ζH·Υ′−1

H,aζT
H(Ix−Bx−µa) (5.9)

Note, that the above likelihood is not a real distribution if the confidence ci is set to

zero for at least one input i. However, setting ci to zero is equivalent to ignoring input

i, so that the conditional intensity probability P (Ix|Tx = ea,Bx,H) is a distribution

in the subspace of input channels with corresponding confidence parameter greater

zero. In our previous example the matrix ζHΥ′−1
H,aζ

T
H

=


 1

0



t 



 1

0





 1 0

0 0





 Υa(1, 1) Υa(1, 2)

Υa(2, 1) Υa(2, 2)





 1 0

0 0





 1

0



t 

−1
 1

0




=


 1

0




t

Υa(1, 1)−1


 1

0


 =


 Υa(1, 1)−1 0

0 0


 .

In conclusion, we have extended the hierarchical framework by the intensity based

influence parameters c, which controls the importance of the input channel in the

resulting segmentation.

5.2.2 Regulate Influence of Spatial Priors

The second important component of the weights W of Equation (5.7) is the con-

ditional probability P (Tx = ea|Ψ,H), which is currently defined to dependent on
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the spatial probability F(Ψ, a, ·). Independent of the specific parameter model Ψ,

we want to regulate the influence of the spatial priors based on the visibility of the

boundary of a structure. We therefore extend the definition of P (Tx = ea|Ψ,H) in

a similar fashion to the conditional intensity probability of the previous section. We

add the parameter λH ∈ [0, 1] to the hierarchical parameter definition H, where λH

defines the influence of the spatial prior in H. The conditional probability for each

structure a ∈ â
ŜUB

are defined as

P (Tx = ea|Ψ,H) , (1− λH) + λH · F(Ψ, a, x). (5.10)

In the example of Figure 5-3, the atlas information is of great importance at the

first level when the method robustly outlines the relatively smooth boundary between

ICC and BG. We therefore set λH to 1. At the second level, the atlas causes errors

because the large variations of each of the three tissue classes are not fully captured

in the atlas so that λH is set close to 0. In general, λH is defined by the confidence in

the atlas information for a given task, which can be measured by the overlap between

the atlas of the structure and training cases.

After defining the conditional intensity distribution and the spatial prior, we re-

visit the EM segmenter of Section 5.1.3. The E-Step, which calculates the weights

W for each structure a ∈ â
ŜUB

defined by Equation (5.7), is modified with respect to

Equation (5.9) and Equation (5.10) to

Wx(a) , 1

Zx

e−
1
2
(Ix−Bx−µa)T ζH·Υ′−1

H,aζT
H(Ix−Bx−µa)

√
(2 · π)n|ΥH,a|

· ((1− λH) + λHF(Ψ, a, x)) (5.11)

where Zx is the normalization term defined by the sum over the product between the

conditional intensity probability and conditional spatial probabilities over all struc-

tures .

In Section 5.2.1, we altered the definition of the intensity distribution. The changes

also impact the closed form solution for the image inhomogeneity calculations in

the M-Step. According to Equation (5.9) and Equation (2.27) the estimates of the
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inhomogeneities B′ are updated by

B′ ← J ·
∑

a∈â
ŜUB

Wx(a)ζH ·Υ′−1
H,aζ

T
H(Ix − µa).

We note that the hierarchical model can also be used to decouple the optimiza-

tion problems within the M-Step. In the hierarchical registration framework of Sec-

tion 3.3.3 as well as the joint shape and registration model in 4.3.2, we perform the

global registration and the assessment of the local deformation within the same itera-

tion. However, this combination of global and local deformation is not very practical

since determining the local deformations is only sensible once the global registration

has converged. With the hierarchical representation of this chapter, we overcome

this problem by performing a global registration at the top level of the tree. Once

converged, we fix the global registration and enable the estimation of the local de-

formation for each of the subtrees. The experiment in Section 5.3.4 will specifically

address this issue by comparing the performance of the two previously mentioned EM

approaches segmenting the caudate and thalamus with and without an hierarchical

anatomical framework.

In summary, this section presented an algorithm guided by the hierarchical rela-

tionship captured in a tree. Each segmentation problem defined by the tree is solved

by an EM approach. We altered the EM approaches of the previous chapter so that

the outcome of the results would be influenced by the confidence parameters with

respect to the prior information. These confidence parameters can be individually

adjusted to each subproblem defined by the tree.

As a result, the hierarchical approach is less difficult to scale then the EM ap-

proaches of the previous sections because the overall complexity of the problem de-

pends on the hierarchical model and not on the total number of structures involved.

Furthermore, information is populated from the leafs to the internal nodes within

the hierarchical segmentation approach. This reduces the risk of redundancy in the

model and therefore decreases the training effort. In addition, the prior information

is customized to each level of the segmentation through the influence parameters of
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the input channels and spatial distributions. The following pseudo code summarizes

the method.

Algorithm 6: Hierarchical Segmentation(H)

define TREE and ROI based on H
define the two lists of substructures â

ŜUB
and âSUB for root â of TREE

for all structures a in â
ŜUB

Based on the confidence parameters:

define conditional spatial probabilityP (Tx = ea|Ψ,H)

define conditional intensity probability Pâ(Ix|Tx = ea,Bx,H)

repeat EM iteration for structures defined by a ∈ â
ŜUB

and ã ∈ âSUB

The E-Step: Wx(a)← Define weights of structure according to Equation (5.11)

W̃x(ã)← Define hierarchical weights according to Equation (5.5)

The M-Step: Update Ψ′ ← arg maxΨ

∑
x

∑
ã∈âSUB

W̃x(ã) · log P (Ψ|Tx = eã, I,H)

until Ψ′ converges in ROI

define labelmap L ← Assign voxels to structures of ã ∈ âSUB based on W̃
for each structure ã in âSUB further segment ROI into substructures

define ROI ′ ← Each voxel x with Lx = ã

define TREE ′ ← The subtree rooted in ã

if ROI ′ 6= ∅ and TREE ′ 6= ∅ then

define H′ ← {ROI ′, TREE ′}
Hierarchical Segmentation(H′)

5.3 Experiments and Validation

This section discusses four different experiments that show the strengths and weak-

nesses of the new hierarchical segmentation approach. The first three experiments use

an EM approach of Section 3.2.1 in combination with Algorithm 6. This approach first

registers the spatial priors to the MR images using a non-rigid registration method. In
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the second step, the method segments the images into the structures of interest based

on Algorithm 6. We further extended the E-Step with the Mean-Field approximation

suggested by Kapur [51] to smooth out noise in the segmentation results.

The first experiment tests the capabilities of the method by segmenting the brain

into 31 structures. The next two experiments highlight the increase in accuracy of

the hierarchical concept with respect methods not implemented into Algorithm 6. We

first compare different automatic segmentation approaches by segmenting four brains

into gray matter, white matter, and corticospinal fluid. We then experiment repeats

the multi-rater validation experiment of the superior temporal gyrus of Section 3.2.2.

The experiment compares our new hierarchical method EM-Hierarchy to our previous

method EM-NonRigid (Section 3.2.1) as well as manual segmentations.

The final experiment compares the accuracy of the joint segmentation and reg-

istration method of Section 3.3 and Section 4.3 integrated into Algorithm 6. As

in Section 4.3.3, the accuracy of the 22 segmentations of the subcortical structures

are compared to manual segmentations, which we view as ground truth for this ex-

periment. The experiment shows that the hierarchical framework further increases

the accuracy of these two methods as we can decouple global registration and local

deformation between atlas and image space.

5.3.1 Parcellating 31 Structures

The capabilities of the method are demonstrated by segmenting multiple channel

brain MRIs (SPGR - General Electric specific acquisition protocol for Gradient-

echo T1-weighted: 256x256x124, resolution of 0.9375mm x 0.9375mm x 1.5 mm,

T2-weighted volumes: 256x256x62, resolution of 0.9375mm x 0.9375mm x 3.0 mm)

into 31 structures (Figure 5-6.) The hierarchical model of Figure 5-5, which guides

the segmentation process, is based on the constraints given to us by the differences

in resolution of the MRIs.

Similar to the example discussed in Section 5.1.1, the image is segmented into ICC

and Background by relying on atlas information, T2-weighted images, and SPGR

images. We define the Background as Air and Skin to properly model the intensity
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Figure 5-5: The graph shows a possible hierarchical tree for segmenting a brain MRI
into 31 structures. On the first level, the case is separated into Background and ICC.
Furthermore, Background is divided into air and skin, and ICC is segmented into
white matter (WM), gray matter (GM) and corticospinal fluid (CSF). Corticospinal
fluid is parcellated into left ambient cistern (LAC), cerebral aqueduct (CA), fourth
ventricle (FOR), third ventricle (THI), left lateral ventricle (LLV), the right ventricle
(RVE), and the remaining structures in the corticospinal fluid (CSF*). Gray matter
is parcellated into left and right thalamus (LTHA, RTHA), left and right gray matter
(LGM, RGM), and the remaining structures of the gray matter (GM*). LGM as
well as RGM are further divided into amygdala (LAMY, RAMY), anterior insular
cortex (LANT, RANT), hippocampus (LHIP, RHIP), inferior temporal gyrus (LITG,
RITG), middle temporal gyrus (LMTG, RMTG), parrahippocampus (LPAR, RPAR),
posterior insula cortex (LPOS, RPOS), superior temporal gyrus (LSTG, RSTG),
and temporal lobe (LTEM, RTEM). The segmentation guided by this hierarchical
structure is displayed in Figure 5-6.

distributions of the two structures. The ICC is further separated into corticospinal

fluid, gray matter, and white matter. For this problem, the approach ignores the

lower resolution T2-weighted data due to the higher risk of partial voluming effect

and poor contrast. The method relies on T1-weighted data and lowers the influence

of the spatial prior to reduce over-smoothing of sulci.

Further parcellating gray matter and corticospinal fluid into their substructures,

the spatial priors of these structures are of great importance due to the low dis-

criminative power of the MRI images in those regions. While we can complete the

parcellation of the corticospinal fluid in the next level, the gray matter parcellation is
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Bottom Top

Figure 5-6: The images show an automatic segmentation of brain MR images into
31 anatomical structures. The segmentation is guided by an anatomical tree, which
partitions the segmentation problem into four levels (see Figure 5-5.) This parti-
tion reduces the complexity of the segmentation problem by dividing it into simpler
subproblems.

further divided into several tasks. This division is partly motivated by the memory

constraints of the PC as well as differences in anatomical structures.

While we do not choose the hierarchical model of Figure 5-5 arbitrarily, simi-

lar segmentation results as shown in Figure 5-6 can be achieved with very different

anatomical trees. As we define the atlas by propagating the prior information from

the children to the parent structures, hierarchical models are changed with a minimal

amount of training effort. For example, if our implementation is motivated by speed

and memory allocation, then we define a binary tree with no more than two structures

per level.

While Figure 5-6 shows a robust parcellation of the brain, we currently do not

have the capabilities to validate the accuracy of this segmentation. We neither have

subjects manually outlined in all structures of interest (for a validation study) nor

multiple scans from the same patient (for a reliability study.) However, we will later

validate the approach for multiple subcortical and cortical structures using data pro-

duced by the same image acquisition sequence.
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(a) SPGR (b) T2W (c) gray matter (d) white matter

(e) EM-Only (f) EM-NonRigid (g) WS-Atlas (h) EM-Hierarchy

Figure 5-7: The input data are shown in (a) and (b). Images (c) and (d) capture
the reference standard for the various structures. The EM segmentation (e) is char-
acterized by its many outliers, which are normally reduced by atlas information (see
(f - h).) The atlas based EM approach (f) and the watershed method (g) smooth
over small gyri resulting in an underestimation of corticospinal fluid. This problem
is reduced with the new approach (h).

5.3.2 Comparison of Four Different Segmentation Methods

This section compares the segmentations of the hierarchical approach to these of three

other implementations. Each method outlines the corticospinal fluid, white matter

and gray matter in four MR data sets of the brain (SPGR and T2: 256x256x124,

resolution of 0.9375mm x 0.9375mm x 1.5 mm.) This experiment uses a different

imaging acquisition sequence than the previous experiments, which underlines the

flexibility of our approach.

The first implementation, EM-Only, is very similar to the EM approach of Sec-

tion 2.3.3, but uses stationary priors and the mean field approximation by Kapur

et al. [51]. The mean field approximation generally smooths over noise and gen-

erates homogeneous segmentations. The next three approaches further constrain

their segmentation model with spatial priors, which are aligned to the patient by

the non-rigid registration approach of Section 3.2.1. Like EM-Only, the second im-

plementation, EM-NonRigid of Section 3.2.1, uses the mean field approximation by
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Kapur [51]. The third approach, WS-Atlas, is the watershed implementation by Grau

[39]. The method turns the image into a topographic relief map, which defines the

“peaks” and “valleys” of the image, and then “floods” the relief map to determine

the corresponding segmentation.

The fourth method, EM-Hierarchy, incorporates the hierarchical model. Based

on EM-NonRigid, EM-Hierarchy is guided by the hierarchical framework defined in

Figure 5-3. Unlike the experiment of Section 5.3.1, SPGR and T2-weighted MR

images have the same resolution so that the influence of T2-weighted data is not

reduced when segmenting brain tissue on the second level.

The quality of each segmentation is defined using the STAPLE method of Section

1.5. To evaluate a segmentation, a reference standard is first estimated using STAPLE

on the output of all methods except the one under evaluation. This reference standard

captures the highest consensus between the segmentations, which is in general not

the ground truth. However, we use this method in the hope that the the highest

consensus between the segmentations is close to the ground truth. The consensus of

the selected segmentation to the reference standard is defined by DICE, the volume

overlap measure of Section 1.5.

Figure 5-8 shows the result of our comparison. Out of the four methods, EM-Only

always receives the lowest score. Outliers, normally removed by an atlas, reduce its

accuracy (see Figure 5-7 (e).) EM-NonRigid does well on white matter and gray

matter but performs poorly on corticospinal fluid because it generally overestimates

gray matter and underestimates corticospinal fluid (Figure 5-7 (f).) This problem is

caused by the spatial priors that are needed for separating the three tissue classes

from the rest of the image. We refer to the beginning of this chapter for more detail.

WS-Atlas (Figure 5-7 (g)) generally does better than EM-NonRigid but is outper-

formed by EM-Hierarchy for all but one case (white matter in case 4.) EM-Hierarchy

(Figure 5-7 (h)) does well on all three tissue classes due to the new hierarchical def-

inition of spatial prior, spatially conditional intensity probability intensity and the

influence parameters λ and the intensity confidence parameter c (see Section 5.2.) Un-

like the other methods, EM-Hierarchy adjusts the influence of the prior information
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with respect to segmentation problem. It is guided by spatial priors for the segmen-

tation of the intracranial capacity but ignores the priors when further segmenting the

intracranial capacity into the three major tissue classes.

The influence of the hierarchical model on the segmentation results is very ap-

parent when comparing the segmentation of EM-NonRigid to EM-Hierarchy. EM-

NonRigid segments the entire MRI image in one step. It has to compromise between

robustly outlining the smooth borders of the inter cranial cavity, which is the bound-

ary of the brain defined by corticospinal fluid, gray and white matter, or the rather

convoluted boundary between the corticospinal fluid and gray matter. As the out-

side and the inside of the inter cranial cavity have similar intensity patterns, the

method heavily relies on spatial priors. However, this causes the algorithm to smooth

over small sulci (see also picture (f) in Figure 5-7.) In contrast, EM-Hierarchy can

properly individualize the atlas information towards both boundaries. It relies on

the spatial prior to detect the smooth boundaries of the inter cranial cavity and re-

duces the influence of the spatial priors for the detection of the boundary between

corticospinal fluid and gray matter. In general, this modeling approach reduces the

overestimation of cortical gray matter by better individualizing the prior information

to the segmentation scenario.

5.3.3 Multiple Rater Experiment of the Superior Temporal

Gyrus

This section repeats the multiple rater experiment of Section 3.2.2 to further high-

light the accuracy of the hierarchical guided segmentation process. The experiment

compares six expert segmentations of the superior temporal gyrus in four cases to the

automatically generated results of EM-NonRigid and EM-Hierarchy (see Figure 5-9.)

Again, we use the volume overlap measure DICE (Section 1.5) and the Positive Pre-

dictive Value (PPV) of Section 1.5. In contrast to the approaches of Section 3.2.2,

our new hierarchical approach achieves an accuracy in automatically segmenting the

superior temporal gyrus that is comparable to the manual segmentations.
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Figure 5-8: The graph shows the DICE score of the results of four different segmenta-
tion methods in comparison to a reference standard. Our new method EM-Hierarchy
generally achieves the highest score for all three tissue classes because it can properly
target the prior model to the segmentation problem.

Figure 5-10 displays the results of the DICE comparison. The brightness of a

square indicates high correlation between the corresponding segmentations. Raters 1

- 6 represent medical experts, rater 7 is EM-NonRigid, and rater 8 is EM-Hierarchy.

As mentioned, the medical experts differ in their levels of expertise with respect to

segmenting the superior temporal gyrus. Rater 2 is the least experienced, which

is also captured by our validation. The only other clear outlier is rater 7 (EM-

NonRigid). While the method generally produces good results in comparison to

EM-Affine of Section 3.2.1, it is not reliable enough to match the quality generated

by manual segmentations. For the right superior temporal gyrus, however, the results

(mean PPV score: 98.25%) developed by EM-Hierarchy (Rater 8) are within the

variance of good manual segmentations (rater #1,#3 - # 6) (average mean PPV

score: 0.98% variance within PPV score:1% ). For the left superior temporal gyrus,

the results of EM-Hierarchy (mean PPV Score: 96%) are within the range of all

manual segmentations (average PPV score: 97.8% variance within PPV score: 2.3%).

In general, EM-Hierarchy outperforms EM-NonRigid by 5 percentage points.

The DICE measure can also be correlated to the sample segmentations displayed

in Figure 5-9. While no large differences can be observed among raters 1, 3-6 and
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Figure 5-9: The images show segmentations of the right and left superior temporal
gyrus. The upper row displays the original image with the segmentations of rater 1
- 6 and the segmentation of EM-NonRigid (EM-Non). The lower row overlays the
result of the hierarchical approach (gray outline) with different segmentations (white
outline.) No large visible differences can be found between the manual segmentations
and the hierarchical segmentation. On the other hand, the segmentation of EM-
NonRigid is very noisy when compared to the new approach.

EM-Hierarchy, rater 2 generally overestimates the structure and the results of EM-

NonRigid are noisy and disconnected.

The observations of the DICE analysis are also confirmed by the PPV test. The

first six entries in Figure 5-11 correspond to the experts, rater 7 is EM-NonRigid,

and rater 8 is EM-Hierarchy. Rater 2 and EM-NonRigid clearly perform the worst.

In all but one case, EM-Hierarchy performs similarly to rater 1, 3 - 6. The lower

score for one case of the right superior temporal gyrus is caused by errors in the

initial alignment process whose impact we already discussed in detail in Section 3.2.2.

This exception also explains the lower mean score and higher standard error in the

automatic segmentation of the right superior temporal gyrus in comparison to the left

superior temporal gyrus. Even in this one case EM-Hierarchy scores higher than rater

2 and EM-NonRigid. If we compare the segmentation with the reference standard

generated by STAPLE to the segmentation using the DICE measure, an overlap of
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Figure 5-10: The graph shows the average DICE measure for the superior tempo-
ral gyrus over four cases. Number 1 - 6 correspond to manual expert segmentations,
number 7 corresponds to EM-NonRigid, and number 8 represents EM-Hierarchy. The
brightness of a square indicates high correlation between the corresponding segmen-
tations. The only outliers for the right and left superior temporal gyrus are segmen-
tation 2 and 7, which are characterized by the darker squares. Using DICE the new
approach (#8) cannot be distinguished from the other good manual segmentations
(#1, #3 - #6.)

95% is achieved, which is still an excellent rating.

The increased accuracy of EM-Hierarchy compared to EM-NonRigid is a result of

the reduced statistical complexity of the hierarchical framework. In contrast to the

last experiment, EM-NonRigid only focuses on the structures inside the inter-cranial

cavity. Nevertheless, corticospinal fluid, white matter, and neighboring cortical sub-

structures are competing for the region around the superior temporal gyrus. EM-

NonRigid carefully compromises between the influence of the intensity information

and the spatial prior. On the other hand, EM-Hierarchy is guided by the hierarchical

structure presented in Figure 5-5. Based on Figure 5-5 it first outlines the border

between gray matter, white matter, and corticospinal fluid mostly relying on the in-

tensity constraints. When EM-Hierarchy later segments the superior temporal gyrus,

the scenario is a lot simpler than for EM-NonRigid, because EM-Hierarchy only fo-

cuses on outlining the border between cortical structures, which is mainly guided by

spatial constraints.

In summary, the hierarchical approach reduces the spatial complexity of segmen-
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Figure 5-11: The results of STAPLE comparing 6 experts’ (1-6) and 2 automatic
segmentations (7 and 8). The algorithm presented in this chapter (8) is much more
robust than the same approach without hierarchical structure (7). Additionally the
results of our approach are close to the variance of the experts.

tation problems. The accuracy of the method is similar to manual segmentations at

least for the superior temporal gyrus.

5.3.4 Comparison of Joint Registration and Segmentation

Approach Using the Hierarchical Framework

We now analyze the impact on the accuracy of EM approach when decoupling the

parameter estimation within the M-Step as suggested in Section 5.1.3. For this pur-

pose, we repeat the experiment of the previous chapters segmenting 22 cases into the

major brain tissue classes as well as the thalamus and the caudate. We then measure

the accuracy of each automatic segmentation by comparing it to the corresponding

manual segmentation using the volume overlap measure DICE of Section 1.5.

We first run the experiment on the two non-hierarchical methods

EM-Simultaneous-Affine (Section 3.3.3) and EM-Simultaneous-Shape (Section 4.3.2,)

which simultaneously determine the mapping from atlas to image space and segment

the images into anatomical structures. The deformation model is encoded through

global and local registration parameters. Determining the local deformation, however,

is only practical when the optimal global registration is found. This constraint could
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not be encoded in a principled manner by the models of Section 3.3.3 and Section

4.3.2. The hierarchical EM framework of this chapter can associate each registration

parameter with the appropriate level of the tree.

To study the impact of the hierarchical model, we repeat the experiment of the

22 test cases. This time EM-Simultaneous-Affine and EM-Simultaneous-Shape are

guided by the hierarchical relationship between anatomical structures. This relation-

ship is captured in a tree of two levels. On the first level of the tree, the approaches

determine the global mapping between the atlas and image space while simultaneously

separating the image space into background and brain. On the second level of the

tree, the methods fix the global registration parameters and perform an estimation

for the local deformation as well as further parcellate the brain into white matter,

gray matter, cortical spinal fluid, ventricles, caudate, and thalamus. We name the

resulting methods EM-Hierarchy-Affine and EM-Hierarchy-Shape respectively.

Average DICE with standard error over 22 Cases

Method Thalamus Caudate

EM-Simultaneous-Affine 88.7 ±0.4% 85.0 ±0.7%

EM-Hierarchy-Affine 89.4 ±0.3% 86.1 ±0.6%

EM-Simultaneous-Shape 89.0 ±0.6% 86.2 ±0.6%

EM-Hierarchy-Shape 88.8 ±0.6% 86.6 ±0.7%

Table 5.1: The table shows the impact of the hierarchical framework on the EM ap-
proaches. For the integrated affine registration approach (EM-Simultaneous-Affine
vs. EM-Hierarchy-Affine) the hierarchical framework increases the accuracy by an
average DICE score of 0.9%. The greater accuracy is the result of separating the
search of the optimal parameter setting with respect to global and local affine reg-
istration parameters. For the shape based approaches (EM-Simultaneous-Shape vs.
EM-Hierarchy-Shape) the impact of the hierarchical model is insignificant as the
global rigid registration and the local shape deformations are relatively independent.

The impact of the hierarchical approach is greater for EM-Hierarchy-Affine then

EM-Hierarchy-Shape as shown in Table 5.1. In comparison to the non-hierarchical

approach EM-Simultaneous-Affine, EM-Hierarchy-Affine improves the average DICE

163



score by 0.7% for the thalamus and 1.1% for the caudate. This improvement is due

to the sequential optimization of the global and local affine registration parameters

as defined by the hierarchical framework. EM-Simultaneous-Affine optimizes these

two types of registration parameters simultaneously. This, however, creates instabil-

ity within the EM approach as these two types of registration parameters are not

independent.

The impact of the hierarchical framework on the shape based method

EM-Hierarchy-Shape are rather negligible. Both shape based methods

(EM-Simultaneous-Shape and EM-Hierarchy-Shape) perform well on both structures

because the global rigid registration parameters and the structure-specific shape defor-

mations describe two independent attributes within the segmentation model. Unlike

the affine registration model, the simultaneous optimization of these two parameters

does not destabilize the EM approach.
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Figure 5-12: The graph compares the accuracy of the pipeline based approaches EM-
Affine and EM-NonRigid (EM-NRigid) to our integrated methods EM-Hierarchy-
Affine (EM-Hier-Af) and EM-Hierarchy-Shape (EM-Hier-Sh). For both structures
our integrated methods perform better than the pipeline based approaches. See text
for detailed discussion.

In Section 3.2.1, we developed the pipeline based approaches EM-Affine and

EM-NonRigid. We again repeat this experiment to compare these two methods

to the unified-hierarchical approaches EM-Hierarchy-Shape to EM-Hierarchy-Affine.

Figure 5-12 shows the result of this comparison. For both anatomical structures, the
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joint approaches achieve a higher average DICE score than the pipeline based meth-

ods. In addition, EM-Hierarchy-Affine significantly outperforms EM-Affine as the

two intervals defined by the corresponding mean DICE score and the standard error

do not overlap. The greater accuracy of our joint approaches is due to the seamless

integration of the following three problems into an unified Bayesian framework:

-- the registration of atlas information to the subject specific images,

- the segmentation of the images into anatomical structures, and

- the representation of the hierarchical relationships between anatomical struc-

tures in a tree.

5.4 Discussion

This chapter presented an anatomically guided segmentation model. The concept is

based on a hierarchical data structure decoupling the complexity of the segmentation

scenario from the number of structures to be segmented. To reduce the redundancy of

the model, atlas information from the children is propagated to the parent structures.

The resulting method adjusts to new segmentation problems efficiently as the depen-

dency between structures is defined in the atlas space and not by the approach itself.

In addition, the method properly tailors the prior information to each structure of

interest, which reduces the risk of systematic biases as indicated by the experiments.

The hierarchical methodology presented in this section is a concept that is applica-

ble to a class of segmentation methods such as [103, 33]. When applied to the different

EM approaches the segmentation algorithm becomes more flexible and robustly han-

dles complex segmentation scenarios. Parcellating a large number of structures can

be handled by designing an appropriate tree, thus reducing the magnitude of memory

and computing requirements. We expect similar results if the hierarchical concept is

applied to other methods.
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Chapter 6

Conclusion

This thesis developed an algorithm that automatically segments MR images into

anatomical structures. The algorithm outlines structures with weakly visible bound-

aries as well as clearly defined perimeters. The main contribution of this thesis is

the way we combine different types of prior information in a Bayesian framework,

which captures image inhomogeneity correction, atlas registration, shape detection,

and anatomical dependencies.

The success of the approach is due to the reduced space of possible solutions

when compared to solving each problem individually. For example, the method de-

tects misalignment between atlas and image space by comparing the prior information

of the atlas to the current segmentation. The segmentation itself is guided by the

shape atlas, whose deformations are constrained by the relationship between different

anatomical structures. The relationship of different anatomical structures, however,

is characterized by the aligned prior information. Capturing these dependencies re-

sults in a Bayesian framework that increases the accuracy of automatic segmentation

methods in comparison to previous models in medical imaging.

To test the previous statement, we posed the optimal solution within this frame-

work as a maximum a posteriori probability estimation problem. We find a solution

for this estimation problem using an instance of the Expectation-Maximization al-

gorithm. We then applied the algorithm to a variety of experiments ranging from

the segmentation of the brain into the major tissue classes to the parcellation of the
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tissue classes into the substructures with weakly visible boundaries. In general, these

studies highlighted the superior performance of our novel approach in comparison to

other Expectation-Maximization implementations. We conclude that our new way of

integrating prior information into segmentation methods increases the robustness of

certain automatic segmentation algorithms.

6.1 Future Work

The results of this thesis suggest possible extensions in several different directions.

For example, this thesis implies that an increase in complexity of the parameter space

can positively impact the robustness of the resulting segmentation method. We are

interested in using more complete image inhomogeneity models (like in [29, 111]) as

well as explicitly representing other image artifacts such as noise and partial volum-

ing. The remainder of this section, however, focuses on new research opportunities

resulting from the tree concept discussed in Chapter 5.

In this thesis, we used a tree to model the hierarchical relationship between differ-

ent anatomical structures. The tree populates the current parameter estimates from

the parent to the child classes and the prior information from the child to the parent

classes. The algorithm traverses through the tree by segmenting the region of inter-

est of the root into its subtrees and then repeats the process for the subtrees until it

reaches the leafs of the tree. The algorithm never returns to the parent structures so

that it cannot correct any inaccuracies at the higher levels of the tree. In order to

overcome this drawback, we are interested in developing a graphical model based on

the tree structure.

In the graphical model the nodes of the tree represent the anatomical struc-

tures of interest. This is a very different concept to the already existing graphical

models in medical imaging, where each node represents a voxel in the image space

[44, 74, 33, 117, 65, 51, 103, 76]. The random vectors associated with each node

regularize the influence of the prior information onto the segmentation environment.

The energy associated with the status of a node would be determined by the objective
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function of the underlying EM implementation. As the edges in a graphical model

represent the conditional probability of adjacent nodes, optimizing the tree would

correspond to finding the most likely segmentation given the current observation and

prior information.

The concept of graphical models is independent of the underlying segmentation

approach so that the results of this research would be applicable to a variety of

segmentation techniques. The new approach is integrated into the tree framework

by substituting the EM implementation determining the energy of each node. This

concept would not only increase the robustness of a wide range of already exist-

ing methods but also would reduce the efforts necessary to adjust these methods to

different segmentation problems. For example, our current implementation requires

manually defining the influence of the prior information at each level of the tree in the

training phase. With the new approach, this task would be automatically performed.

As the tree determines the optimal parameter setting for each type of algorithms,

the automatic segmentations of an approach are theoretically the best results achiev-

able given the prior information and MR images. This framework would therefore

present a validation platform for different segmentation philosophies, as the outcome

would not be biased by the specific manual parameter setting of each algorithm.

To conclude, we developed a unified Bayesian framework in order to outline

anatomical brain structures with weakly and clearly defined boundaries in MR images.

The main contribution of this thesis is the way we integrate prior information into the

unified Bayesian framework. The resulting EM approach simultaneously registers the

atlas to the image space, detects the shape of an anatomical structure, and models

the image inhomogeneities in the MR images. It uses the hierarchical relationship

between anatomical structures to simplify the underlying optimization problem. We

applied the method to a variety of experiments and showed that it outperforms other

EM implementations on certain anatomical structures.
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