

3D Slicer for clinical use, for radiotherapy research, and for your research work

Andras Lasso

Laboratory for Percutaneous Surgery, School of Computing Queen's University, Kingston, ON Canada

3D Slicer for clinical use

software application for MRI-guided prostate interventions

MRI-guided prostate biopsy

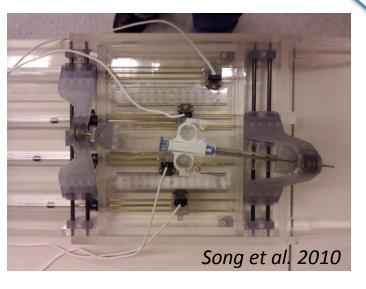
Multiple supported devices

- Transrectal robot-assisted (TRR)
- Transperineal template (TPT)
- Transperineal robot-assisted (TPR)

Multiple clinical sites

NIH-NCI (Bethesda,

MD): TRR

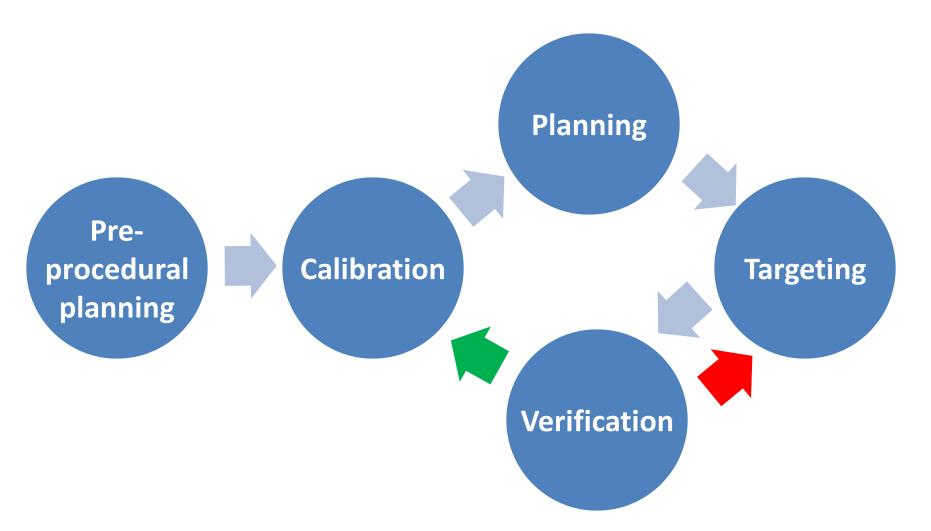

JHH (Baltimore, MD):

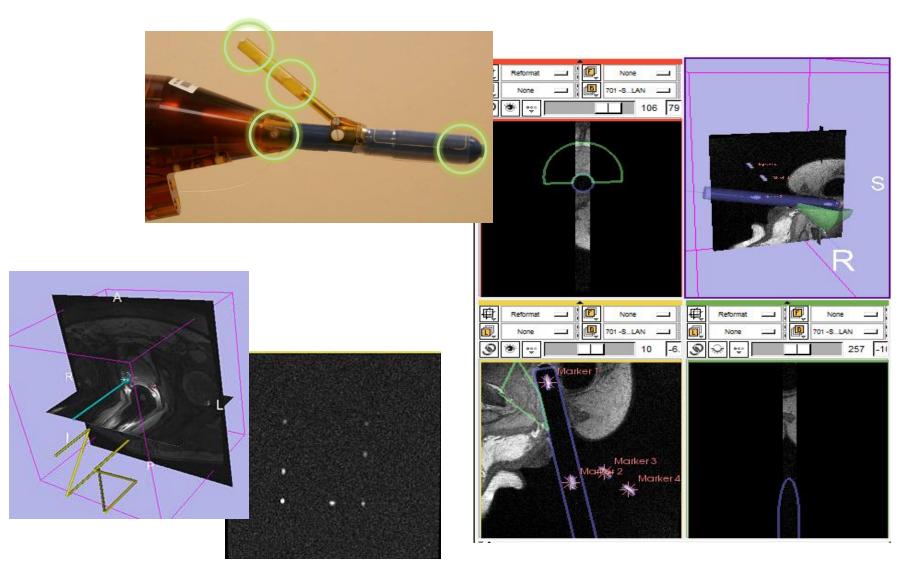
TRR

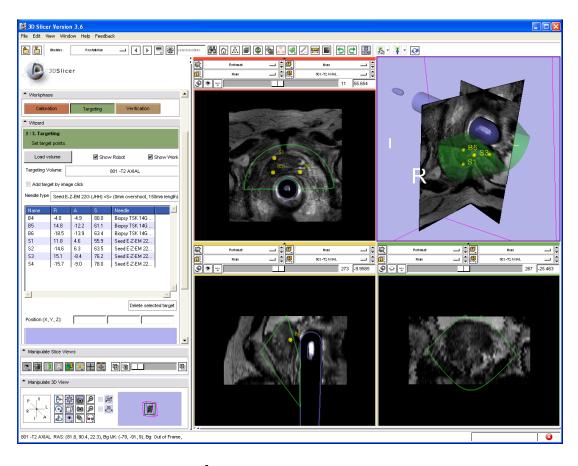
• BWH (Boston, MA):

TPT, TPR

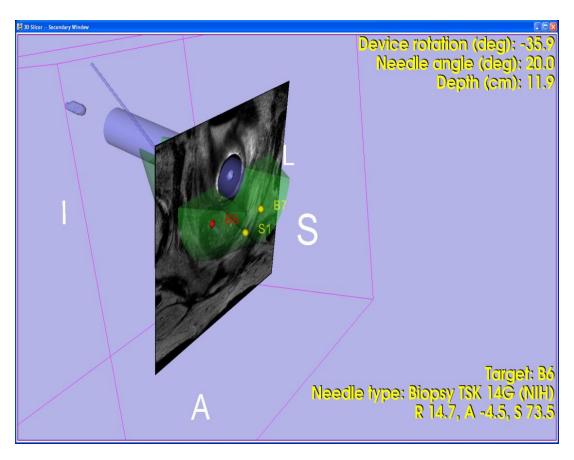
 PMH (Toronto, ON): image sharing only




Image-guided biopsy workflow steps

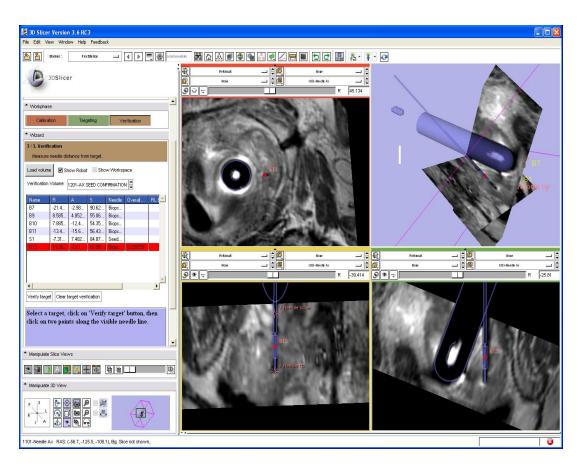

Calibration

Planning



- Register/show available images
- Mark point targets

Targeting



- Simplified display on procedure-room monitor
- Robot, scanner control

Verification

- Verify patient, robot, and needle position
- Using automatic image registration

3D Slicer clinical use – summary

- Successful example: same software, multiple devices, multiple sites
- Use existing features in 3D Slicer
- Customization
 - Software development: algorithms and graphical user interface
 - Quality assurance process: testing, change control, releases, issue tracking

3D Slicer for radiation therapy research

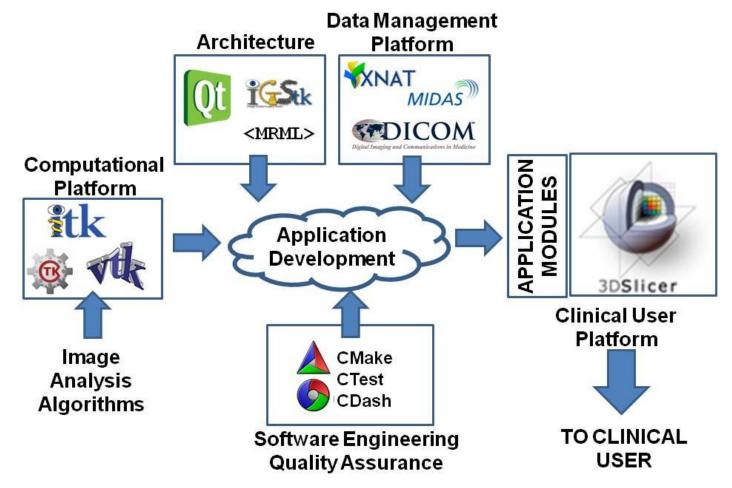
Active projects

- Adaptive radiotherapy for head and neck cancer (http://www.na-mic.org/pages/DBP:Head and Neck Cancer)
 - Funded by NA-MIC, 2010-2013
 - PI: Greg Sharp (MGH, Boston, MA)
 - 4 researchers, software engineers
- SparKit: toolkit and platform for radiotherapy (https://www.assembla.com/spaces/sparkit/)
 - Funded by Cancer Care Ontario, 2011-2016
 - PI: G. Fichtinger (Queen's University, Kingston, ON)
 Co-investigator: Terry Peters (Robarts Institute, London, ON)
 Project leader: Andras Lasso (Queen's University, Kingston, ON)
 - 6-8 software engineers and infrastructure
- NA-MIC collaborations in preparation
 (http://www.na-mic.org/Wiki/index.php/
 Computational Methods for Radiation Oncology)

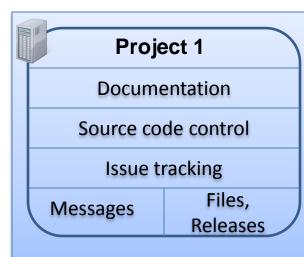
SparKit: Software Platform and Adaptive Radiotherapy Kit

- Software Platform (SP): shared, reusable, and customizable basic software components for radiotherapy
- Adaptive Radiotherapy Kit (ARKit): Specific toolkit for adaptive radiation therapy and associated image-guided interventions

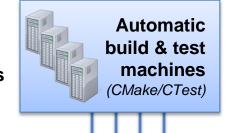
Goals:


- Validate clinical hypotheses in clinical trials
- Ready-to-use image analysis and visualization capabilities
 => avoid re-development
- Quickly deployable systems
 - => minimize system engineering effort

SparKit tools


Based on 3D Slicer and the NA-MIC kit

SparKit infrastructure



Documentation Source code control Issue tracking Messages Files, Releases

Project	
Documentation	
Source code control	
Issue tracking	
Messages	Files, Releases
(Assembla + image database)	

- Download software
- Report errors
- Upload data/images
- Develop software application
- Test & optimize
- Fix errors
- Deliver software releases
- Use data/images

- Develop computing algorithms
- Use testdata/images

Clinical Users

System Engineers (SparKit personnel)

Dashboard (CDash)

Project scope (tentative)

- DICOM-RT support in 3D Slicer: import/export structure sets and dose maps
- Visualization: dose volume histogram, isodose lines
- Better support for temporally changing data (2D+t, 3D+t)
- 3D Slicer performance optimization
- Image and protocol data sharing infrastructure
- ... still collecting inputs from the community

Current SparKit activities

- Set up team & infrastructure
 - www.assembla.com/spaces/sparkit
 - Software engineers hiring
- Identify needs
 - Survey, meetings
- Set up collaborations

3D Slicer for your own problem

Programming 3D Slicer

Main concepts

- All information is stored in MRML (Medical Reality Modeling Language) nodes
 - Node types: images, models, transforms, fiducial lists, etc.
 - Observer pattern: MRML nodes notify their observers of any state changes
- Extension/customization via plugin modules
 - Define new nodes, observe existing MRML nodes
 - ITK, VTK, Teem, Curl, OpenIGTLink, QT already available

Programming 3D Slicer

• Command-line module: .exe file (with specific command-line parameters)

- simple, executable without Slicer
- no access to Slicer internals, Slicer compilation needed
 - Scripted module: Python or TCL scripts

- simple, no compilation needed
- limited access to Slicer internals
 - Loadable (interactive) module: .dll (with specific Slicer API interface)

- full access to Slicer internals
- Slicer compilation needed, requires Slicer core knowledge

Getting started

- Download: http://www.slicer.org/pages/Special:SlicerDownloads
- Latest stable version (recommended)
 - Type of download: Stable Releases
 - File to download: latest date
- Documentation, examples, step-by-step tutorials, etc: http://www.slicer.org/
- 3D Slicer training courses, developer meetings: <u>http://www.na-mic.org/Wiki/index.php/Events</u>
- Slicer4 (faster, nicer, ...) is expected to be released for RSNA 2011

Thank you.

Andras Lasso

lasso@cs.queensu.ca

Laboratory for Percutaneous Surgery
School of Computing
Queen's University, Kingston, ON

http://perk.cs.queensu.ca

http://www.assembla.com/spaces/sparkit

