

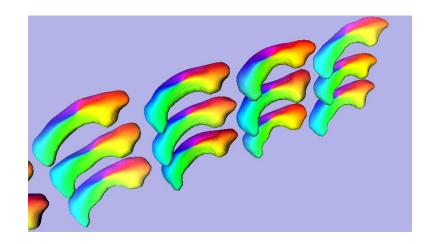
NA-MIC National Alliance for Medical Image Computing http://www.na-mic.org

Shape analysis using spherical harmonics

Lucile Bompard, Clement Vachet, Beatriz Paniagua, Martin Styner

University of North Carolina, Chapel Hill: Neuro Image Research and Analysis Lab

lucile.bompard@cpe.fr


NA-MIC Tutorial Contest: Summer 2011

Learning Objective

This tutorial shows how to perform shape analysis studies using:

- → ShapeAnalysisModule
- → ParticulesModule.

Pre-requisite

This tutorial assumes that you have already completed the Slicer3Visualization Tutorial (by Sonia Pujol)

The tutorial is available at: http://www.slicer.org/slicerWiki/index.php/Slicer3.6:Training

Material

This tutorial requires the installation of the **Slicer3.6** release, **BatchMake**, some **Slicer extensions** and the **tutorial dataset**.

They are available at the following locations:

→ Slicer3.6 download page

http://www.slicer.org/pages/Downloads/

→ **Extension** we are still working on adding the tools the the Slicer extension : it will be available under the name : spharm-pdm

If you do not find it:

- → External application the last release on the download page : http://www.nitrc.org/frs/?group_id=308
- → Tutorial dataset:ShapeAnalysis_TutorialData

http://www.nitrc.org/docman/index.php? group_id=308&selected_doc_group_id=760&language_id=1#folder

Platforms

This tutorial has been developed and performed on Linux64.

http://wiki.na-mic.org/Wiki/index.php/Training:Summer_2011_Contest_Table

Prerequisites

Add the **BatchMake Applications**:

Set the environnement variable BatchmakeShapeAnalysisModule_Dir

→ tcsh usage :

setenv BatchmakeShapeAnalysisModule_Dir /your absolute path/spharm-pdm_Linux32or64/BatchMake_Applications

→ bash usage :

export BatchmakeShapeAnalysisModule_Dir=/your absolute path/spharm-pdm_Linux32or64/BatchMake_Applications

Add the external applications: (command line usage)

→ tcsh usage :

setenv PATH /your absolute path/spharm-pdm_Linux32or64/:\${PATH}

→ bash usage :

export PATH=/your absolute path/spharm-pdm_Linux32or64/:\${PATH}

Prerequisites

To add the <u>extension</u> ShapeAnalysisModule:

→ Use the View →Extension Manager menu option →Next

Find and install **SPHARM-PDM** extension.

NB: we are still working on this extension, if you do not fin it, please, download the executables here: http://www.nitrc.org/frs/?group_id=308 (The last release)

Prerequisites

Add **ShapeAnalysisModule** as Slicer3 <u>external module</u>:

- ⇒ Open Slicer3.
- **⇒** Go to View → Application Settings → Module Settings.
- ⇒ Click on the "add a preset" button.
- ⇒ Select the "spharm-pdm_Linux32or64" folder and confirm.
- ⇒ Close Slicer3.

Overview

- 1- Input file
- 2- Pipeline description
- 3- Output images and organisation
- 4- Execution within Slicer
- 5- Command line execution
- 6- Conclusion

Overview

- 1- Input file
- 2- Pipeline description
- 3- Output images and organisation
- 4- Execution within Slicer
- 5- Command line execution
- 6- Conclusion

Input File

- → A CSV file: Comma Separated Value
 → Contains all the subjects information: age, group, MRI...
 → Contains the path to the data, which are binary segmentation of a single brain structure

```
Gender, InputFile1, Input File Description
0,/devel/linux/ShapeTools/example/hippocampi/oriqData/groupA_01_hippo.gipl.gz,none
0,/devel/linux/ShapeTools/example/hippocampi/oriqData/groupA_02_hippo.gipl.gz,none
1,/devel/linux/ShapeTools/example/hippocampi/origData/groupB_01_hippo.gipl.gz,none
1,/devel/linux/ShapeTools/example/hippocampi/origData/groupB_02_hippo.gipl.gz,none
```

Fig: a CSV file.

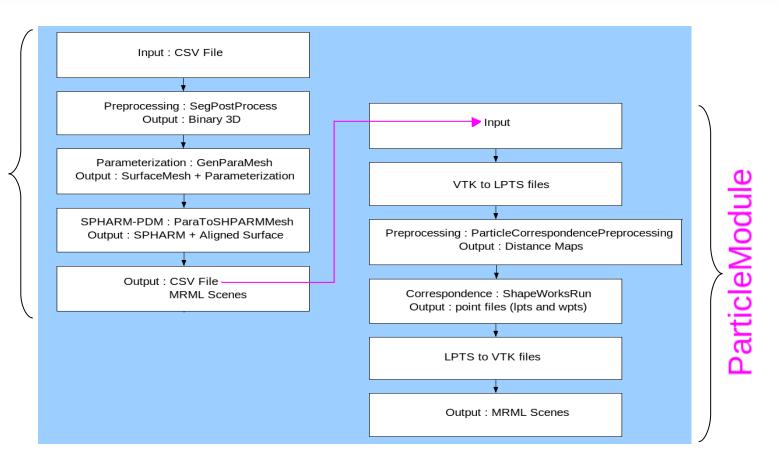
Input File -with the dataset-

The data set for this tutorial:

- → Download and unzip : ShapeAnalysis_Data_Example.zip
- → All the hippocampus needed are in the folder "origData"
- → Modify the -4data- CSV file: replace the path of the data by yours.

The first line of the CSV file, needs to be the headers of the columns

We will use the CSV with only 4 of the 40 hippocampus available, in order to increase the speed of the running

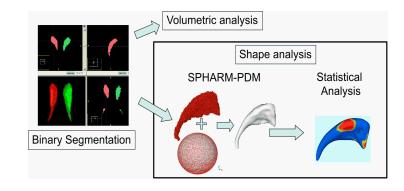

Overview

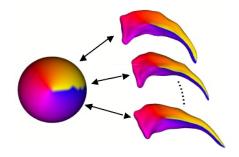
- 1- Input file
- 2- Pipeline description
- 3- Output images and organisation
- 4- Execution within Slicer
- 5- Command line execution
- 6- Conclusion

Pipeline Description

Pipeline Description - ShapeAnalysisModule-

→ SegPostProcess

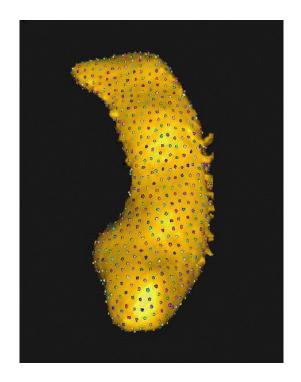

- Fills interior holes.
- Performs minimal smoothing operation and ensures spherical topology.


→ GenParaMesh

- Processed binary segmentations are converted to raw surfaces meshes
 - A spherical parametrization is computed.

→ ParaToSPHARMMesh

- The SPHARM description with inherent correspondence is then computed from the mesh and its spherical parametrization.
- Triangulated surfaces with correspondences are computed next (SPHARM-PDM) via. icosahedron of the spherical parametrization.

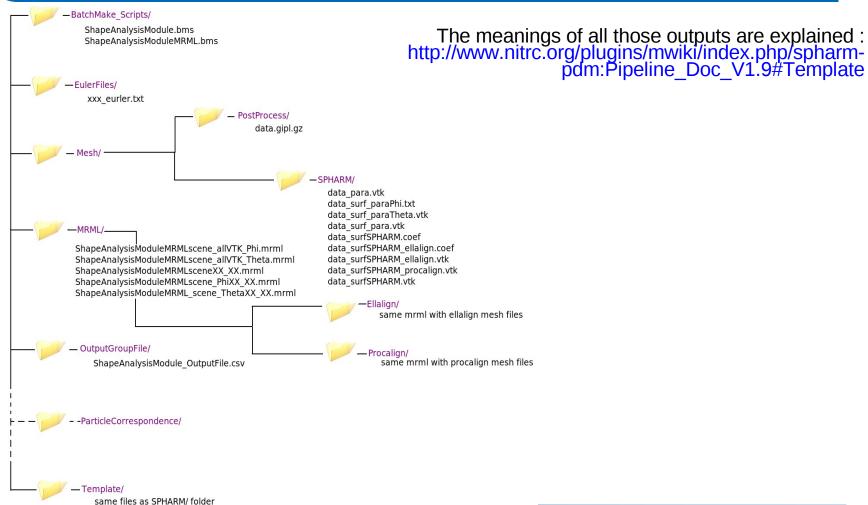

Pipeline Description -ParticleModule-

→ PreProcessing

Remove the hight-frequency artefacts

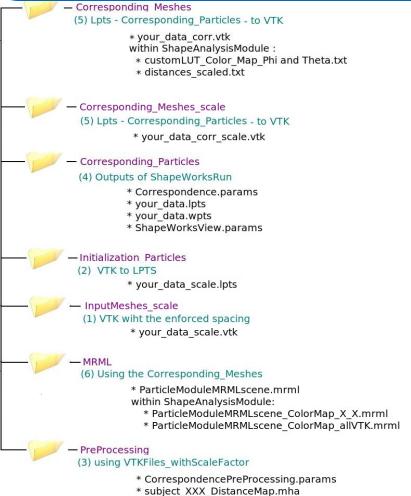
→ ShapeWorks

Optimization of the positions of the correspondences



Overview

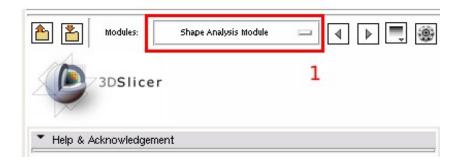
- 1- Input file
- 2- Pipeline description
- 3- Output images and organisation
- 4- Execution within Slicer
- 5- Command line execution
- 6- Conclusion



Output files and organisation: -ShapeAnalysisModule -

Output files and organisation: -ParticleModule -

Overview

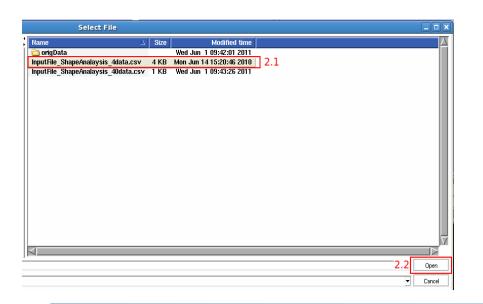

- 1- Input file
- 2- Pipeline description
- 3- Output images and organisation
- 4- Execution within Slicer
- 5- Command line execution
- 6- Conclusion

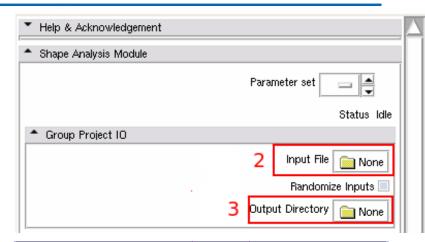
Execution within Slicer:Start the ShapeAnalysisModule

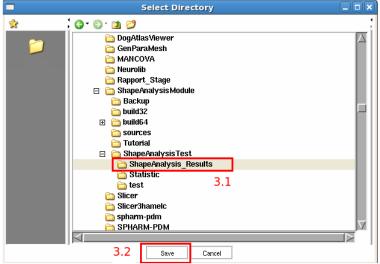
When 3D Slicer is started it shows the Welcome window on the left.

1- Select the "ShapeAnalysisModule" in Modules -> Shape Analysis.

Execution within Slicer: Input and Output directory

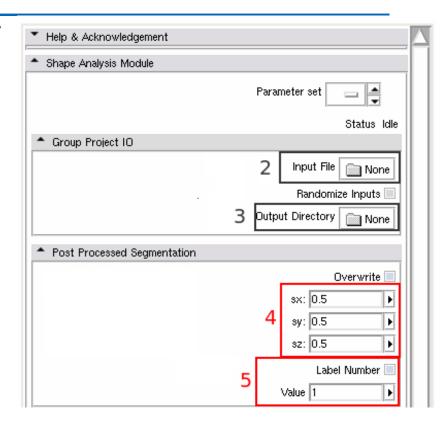

1- Select the "ShapeAnalysisModule" in Modules -> Shape Analysis.


2-Click on "Input File"


Select the input file (CVS) (2.1) and then click on the "Open" button (2.2)

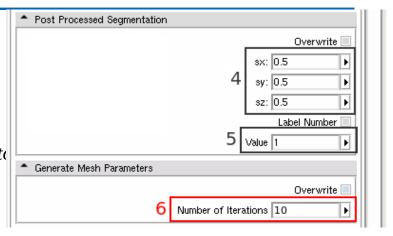
3- Click on "Output Directory"

Select the output directory (3.1) and then click on the "Save" button(3.2)



Execution within Slicer: SegPostProcess Parameters

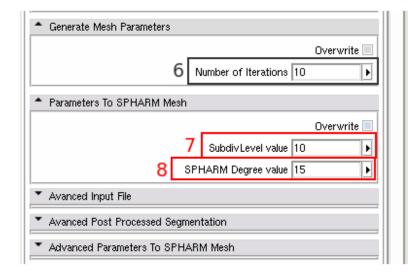
- 1- Select the "ShapeAnalysisModule" in Modules -> Shape Analysis.
- 2-Click on "Input File"
- 3- Click on "Output Directory"
- 4- Set the enforced spacing in x,y and z direction.
- 5- (optionnal) Check the box "Label Number" and set "Value" to first extract this label before processing.


Execution within Slicer: GenParaMesh Parameters

- 1- Select the "ShapeAnalysisModule" in Modules -> Shape Analysis.
- 2-Click on "Input File"
- 3- Click on "Output Directory"
- 4- Set the enforced spacing in x,y and z direction.
- 5- (optional) Check the box "Label Number" and set "Value" to first extract this label before processing.

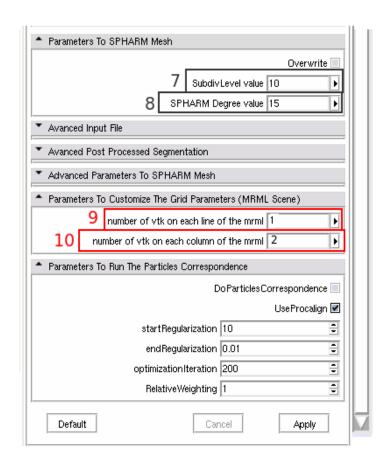
6- Set "Number of Iterations" to 10.

The number of iterations is greatly reduced (1000 to 10), to increase the speed of the running.


Outside this tutorial, you should use the default value (1000) or even more.

Execution within Slicer:ParaToSPHARMMesh Parameters

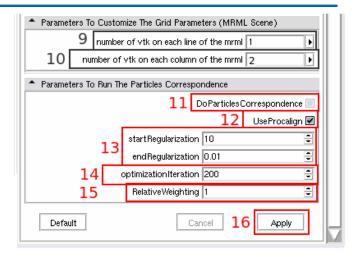
- 1- Select the "ShapeAnalysisModule" in Modules -> Shape Analysis.
- 2-Click on "Input File"
- 3- Click on "Output Directory"
- 4- Set the enforced spacing in x,y and z direction.
- 5- (optional) Check the box "Label Number" and set "Value" to first extract this label before processing.
- 6- Set "Number of Iterations" to 10
- 7- Set the subdivision level for the icosahedron subdivision
- **8-** Set the maximal degree for the SPHARM computation



Execution within Slicer: MRML Scene Parameters

- 1- Select the "ShapeAnalysisModule" in Modules -> Shape Analysis.
- 2-Click on "Input File"
- 3- Click on "Output Directory"
- 4- Set the enforced spacing in x,y and z direction.
- 5- (optional) Check the box "Label Number" and set "Value" to first extract this label before processing.
- 6- Set "Number of Iterations"
- 7- Set the subdivision level for the icosahedron subdivision
- 8- Set the maximal degree for the SPHARM computation

9- 10- Set the number of shapes you want horizontally (1) and vertically (2) in each MRML scene

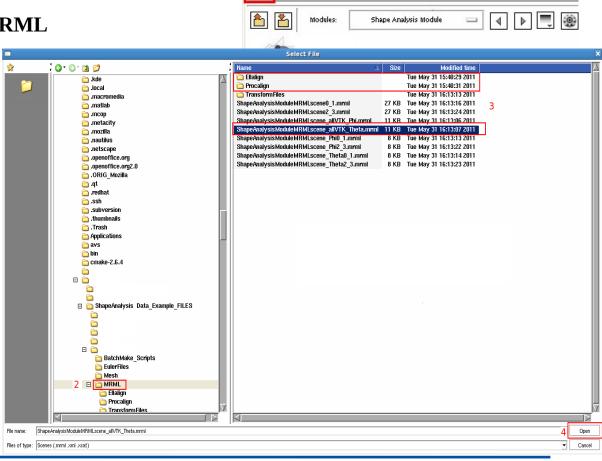


Execution within Slicer:ParticleModule Parameters

- 1- Select the "ShapeAnalysisModule" in Modules -> Shape Analysis.
- 2-Click on "Input File"
- 3- Click on "Output Directory"
- 4- Set the enforced spacing in x,y and z direction.
- 5- (optional) Check the box "Label Number" and set "Value" to first extract this label before processing.
- 6- Set "Number of Iterations"
- 7- Set the subdivision level for the icosahedron subdivision
- 8- Set the maximal degree for the SPHARM computation
- 9- 10- Set the number of shapes you want horizontally (9) and vertically (10) in each MRML scene

To run a **Particle study** at the end of the pipeline:

- 11- Check the Box "DoParticleCorrespondence"
- 12- If you want to use the meshes in their original space, uncheck the box. Otherwise the meshes in procalign space will be used.



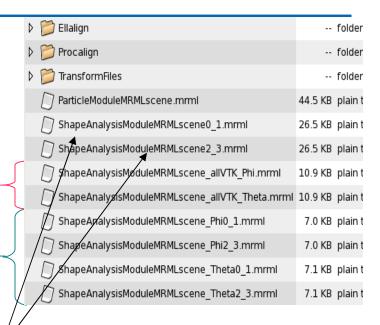
- **13-** Starting and ending regularization for the entropy-based correspondence optimization
- **14-** Number of iterations for the entropy-based correspondence
- 15- This is the value α between the 2 energies
- **16-** Click on the "Apply" button to process the data

Execution within Slicer:Load a MRML Scene

- **1-** Click on File -> Load Scene
- **2-** Go in your_Output_Directory/MRML
- **3-** Select one MRML scene
- 4- Click on the "Open" button

Edit 1 View

Window


Execution within Slicer:

Load a MRML Scene: Which MRML?

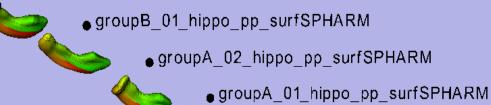
There are several kind of MRML scene You can visualize the shapes with a Phi or a Theta ColorMap

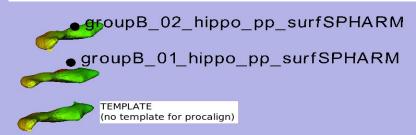
- →with all the data
- →with only A*B shapes : the grid parameters chosen

In the first MRML scenes, you can find the template with a random color and then with the snapshots, you can the shapes A to B with a Phi *colormap* or a Theta

Display the *colormaps:*

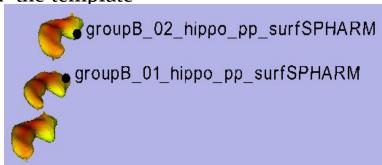
- 1. Click on the "Snapshots" button.
- 2. Select Color Map Phi or Color Map Theta.
- 3. Click on Restore.





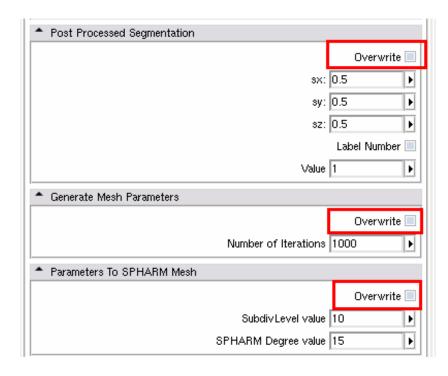
Execution within Slicer:

MRML Scene



Quality Control visualization of the SPHARM correspondence using the Phi colormap (above) or the Theta colormap (below). Same colour represent the same Phi/Theta parameter value of the spherical parameterization. On the left, MRML scenes with all the data. On the right, MRML scenes with only X data and the template

groupB 02 hippo pp surfSPHARM groupB_01_hippo_pp_surfSPHARM groupA 02 hippo pp surfSPHARM groupA_01_hippo_pp_surfSPHARM

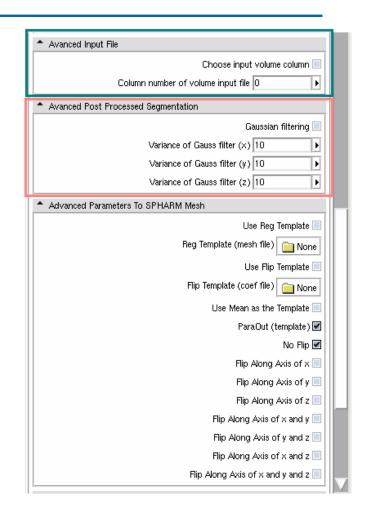


Execution within Slicer: Recompute

You can recompute the modules of the ShapeAnalysisModule pipeline:

Check one (or more) "Overwrite" box.

Click on the "Apply" button to recompute the module


Execution within Slicer:Advanced Parameters

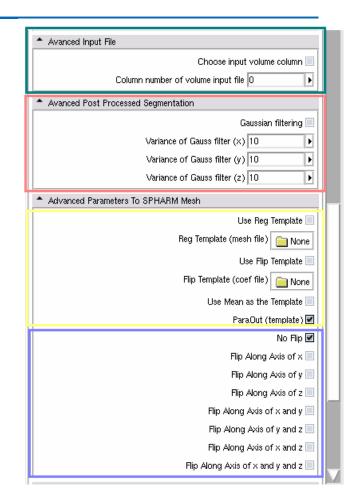
Input file:

- → By default the first column containing a volume file (.vtk, .meta etc..) is computed. But if you have multiple files in your CSV file, you can choose the column of the input data file
- → Check the box and enter the column

Post Process Segmentation:

- → You can apply a Gaussian filter
- → Check the box and set the value of the variance

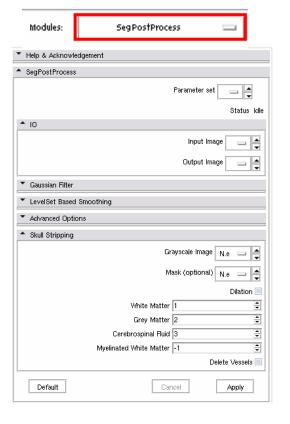
Execution within Slicer: Advanced Parameters -2-

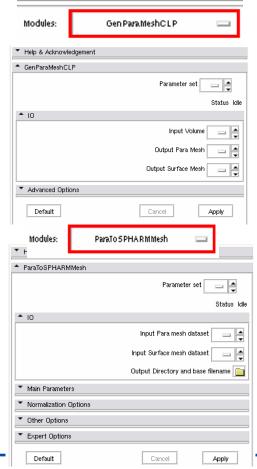

SPHARM Mesh:

<u>Choose the template:</u> (by default the template is the first data computed)

- → Reg template is used to set the procrustes alignement
- → Flip template is used to test all possible flips of the parametrization along the first order ellipsoid axis and select the one whose reconstruction has minimal distance to the flip-template
- → Mean Template: a mean file is computed and use as a template
- → ParaOut is use to write The spherical icosahedron subdivision, as well as local phi and theta attribute files for the quality control visualization

Choose the Flip:


→ You can choose to flip of the parametrization along different axis.



Execution within Slicer:Step by step

In Module > ShapeAnalysis: You can find all the modules used in the pipeline.

Particle Module	Parameter set Status	
Avanced Inpu		
Avanced Inpu	Status	
- Avanced Inpu		ldl
	Input File 📄 Nor	ne
	Output Directory 📄 Nor	ne
	Column number of Mesh input file 0	Þ
• PreProcessin	g Options	
	smoothing 0.03	•
	sx: 0.5	Þ
	sy: 0.5	Þ
	sz: 0.5	Þ
Corresponde	nce Options	
	startRegularization 10	÷
	endRegularization 0.01	•
	optimizationIteration 200	÷
	checkpointingInterval 20	÷
	Relative Weighting State	
	RelativeWeighting 1	÷
	Adaptivity Strength State	
	Adaptivity Strength 1	÷
	Procrustes Interval State	
	ProcrustesInterval 50	=
	ProcrustesScalingState	
	Procrustes Scaling 1	:
MRML Option	ns	
	number of vtk on each line of the mrml 5	Þ
nu	mber of vtk on each column of the mrml 5	ŀ
Default	Cancel Apply	i

Overview

- 1- Input file
- 2- Pipeline description
- 3- Output images and organisation
- 4- Execution within Slicer
- 5- Command line execution
- 6- Conclusion

Command line execution

The module can also be use as a command line tool:

/ShapeAnalysisModule --sx 0.5 --sy 0.5 --sz 0.5 --label 1 --Numberofiterations 10 --SubdivLevelValue 10 --SPHARMDegreeValue 15 --columVolumeFile 0 --varX 10 --varY 10 --varZ 10 --regTemplate None --flipTemplate None --paraOutTemplate --noFlip --HorizontalGridPara 1 --VerticalGridPara 2 --DoParticlesCorrespondence --UseProcalign /your_path_to_the_csv_file/InputFile_ShapeAnalaysis.csv /your_path_to_your_outputdirectory/ShapeAnalysis_Data_Example_FILES

Overview

- 1- Input file
- 2- Pipeline description
- 3- Output images and organisation
- 4- Execution within Slicer
- 5- Command line execution
- 6- Conclusion

Conclusion

The **ShapeAnalysisModule** is a 3D Slicer module that allows efficient computation of structural shape analysis via the SPHARM-PDM UNC pipeline including intuitive quality control visualizations.

Thanks to this tutorial your are now able to perform shape analysis on your own dataset.

Acknowledgments

National Alliance for Medical Image Computing NIH U54EB005149

UNC Chapel HillNeuro Image Research Analysis Laboratories