
SOFTWARE PROCESS: THE KEY TO DEVELOPING ROBUST, REUSABLE AND
MAINTAINABLE OPEN-SOURCE SOFTWARE

William J. Schroeder, Luis Ibáñez, Kenneth M. Martin

Kitware, Inc.

http://www.kitware.com

ABSTRACT
The practice of image processing inherently requires
software development. Creating this technology requires
designing, implementing, debugging and testing software
applications on a continual basis. Furthermore current
software development is typically performed in a
distributed environment involving many developers. While
the use of open-source software may create collaborative
communities that enhance overall technology exchange, it
does nothing directly to manage change nor does it address
the quality of the underlying software. This paper
describes a software development process that has proven
vital to the success of the widely used open-source toolkits
ITK (itk.org) and VTK (vtk.org). This process facilitates
cross-platform development, incorporates automatic
documentation generation, integrates continuous testing,
and posts the results of the process on publicly accessible
web pages. The net result is that a responsive feedback
loop is created between the developers in the community
and automated processes to measure software quality.
With this process software converges towards better
software as long as the process is enforced. The tools
described here are open-source and available for use in
academic and commercial applications.

1. INTRODUCTION

The days when a single developer could author a software
system are gone. Today software is larger and more
complex than ever before. This complexity comes at a
price: software requires teams to develop and demands
long-term maintenance if it is to thrive and grow. In
addition the complexity of software means that testing is
vital to insuring the quality of the code. Documentation
needs are greater since users require assistance to wade
through the system and find the parts of the software that
really matter to them. Managing change to the software
base is critical to capture bug fixes and for revision
control. Finally, the abundance of different computer
configurations (hardware, operating systems, enabling
software and compilers) means that development must
address cross-platform issues. Thus new processes are

necessary to replace the approaches of the past if we are to
create the software technology of the future.

We have developed a software process that addresses
these many requirements for several large open-source
projects including the Visualization Toolkit (VTK) and the
Insight Segmentation and Registration Toolkit (ITK). The
size of these communities are large: VTK has over 2,000
subscribers on its users list and 92 on the developer’s list,
and the ITK project was developed by a group of eleven
academic and commercial organizations with a total of
114 subscribers on the developer’s list and over 500 on the
user’s list. Such distributed, collaborative development
environments are typical of modern development efforts.

This paper is organized as follows. Section 2
characterizes the requirements for the software
development process. Section 3 describes the tools
supporting the software process. Section 4 discusses the
process and offers suggestions for future work.

2. PROCESS OVERVIEW

The methodology described in this paper has developed
over several years in support of large-scale open-source
software projects. While it can be adopted for proprietary
software, portions of the process require that all
developers have access to the source code. This process
does introduce overhead and may not be suitable for small
projects, but even in this case the benefits are typically
worth the extra effort.

The software process we use is based on principles of
agile programming or extreme programming. The idea is
that the standard development tasks:

• requirements generation,
• software design,
• managing source code versions and updates,
• configuring projects for specific platforms,
• compilation and linking,
• testing the code at run time,
• verifying the validity of output,
• documenting the code, and
• tracking and repairing bugs

are performed continuously rather than in the waterfall
fashion that conventional development efforts typically
use. Generally the process begins with a small kernel
implementation that is incrementally evolved by
simultaneous application of the steps listed previously.
The key to the process is an automated testing facility that
posts results to a central web page where all developers
can monitor the efforts of the community. In our practice
all developers have the right and encouragement to repair
errors in other developer’s code. In fact, we take pride in
the fact that the code appears as if it were written by a
single person.

3. PROCESS TOOLS
Figure 1 illustrates the interactions between the tools
supporting the software process described here. First,
multiple developers contribute code in a CVS repository.
CVS keeps track of what, who, when and why source code
was changed. The build process is controlled by the
CMake cross-platform build tool. CMake is unique in that
it does not replace native build files such as make and
Windows workspaces; rather it generates these from
platform-independent CMakeLists.txt files and then uses
the native build tools to manage the compile/link process.
DART coordinates the testing process. This extensive
testing tool tracks compile and link errors, checks style,
runs memory checking tools such as Valgrind
(http://valgrind.kde.org) or Purify, and executes hundreds
of tests that developers are expected to contribute as they
check in source code. DART clients post testing results
using an XML protocol which are then posted by the
DART server on the project web pages. These web pages
are referred to as the project dashboard since it
summarizes the state of the project. The details of these
tools and some additional documentation tools are
described in the next subsections.

Figure 1. Tools supporting the software process.

3.1. CVS
The Concurrent Versions System (CVS) is a tool designed
for maintaining a central repository of source code in
which multiple developers retrieve, modify and commit
files and changes to files. CVS supports simultaneous edits
of files and merges changes into the code base. Merge
conflicts occur rarely and when they do CVS marks the
conflicts that must be resolved by the developer
community. CVS supports tagging and branching the
repository so it is relatively easy to manage releases.

3.2. CMake
CMake is a cross-platform build system. The amount of
effort to manage the build process is often underestimated
by software developers. The task is particularly difficult
when the software must function across different
computing configurations. Configuring a project involves
tasks such as:

• Finding the appropriate compiler to build the
software. This includes testing whether a
compiler supports particular language features.

• Selecting compiler flags in a way that is
consistent across all systems.

• Specifying the directories where headers and
libraries from other required software packages
are located.

• Generating code; for example executing a
wrapper generator tool such as SWIG (swig.org).

• Specifying the location(s) to produce object code,
libraries, executables and install packages.

CMake simplifies this process by using platform-
independent configuration files to generate the appropriate
workspace(s) or makefile(s) for the target compiler.
Developers can then use the native compilation tools with
which they are familiar. Currently CMake supports most
C++ compilers found today including Microsoft Visual
Studio 6.0, .NET, .NET 2003, Borland, Linux, Unix (e.g.,
HP, Sun, SGI) and Mac OSX. The developers write
simple ASCII, CMakeLists.txt files that are maintained in
the same CVS repository as the source code. CMake can
do everything that autoconf can do and more since it runs
cross-platform without operating system emulation tools.
It also integrates with the DART testing tool. That is, it
runs as a DART client and can run and submit testing
results to the DART dashboard.

When CMake runs it invokes a GUI consistent with the
platform on which it is executing. Figure 2 shows the
CMake GUI on Microsoft Windows. An equivalent
interface is available for Unix based on the curses library.
Other interfaces are possible and have been implemented
with cross-platform GUI builders such as wxWindows
(http://www.wxwindows.org). The CMake configuration
process is iterative. Developers select configuration
options and then execute the CMake configure process.

Each configuration step may expose new build options that
the developer specifies, followed by repetition of the
configuration step. Eventually the process converges and
the developer selects the generate option to produce the
native build files. CMake is an open-source project
originally created as part of the ITK project. Further
information about CMake is available at
http://www.cmake.org.

3.3. DART
DART is the focal point for the developer community. It is
built around a client-server architecture. Clients, which
may be distributed anywhere on the internet, are
responsible for testing software and posting the results of
the testing in an XML form to the DART server. In turn
the server uses XSLT to control how the testing
information is displayed. DART is capable of extensive
nightly builds where the entire test suite is run, or
continuous builds where very quick tests (in response to
developer check-ins to CVS) are performed and posted
immediately to the dashboard. (Developers may also post
experimental build results when they wish to try something
out without committing code to CVS.)

The DART testing process is extensive. It tracks build
and link errors; checks code style; measures code
coverage; reports changes to the code base since the last
reporting period; runs memory tests; and executes the
many tests associated with the project. All of this
information is gathered and available on the dashboard.
Figure 3 is an example dashboard on a “good” day (the
dashboard is green). Each row in the figure represents a
different DART client (i.e., operating system and compiler
configuration). The columns report errors and warnings
that may be selected to drill down into the associated
information. For example, developers can select build
warnings and see the actual warning produced from the
compiler. In this way it is possible for a developer without
access to a particular platform see the results from another
developer who does have access to the platform, and
correct any errors as necessary. Figure 4 shows a DART

dashboard on a “bad” day. Notice that errors and warnings
are highlighted with the appropriate colors. Thus it
becomes readily apparent when a developer affects the
dashboard in a negative way. Community peer pressure
usually forces a rapid resolution to the problem. However
repeated excesses can result in denial of CVS access,
which is the ultimate punishment for a developer.

Developers are expected to create tests that exercise the
source code. The tests are used to generate coverage
results as well as to compare against valid output.
Typically when a test is first created a valid image or other
form of output is created and checked into a CVS testing
repository. When DART runs the tests at a later date, it
compares the test output to the valid output. A comparison
is performed and if change occurs an error is flagged. On
some systems thresholds are used to take into account
differences due to graphics cards or other expected
variations in output.

One of main benefits of DART is that it identifies
errors as they occur. In the past we often waited long
periods of time before performing tests prior to a release.
While this would certainly uncover errors, it was
extremely difficult to trace the origin of the problem
because the causal relationship to the code change was
lost. With DART, changes are immediately tested and if
problems occur it is generally easy to trace to the source of
the problem. In fact with continuous builds problems are
identified almost immediately and usually resolved prior
to the nightly testing cycle. Find more information about
DART at http://public.kitware.com/dart.

Figure 3 - The DARTdashboard on a good day. Figure 2 - The CMake GUI on Windows.

3.4. Documentation Tools
Long experience as developers and users of software has
proven the value of documentation. Currently we use a
process that requires the developer to incorporate
documentation directly into the source code. While we
prefer Doxygen (http://www.stack.nl/~dimitri/doxygen) as
our documentation generation system, other tools such as
Doc++ and JavaDoc work equally well. Doxygen
produces a code index, method descriptions, inheritance
and collaboration diagrams (Figure 5). It can be
configured to produce other information and can generate
web pages, LaTeX documentation and a variety of other
forms.

Figure 5. Doxygen generated UML diagrams.

Recently in the ITK project we used CMake, Perl, and
LaTeX to automatically extract source code from
examples and incorporate the formatted code directly into
a book. The benefit of this approach is that we were sure
that the code in the documentation was correct as long as
the dashboard for the day was green.

3.5. Other Tools
The process utilizes many other tools as well. We use
phpBugTracker (http://phpbt.sourceforge.net/) to keep
track of bugs and feature requests. MailMan

(http://www.list.org/) is used to manage a user’s and
developer’s mailing list. CableSWIG (http://www.itk.org/-
HTML/CableSwig.html) is an extension to the popular
SWIG interpreted language wrapper generator. It uses
GCC_XML (http://www.gccxml.org) to produce XML
from arbitrarily complex C++ code, and then interfaces
this XML into the SWIG internal parse structures in order
to generate code.

3.5. Summary and Future Work
We have created a process for developing large-scale
distributed, open-source software projects. We have found
that the use of CMake for cross-platform development,
DART for testing, and CVS for source code managements
works well in real world applications. In particular, the use
of the DART dashboard creates a feedback loop that
results in high quality code.

While the process works well it does require discipline.
In particular, developers must pay attention to the
dashboard, and one or more enforcers must make sure that
errors are corrected immediately. In our open-source
communities we expect errors to be corrected in a day or
less. In addition, developers must create tests as they
check in source code. These white-box tests are designed
to exercise the features of the software and insure that
code is covered adequately (we aim for 80% coverage or
higher). Generally community peer pressure is enough to
enforce the process; but removing code from CVS and
revoking CVS access are occasionally used.

In the future we will solidify the XML schema for the
testing process. We are also working on simplifying the
installation of the DART server. Another desirable feature
is to keep testing results in a database. Queries can be
made and statistical studies can be used to judge the
quality of a particular piece of code. Additional hardware
also benefits the process as well; currently the continuous
testing matrix is inadequate to catch errors as early as they
could be caught. We encourage the community to offer
their computers as testing clients; the more coverage the
better. Please join the VTK, ITK, or CMake communities
if you would like to help.

REFERENCES
[1] L. Ibanez, W. Schroeder. The ITK Software Guide, Kitware,

Inc., Clifton Park NY, ISBN 1-930934-10-6. 2003.
[2] W. Schroeder, K. Martin, W. Lorensen. The Visualization

Toolkit An Object-Oriented Approach to 3D Graphics 3rd
Ed.. Kitware, Inc. ISBN 1-930934-07-6, 2002.

[3] Kitware, Inc, The VTK User’s Guide, Kitware Inc, Clifton
Park NY, ISBN 1-930934-08-4, 2003.

[4] K. Martin, B. Hoffman, Mastering CMake, Kitware Inc,
Clifton Park NY, ISBN 1-930934-09-2, 2003.

[5] K. F. Fogel, Open Source Development with CVS, Second
Edition, The Coriolis Group, http://cvsbook.red-bean.com/,
1999.

Figure 4 - The DART dashboard on a bad day.

Figure 2 - The DART dashboard on a bad day.

