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ABSTRACT 

Independent component analysis (ICA) has recently demonstrated considerable promise in 

characterizing fMRI data, primarily due to its intuitive nature and ability for flexible 

characterization of the brain function. As typically applied, spatial brain networks are assumed to 

be systematically non-overlapping. Often temporal coherence of brain networks is also assumed, 

although convolutive and other models can be utilized to relax this assumption. ICA has been 

successfully utilized in a number of exciting fMRI applications including the identification of 

various signal-types such as task and transiently task-related and physiology-related signals in 

the spatial or temporal domain. Additional applications include the analysis of multi-subject 

fMRI data, the incorporation of a priori information, and the analysis of complex-valued fMRI 

data. In this paper, we first introduce ICA and its application to fMRI data analysis, and then 

review various applications of ICA to fMRI data. 



 

1. Introduction 
 

What an antithetical mind! - tenderness, roughness - delicacy, coarseness - sentiment, 
sensuality - soaring and groveling, dirt and deity - all mixed up in that one compound of 
inspired clay! 

-Lord Byron 
 

Independent component analysis (ICA) is a statistical method used to discover hidden 

factors (sources or features) from a set of measurements or observed data such that the sources 

are maximally independent. Typically, it assumes a generative model where observations are 

assumed to be linear mixtures of independent sources, and unlike principal component analysis 

(PCA) which uncorrelates the data, ICA works with higher-order statistics to achieve 

independence.  

An intuitive example of ICA can be given by a scatter-plot of two independent signals 1s  

and 2s . Figure 1.1a shows a plot of the two independent signals ( 1 2,s s ) in a scatter-plot. Figure 

1.1b and c show the projections for PCA and ICA, respectively, for a linear mixture of 1s  and 2s . 

PCA finds the orthogonal vectors 1 2,u u , but does not find independent vectors. In contrast, ICA 

is able to find the independent vectors 1 2,a a  of the linear mixed signals ( 1 2,s s ), and is thus able 

to restore the original sources. 

Figure 1.1: (a) The joint density of two independent signals, (b) PCA projection ( 1 2,u u ), (c) ICA projection ( 1 2,a a ) (adopted 

from [1]) 

A typical ICA model assumes that the source signals are not observable, statistically 

independent and non-Gaussian, with an unknown, but linear, mixing process. Consider an 



observed M − dimensional random vector is denoted by 1( , )T
Mx x=x which is generated by 

the ICA model: 

 =x As  (1) 

where 1 2,[ , ... ]T
Ns s s=s  is an N -dimensional vector whose elements are assumed independent 

sources and M N×A  is an unknown mixing matrix. Typically M N>= , so that A is usually of full 

rank. The goal of ICA is to estimate an unmixing matrix N M×W  such that y  (defined in equation 

(2)) is a good approximation to the ‘true’ sources: s . 

 =y Wx  (2) 

ICA is hence an approach to solve the blind source separation problem, which traditionally 

addresses the solution of the cocktail party problem in which several people are speaking 

simultaneously in the same room. The problem is to separate the voices of the different speakers, 

using recordings of several microphones in the room [2]. The basic ICA model for blind source 

separation is shown in Figure 1.2. 

Figure 1.2: Basic ICA model for blind source separation 

Popular approaches for performing ICA include maximization of information transfer—

which is equivalent to maximum likelihood estimation, maximization of nongaussianity, mutual 

information minimization, and tensorial methods. The most commonly used ICA algorithms are 

Infomax  [3], FastICA [4] and joint approximate diagonalization of eigenmatrices (JADE)  [5]. 

The original Infomax algorithm for blind separation by [3] is better suited to estimation of  

super-Gaussian sources. To overcome this limitation, techniques have been developed for 

simultaneously separating sub- and super-Gaussian sources [6]. A flexible independent 

component analysis approach using generalized Gaussian density model method was introduced 



in [7]. These algorithms typically work well for symmetric distributions and are less accurate for 

skewed distributions. Recent extensions of ICA to overcome this limitation include non-

parametric ICA [8] and kernel independent component analysis [9]. Other ICA models that 

adaptively vary the nonlinear functions (or activation functions) to better fit the underlying 

sources have also been proposed [10,11]. The variety of recent approaches for performing ICA 

and its applications in areas as diverse as biomedicine, astrophysics, and communications 

demonstrates the vitality of research in this area. 

2. Functional MRI 
As discussed in the first article of the issue, FMRI is a technique that provides the 

opportunity to study brain function non-invasively and is a powerful tool utilized in both 

research and clinical arenas since the early 90s [12]. The most popular technique utilizes blood 

oxygenation level dependent (BOLD) contrast, which is based on the differing magnetic 

properties of oxygenated (diamagnetic) and deoxygenated (paramagnetic) blood. When brain 

neurons are activated, there is a resultant localized change in blood flow and oxygenation which 

causes a change in the MR decay parameter *
2T . These blood flow and oxygenation (vascular or 

hemodynamic) changes are temporally delayed relative to the neural firing, a confounding factor 

known as hemodynamic lag. Scientific interest rests primarily with the electrical activity in the 

neurons, which cannot be directly observed by any variant of the MRI procedure. Since the 

hemodynamic lag varies in a complex way from tissue to tissue, and because the exact transfer 

mechanism between the electrical and hemodynamic processes is not known, it is not possible to 

completely recover the electrical process from the vascular process. Nevertheless, the vascular 

process remains an informative surrogate for electrical activity. However, relatively low image 

contrast-to-noise ratio (CNR) of the BOLD effect, head movement, and undesired physiological 



sources of variability (cardiac, pulmonary) make detection of the activation-related signal 

changes difficult. 

2.1 Data Acquisition 

The MRI signal is acquired as a quadrature signal. That is, two orthogonal “detectors” are 

used to capture the MRI signal [13]. The two outputs from such a system are often put in a 

complex form, with one output being treated as the real part and the other as the imaginary part. 

The time-domain data acquired by the spectrometer are, remarkably, equivalent to the spatial-

frequency representation of the image data, and so a discrete Fourier transform yields the 

complex image-space data. It is then common to take the magnitude of this data prior to 

performing any fMRI analyses. FMRI studies rely upon the detection of small intensity changes 

over time, often with a contrast-to-noise ratio of less than 1.0. Virtually all fMRI studies analyze 

the magnitude images from the MRI scanner. A standard approach is to correlate the time-series 

data with an assumed reference signal [14]. Many generalizations have been proposed, usually 

involving linear modeling approaches utilizing an estimate of the hemodynamic response [15]. 

The information contained in the phase images is ignored in such analyses. 

2.2 Types of Signal and Noise 

There are several types of signals that can be encoded within the hemodynamic signals 

measured by fMRI. Some of these were identified by McKeown in the first application of ICA to 

fMRI [16]. In this paper, infomax [3] was utilized and separated signals were classified as task-

related, transiently task-related, and motion related. 

In general, fMRI data may be grouped into signals of interest and signals not of interest. 

The signals of interest include task-related, function-related, and transiently task-related signals. 



The task-related signal has already been mentioned and is the easiest to model. A reference 

waveform, based upon the paradigm, is correlated with the data. The responses of the brain to a 

given task may not be regular however, for example the signal may die out before the stimulation 

is turned off or change over time as repeated stimuli are applied, leading to a transiently task-

related signal. It is also conceivable that there are several different types of transiently task-

related signals coming from different regions of the brain. The function-related signal manifests 

as similarities between voxels within a particular functional domain (e.g., the motor cortex on 

one side of the brain will correlate most highly with voxels in the motor cortex on the opposite 

side of the brain) [17]. An exciting application of this is for identifying synchronous auditory 

cortex activity [18,19] (see areas corresponding to the top time course in Figure 3.5). Most of 

these fMRI signals have been examined with ICA and other methods and have been found to be 

super-Gaussian in nature (except perhaps the artifacts mentioned in the next section). 

The signals not of interest include physiology-related, motion-related, and scanner-related 

signals. Physiology-related signals such as breathing and heart rate tend to come from the brain 

ventricles (fluid filled regions of the brain) and areas with large blood vessels present, 

respectively. Motion-related signals can also be present and tend to be changes across large 

regions of the image (particularly at the edges of images). An example of a motion-related signal 

occurs during an experiment in which the subjects are mouthing letters, called the rapid 

automatized naming task [20]. Figure 2.1 depicts an example occurring during the mouthing that 

was extracted from orbitofrontal and inferior temporal brain regions using infomax algorithm 

[3]. For comparison, a typical hemodynamic response function is depicted as well. It is clear that 

the motion is occurring on a time scale too rapid to be related to hemodynamics. Finally, there 

are scanner-related signals that can be varying in time (such as scanner drift and system noise) 



or varying in space (such as susceptibility and radio-frequency artifacts) [21]. A number of such 

examples can be found online including slice dropout, motion artifact, and nyquist ghosting. 

Figure 2.1: Motion-related signal due to mouth movement from inferior temporal and orbitofrontal regions  

There are several types of noise one can characterize in an fMRI experiment. First, there is 

noise due to the magnetic resonance acquisition which can be discussed as 1) object variability 

due to quantum thermodynamics and 2) thermal noise. It can be shown that the thermal noise 

will result in white noise with a constant variance in the image dimension [22]. Additionally 

there is noise due to patient movement, brain movement, and physiologic noise (such as heart 

rate, breathing). It has been suggested that physiologic noise is the dominant factor in fMRI 

studies [23]. In the ICA model these “noises” are often not explicitly modeled, but rather 

manifested as separate components, (see, e.g., [21,24]). 

2.3 Statistical Properties of fMRI Data 

Properties such as non-Gaussianity and spatial/temporal independence of sources need to 

be addressed for the application of ICA to fMRI data. If the “activations” do not have a 

systematic overlap in time and/or space then the distributions can be considered independent 

[25]. The temporal distribution of a task-related waveform is often nearly bimodal (off/on) and 

thus the algorithm needs to incorporate this fact. Some other basic assumptions of ICA have 

been considered in [16]. The assumption that components are spatially independent and add 

linearly was evaluated and it was concluded that the fMRI signals and noise are non-Gaussian 

and the accuracy of the ICA model may vary in specific regions of the brain. For example, 

cortex-based ICA assumes that cortical data are different from non-cortical data and processes a 

subset of the data determined by a priori information (see Section 3.6) [26]. The signals of 



interest in fMRI are typically focal and thus have a super-Gaussian spatial distribution. However, 

the artifactual signals will be more varied and potentially sub-Gaussian. 

Certain aspects of the fMRI signal are well known and could be incorporated into an ICA 

analysis. First, local spatial correlation exists in MR images due only to the acquisition process. 

It is often the case that partial k-space acquisitions involve sampling fewer frequency samples 

than the desired number of spatial samples. One can use the fact that the matrix of frequency 

data is Hermitian-symmetric to reconstruct the image using a partially acquired frequency matrix 

(with the trade-off being a decrease in signal-to-noise-ratio). Another well-known method 

involves sampling the lower frequencies and padding the high frequencies with zero (with the 

trade-off being a decrease in spatial resolution). This broadens the well described MRI spatial 

point spread function in one direction, although it has been suggested that there is a real gain in 

resolution when zero padding is up to as much as twice the original number of samples [27]. 

This results in spatial correlation of the MR signal. 

In addition, spatial correlation is induced by the process being measured. The 

hemodynamic sources to be estimated have a spatial hemodynamic (vascular) point spread 

function. This is partially due to the hemodynamics, but is also a function of the pulse sequence 

and the parameters used. Differing degrees of sensitivity to blood flow and blood oxygenation as 

well as differences between low and high field magnets will measure different hemodynamics. 

The pulse sequence, parameters, and magnetic field strength are considered as constant to enable 

discussion of the hemodynamic point spread function without introducing the complexities of 

these parameters. There may also be some degree of temporal correlation. Temporal correlation 

is introduced by: 1) rapid sampling (a scanner parameter) on the time scale of the magnetic 

equilibrium constant, 1T  and 2) the temporal hemodynamic (vascular) point spread function (a 



physiologic variable). There are also other sources of temporal autocorrelations in the data which 

are yet to be understood fully [28]. These data properties, which often vary from subject to 

subject, can impose difficulties for modeling the temporal aspects of the fMRI signal. 

FMRI provides a non-invasive surrogate measure of the brain’s electrical activity. It is a 

diverse technique and research using fMRI is growing at a rapid pace. The richness of fMRI data 

is only beginning to be understood. We have provided a brief introduction to the fMRI technique 

and summarized some of the functionally-related brain signals. It is important to understand the 

properties of these signals when developing methods for analyzing this data. 

3. ICA of fMRI 
Independent component analysis has shown to be useful for fMRI analysis for several 

reasons. Spatial ICA finds systematically non-overlapping, temporally coherent brain regions 

without constraining the temporal domain. The temporal dynamics of many fMRI experiments 

are difficult to study with functional magnetic resonance imaging (fMRI) due to the lack of a 

well-understood brain-activation model. ICA can reveal inter-subject and inter-event differences 

in the temporal dynamics. A strength of ICA is its ability to reveal dynamics for which a 

temporal model is not available [29]. Spatial ICA also works well for fMRI as it is often the case 

that one is interested in spatially distributed brain networks. 

ICA has found a fruitful application in the analysis of fMRI data [30,31]. A principal 

advantage of this approach is its applicability to cognitive paradigms for which detailed a priori 

models of brain activity are not available. ICA has been successfully utilized in a number of 

exciting fMRI applications and in those that have proven challenging with the standard 

regression-type approaches. These include identification of various signal-types (e.g. task and 

transiently task-related, and physiology-related signals) in the spatial or temporal domain [32], 



the analysis of multi-subject fMRI data, the incorporation of a priori information [33,34], more 

recently for clinical applications [35,36] and for the analysis of complex-valued fMRI data. 

3.1 Spatial vs. Temporal 

Independent component analysis is used in fMRI modeling to understand the spatio-

temporal structure of the signal, and it can be used to discover either spatially or temporally 

independent components. Most applications of ICA to fMRI assume use the former approach 

and seek components that are maximally independent in space. In such a setting (shown in 

Figure 3.1), we let the observation data matrix be X , an N M×  matrix (where N  is the number 

of time points and M  is the number of voxels). The aim of fMRI component analysis is then to 

factor the data matrix into a product of a set of time courses and a set of spatial patterns. In 

principal component analysis this is achieved by singular value decomposition of the data matrix 

by which the data matrix is written as the outer product of a set of orthogonal, i.e., uncorrelated 

time courses and set of orthogonal spatial patterns. Independent component analysis takes a more 

general position and aims at decomposing the data matrix a product of spatial patterns and 

corresponding time courses where either patterns or time courses are a priori independent. ICA 

can also be compared with the widely used univariate general linear modeling approach which 

proceeds by deriving a temporal model/basis set and fitting this model to the data at each voxel 

by minimizing the least squared error [37]. The ICA approach does not attempt to explicitly 

parameterize the fMRI time course, which is estimated implicitly in the source separation 

algorithm (see Figure 3.1). 

Since the introduction of ICA for fMRI analysis by McKeown et al. [24], the choice of 

spatial or temporal independency has been controversial. However, the two options are merely 

two different modeling assumptions. McKeown et al. argued that the sparse distributed nature of 



the spatial pattern for typical cognitive activation paradigms would work well with spatial ICA 

(SICA). Furthermore, since the proto-typical confounds are also sparse and localized, e.g., 

vascular pulsation (signal localized to larger veins that are moving as a result of cardiac 

pulsation) or breathing induced motion (signal localized to strong tissue contrast near 

discontinuities: "tissue edges"), the Bell-Sejnowski approach with a sparse prior is very well 

suited for spatial analysis [38] and has also been used for temporal ICA [25] as have 

decorrelation-based algorithms [38]. Stone et al., proposed a method which attempts to 

maximize both spatial and temporal independence [39]. An interesting combination of spatial 

and temporal ICA was pursued by Seifritz et al. [18]; they used an initial SICA to reduce the 

spatial dimensionality of the data by locating a region of interest in which they then subsequently 

performed temporal ICA to study in more detail the structure of the non-trivial temporal 

response in the human auditory cortex. 

Figure 3.1: Comparison of GLM and ICA (left) and ICA illustration (right).  

3.2 A Synthesis/Analysis Model Framework 

The model shown in Figure 3.2, was introduced in [40] and provides a framework for 

understanding ICA as applied to fMRI data and for introducing the various processing stages in 

ICA of fMRI data. The model assumes SICA but can be easily modified for temporal processing. 

A generative model is assumed for the data including the brain (in a magnet) and the fMRI 

scanner. Such a model provides a way to monitor the properties of the signals as they propagate 

through the system and to design the post-processing block, i.e., the analysis stages in a way that 

matches well with the properties of the source generation mechanisms. The model is also useful 

for validating ICA results through simulations and hybrid-fMRI data. 



The data generation block consists of a set of statistically independent (magnetic) 

hemodynamic source locations in the brain (indicated by ( )is v  at location v  for the thi  source). 

These sources are a function of magnetic tissue properties such as 1T , 2T , *
2T , changes in blood 

flow, changes in blood oxygenation, etc., that are detectable when the brain is placed in a 

magnetic field. The sources have weights that specify the contribution of each source to each 

voxel; these weights are multiplied by each source’s hemodynamic time course. Finally, it is 

assumed that each of the N  sources are added together so that a given voxel contains a mixture 

of the sources, each of which fluctuates according to its weighted hemodynamic time course. 

The first portion of the data generation block takes place within the brain in which the sources 

are mixed by the matrix A . The second portion of the data generation block involves the fMRI 

scanner. These sources are sampled ( B ) and represent a function of scan specific MR parameters 

such as the repeat time (TR), echo time (TE), flip angle, slice thickness, pulse sequence, field-of-

view, etc. 

The data processing block consists of a transformation, ( )⋅T , representing a number of 

possible preprocessing stages, including slice phase correction, motion correction, spatial 

normalization and smoothing. It is common to perform a data reduction stage (C ) using PCA or 

some other approach. The selection of the number of sources is often done manually, but several 

groups have used information theoretic methods to do order selection [19,41]. The resultant 

estimated source, ( )ˆ js , along with the unmixing matrix 1ˆ −A , can then be thresholded and 

presented as fMRI activation images and fMRI time courses, respectively. 

Figure 3.2: Model for applying ICA to fMRI data 



3.3 Choice of Algorithms and Preprocessing 

As mentioned in the previous subsection, ICA of fMRI involves many preprocessing 

stages, and there are a number of choices both for those and the ICA algorithms that can be 

employed. Studies of how different algorithms and preprocessing stages impact the results have 

been performed by several groups [40,42]. The selection of which algorithm to use will also 

depend upon the assumed distribution of the sources. For example, fMRI data are commonly 

assumed to be super-Gaussian; that is the source distributions have a heavier tail that does a 

Gaussian distribution. This quality can be measured using the fourth statistical moment, called 

kurtosis (peakedness), which is zero for a Gaussian, negative for a sub-Gaussian, and positive for 

a super-Gaussian distribution. 

In [43], the model described in Section 3.2 was utilized to evaluate different preprocessing 

stages and ICA algorithms using the Kullback-Leibler (KL) divergence, a measure of the 

similarity between two distributions [44], as a way to determine how accurate the estimated 

source is compared to the “true” distribution. In the case of real fMRI data, validation is difficult 

as the true source distributions are unknown. However, one can move in this direction by 

superimposing simulated source(s) upon real fMRI data to create a “hybrid” fMRI experiment 

(see Figure 3.3). Sources are estimated, extracted (by ranking components by their correlation 

with the known sources) and compared with the actual sources. While this approach is limited, it 

is useful in providing a quantitative ICA performance measure. Figure 3.3 shows a thresholded 

“true” source (a) and its mixing function (b). Also shown is a plot of the “hybrid” fMRI data for 

a voxel close the “true” source maximum (c). The contrast-to-noise level is calculated as the 

ratio of the source amplitude to the standard deviation (over time) of a voxel within the brain. In 

general, it is noted that certain choices and combinations make a difference in results. In this 



work, infomax outperformed (in approximation and variability) FastICA, and PCA outperformed 

clustering. The best overall combination for this case appears to be Infomax and PCA. 

Figure 3.3: (a,b,c) Hybrid-fMRI experiment in which a known source is added to a real fMRI experiment (from [29]). (d) 

Comparison of algorithms and preprocessing using hybrid data. 

In [45], the performance of various ICA and blind source separation algorithms is studied 

for application to fMRI analysis. The algorithms tested were the extended Infomax [6], FastICA 

[4], joint approximate diagonalization of eigenmatrices (JADE) [5], simultaneous blind 

extraction using cumulants (SIMBEC) [46], and AMUSE [47] in the user-friendly environment 

of a Matlab-based toolbox, group ICA of fMRI toolbox (GIFT) [48] incorporating the 

implementations from ICALAB toolbox [49]. The comparison study used both simulated fMRI-

like data generated using the synthesis model shown in Figure 3.2 and actual fMRI data from 

seven individuals performing a four-cycle visual stimulation task. 

Figure 3.4: FMRI single slice results (left visual cortex) 

The experiment on simulated data included two data sets: a set of five sources and another 

of eight sources consisting of highly super-Gaussian, Gaussian, and sub-Gaussian sources with 

time courses representing sources typical to fMRI data as discussed in Section 2.2. The 

separation performance is measured in terms of correlation of the estimated sources with the 

original sources both spatially and temporally. All five algorithms were able to achieve some 

separation of the sources, with significant performance differences especially for the set with 

larger number of sources. Infomax consistently yielded reliable results, followed closely by 

JADE and FastICA. In the comparison with fMRI data, group ICA was performed on subjects 

performing an alternating left-right visuomotor task [19]. In Figure 3.4, we display that 



component from the results of each algorithm which contains the left visual cortex activation 

from group results from three subjects. For this case, Infomax, FastICA, and JADE again 

successfully identify the task-related components in the left and right visual hemifields. It is also 

worthwhile noting that the Z-scores for Infomax are higher than the other algorithms for the task-

related source, indicating that Infomax achieves a higher contrast to noise ratio. SIMBEC 

identifies the two task-related sources in the right and left hemifields; however it splits the left 

hemifield task-related source into two components, one of as shown in Figure 3.4 (d). AMUSE 

also finds the two task-related sources but places both in the same component (Figure 3.4 (e)), 

which might be due to the similarity of the left and right activations for the task-related source 

have similar spectra. 

The comparisons indicate that Infomax performs most reliably, followed closely by JADE. 

FastICA whereas the performance of SIMBEC and AMUSE did not prove to be robust as 

different combination of sources and their numbers seemed to affect their performance 

significantly. SIMBEC, however, may prove to be useful to identify the sub-Gaussian sources, 

i.e., artifacts in fMRI data as its performance for these sources has been consistently very good. 

The performance of AMUSE is highly dependent on the differentiability of the spectra of the 

sources for a given delay and its performance suffers a great deal when the condition is not met. 

Another approach for comparing algorithms is proposed by Esposito et al. in [42]. Linear 

correlation and receiver operating characteristics are used to compare temporal and spatial 

outcomes, respectively. The infomax approach appeared to be better suited to investigate 

activation phenomena that are not predictable or adequately modeled by inferential techniques. 



3.4 Group ICA 

ICA has been successfully utilized to analyze single-subject fMRI data sets, and recently 

extended for multi-subject analysis [19,50-52]. Unlike univariate methods (e.g., regression 

analysis, Kolmogorov-Smirnov statistics), ICA does not naturally generalize to a method 

suitable for drawing inferences about groups of subjects. For example, when using the general 

linear model, the investigator specifies the regressors of interest, and so drawing inferences 

about group data comes naturally, since all individuals in the group share the same regressors. In 

ICA, by contrast, different individuals in the group will have different time courses, and they 

will be sorted differently, so it is not immediately clear how to draw inferences about group data 

using ICA. 

An approach was developed for performing an ICA analysis on a group of subjects [19] 

which extends the synthesis/analysis model mentioned in Section 3.2. In order to reduce 

computational load, data reduction was first performed for each subject’s data then a second, 

aggregate model order reduction was performed. Back-reconstruction and statistical comparison 

of individual maps and time courses is performed following the ICA estimation. This approach is 

implemented in a Matlab toolbox [48]. 

Group maps for an ICA analysis of a four cycle alternating left/right visual stimulation task 

collected from a 1.5T Phillips scanner are presented in Figure 3.5. The number of components is 

estimated to be twenty-one by the two information-theoretic criteria employed: the minimum 

description length and Akaike’s information criterion. Thus, the aggregate data are reduced to 

this dimension and twenty-one components were estimated. Both maps are thresholded at 

p <0.001 ( t =4.5, df =8). Several interesting components were identified within the data. 

Separate components for primary visual areas on the left and the right visual cortex (depicted in 



red and blue, respectively) were consistently task-related with respect to the appropriate 

stimulus. A large region (depicted in green) including occipital areas and extending into parietal 

areas appeared to be sensitive to changes in the visual stimuli. Additionally some visual 

association areas (depicted in white) had time courses which were not task related. A comparison 

of group ICA approaches is found in [53]. 

Figure 3.5: fMRI Group ICA results (from [19]) 

Higher order tensor decompositions (also known as multidimensional, multi-way, or n-

way), probably the first class of algorithms that performed ICA successfully [54], have received 

renewed interest recently, although their adaptation to group and multi-group fMRI data is still 

being explored. Recently, a tensorial approach was developed to estimate a single spatial, 

temporal, and subject-specific ‘mode’ for each component to attempt to capture the 

multidimensional structure of the data in the estimation stage [55]. 

3.5 Multiple Groups 

In many fMRI experiments, it is desirable to directly compare and contrast two different 

conditions either within or between subject groups. Methods for performing such comparisons 

have been developed within the framework of the general linear model; however such 

comparisons are not intuitive for ICA. Comparisons of two ICA groups can be problematic 

because the ICA results represent a comparison of two different linear models with different time 

courses. A method for performing subtractive and conjunctive comparisons of group ICA data is 

proposed in [56]. An alternative method is given in [57]. One solution involves extracting 

components of interest using an a priori spatial or temporal template and quantifying whether 

the components extracted from the two groups have sufficiently unique time courses from the 



remaining components. An analysis of seven participants performing three paradigms (each was 

a four cycle alternating left/right paradigm in which either visual, motor, or both visual and 

motor stimuli were used) can then be compared between paradigms as seen in Figure 3.6. 

Figure 3.6: Visual, motor, and visuomotor data comparisons (from [58]) 

Additional parameterizations are also possible. For example in this study onset latencies 

were estimated using a weighted least squares technique [59]. A small, but significant latency 

difference was observed between the onset of visual and motor activation. Such an approach 

allows comparisons of both brain activation and time course parameters across paradigms for the 

flexible modeling approach, ICA. 

3.6 Applications to Clinical Research 

ICA has more recently been applied to address some clinically relevant questions [60]. For 

example, ICA has been used to study differences in brain activation due to pain in healthy 

individuals vs. those with chronic pain [61] and even to distinguish between Alzhiemer’s 

patients and healthy controls by examination of the brain’s ‘default mode’ estimated using ICA 

[35,62]. In this section, we give a couple examples from our own work. We first discuss using 

ICA to classify schizophrenia patients from healthy controls. Next, we discuss briefly the use of 

the simulated driving paradigm to study the impact of alcohol intoxication at two doses upon 

fMRI data. 

3.6.1 Classification of Schizophrenia 

Among the most prominent features of schizophrenia brains are abnormalities in temporal 

lobe structure and function; in particular in the superior temporal gyrus (STG). In this study, we 

attempted to examine temporal lobe function utilizing an intrinsic, task-uncorrelated measure. 



Using functional magnetic resonance imaging data collected from a 1.5T GE Scanner, we 

calculated synchronous hemodynamic independent maps (SHIMs) of temporal lobe in 17 

patients and 17 matched controls while they performed an auditory oddball task (for more details 

see [36]). These maps are computed using ICA, which resulted in one of the components 

showing large values in superior temporal lobe. Patient SHIMs revealed greater synchrony in 

anterior and lateral STG regions; control SHIMs had greater synchrony in posterior and medial 

regions. Right auditory cortex difference maps indicate regions where controls > patients 

(orange) and where patients > controls (blue) [see Figure 3.7, right]. Also shown are boundaries 

(in green and yellow) depicting intra-individual comparison regions determined by thresholding 

difference maps that maximized discrimination between the 2 groups. 

Figure 3.7: (left) Mean activation maps from patients with schizophrenia and healthy controls.  

A within-participant subtractive comparison of these two sets of right hemisphere temporal 

lobe regions (optimized for cohort 1 using a minimum probability of error criterion) 

differentiated schizophrenia from healthy controls with 97% accuracy initially (further validated 

by a re-test of the healthy controls) and performed with 94% accuracy in a confirmatory study of 

new subjects scanned at a different site. These results shed new light on STG functional 

differences in schizophrenia, suggest that aberrant patterns of coherence in temporal lobe cortical 

regions are a cardinal abnormality in schizophrenia, and have the potential to provide a powerful, 

quantitative clinical tool for the assessment of schizophrenia. 

3.6.2 Alcohol Intoxication Studies 

More recently, we, and others, have used ICA to decompose fMRI data sets acquired 

during naturalistic viewing paradigms [29,63]. Such conditions naturally lend themselves to an 



ICA analysis since the temporal dynamics are largely unknown in such cases. It is then possible 

to study deviations of such decompositions due to medication or drugs. We investigated 

impaired driving using a simulated driving skill game that presents an “in-car” view of a road 

and a speed readout by alternating between fixation, driving, and watching [29,64]. We explored 

behavioral alterations and fMRI activation at two blood alcohol concentrations (BACs, 0.04 and 

0.08 and placebo). Scanning occurred on a 1.5T Philips MRI scanner. Imaging results 

demonstrated seven separate networks of brain networks with different time courses (see Figure 

3.8). For this analysis, the ICA spatial maps were estimated from the placebo condition, “fixed”, 

and time courses were then estimated from all the data. 

A global disruptive effect of alcohol was observed. In addition, dose-dependent fMRI 

changes were revealed in orbitofrontal and motor (but not cerebellar) regions; visual and medial 

frontal regions were unaffected. Cerebellar regions were significantly associated with driving 

behavior in a dose-dependent manner. ICA was thus used to determine that alcohol demonstrated 

unique, disruptive, dose-dependent effects on fMRI signal within several brain circuits. This 

work has enabled us to build a model for how brain activity is stimulated by simulated driving, 

and is impacted by various factors such as alcohol and speed. 

Figure 3.8: Driving-related networks and their associated time courses compared while sober and at two doses of alcohol. 

3.7 Incorporation of Prior Information 

The incorporation of prior information into ICA methods is important as it can provide 

improved separability and allow selective exploratory analysis. In addition, ICA methods make 

assumptions about, e.g. the distributional shape of the sources, and thus it is important to both 

assess the impact of such assumptions and modify them based upon given fMRI data.  



There have been a number of applications of ICA that have attempted to utilize prior 

information for fMRI analysis. For example, using a reference function to extract only a single 

component is proposed in [65]. A more general Lagrange-based approach for constraining the 

spatial sources is found in [66]. Stone et al. propose a skewed symmetric nonlinearity (i.e., 

assume that the source distributions are skewed). This makes sense if one is interested in 

components that consist largely of either activations or deactivations [67]. Formisano et al. 

propose performing ICA upon data extracted from the cortex (where the activation is expected to 

be occurring) using a tessellation model of the brain cortex derived from a high resolution 

structural image [26]. Duann et al. examine time-locked temporal structure and propose a 

visualization approach to evaluate trial-by-trial variability [68]. An advanced mean field 

approach was invoked for handling situations with adaptive binary source signals [69]. In 

temporal mode this method can separate on/off signals while in spatial mode the approach leads 

to an algorithm that shares many features with Fuzzy clustering. Bayesian methods provide a 

useful way to incorporate prior information into ICA and may prove useful for fMRI analysis 

[70]. 

3.7.1 Spatial Prior Information 

The successful applications of ICA to fMRI signals are dependent on the validity of the 

statistical assumptions implicit in the method. In fMRI data, the physiological signals of interest 

are governed by a small percentage of the whole brain map, whereas the majority of brain 

regions are governed by less significant homogeneous background with signal of non-interest in 

the task-related activation maps. While conventional ICA approaches, including a fixed 

nonlinear function-based algorithm or a high-order cumulant-based algorithm, work well in 

highly kurtotic or super-Gaussian and sub-Gaussian sources, they might provide poor results 



with fMRI data due to their lack sensitivity to such specifically skewed distributions and low 

kurtotic signals. We recently proposed a source density-driven optimal ICA method, aiming to 

incorporate physically realistic assumptions and a more flexible nonlinearity to improve 

separation results [71]. Our method provides comparable performance to a flexible gaussian 

mixture, expectation-maximization based approach with much less computation complexity [72]. 

The central idea is to use a two-stage separation process: 1) Conventional ICA used for all 

channel sources to obtain initial independent source estimates; 2) source estimate-based 

“optimal” nonlinearities used for the “refitting” separation to all channel sources. The ICA 

algorithm is not based on fixed nonlinear functions, but on flexible nonlinearities of density 

matched candidates. The performance of ICA can be improved by seeking “matched” 

nonlinearities for each source and incorporating prior information into the ICA algorithm. Figure 

3.9 shows the comparison between optimal ICA and Infomax ICA on the fMRI visual 

stimulation data of a single subject. 

Figure 3.9: Comparison between Source Density-Driven ICA and Infomax ICA 

3.7.2 Temporal Prior Information 

It is also useful to impose constrains directly upon the mixing matrix in a spatial ICA fMRI 

analysis. For example, a component selective constraint of the ICA model mixing matrix such 

that one or more specific components are constrained to be “close” to a paradigm-derived time 

course is shown in Figure 3.10 [33]. The degree of closeness is specified by the user based upon 

amount of confidence placed in the information provided. Such an approach can also be 

formulated using a Lagrange framework. Results from our approach are shown below for an 



fMRI experiment for an auditory detection task. The participant was responding to the target 

with a button press. 

Figure 3.10: Comparison of ICA and sbICA in one participant 

The left side of the figure demonstrates the task-related component for an unconstrained 

ICA analysis. On the right is the constrained (or semi-blind) analysis showing additional regions 

including motor cortex towards the top of the figure [33]. The temporal correlation with the 

paradigm is much higher for the constrained analysis as expected. These results demonstrate the 

utility of incorporating mixing matrix constraints in an fMRI analysis. 

3.8 Complex Images 

Functional magnetic resonance imaging (fMRI) is a technique that produces complex-

valued data; however the vast majority of fMRI analyses utilize only magnitude images despite 

the fact that the phase information has a straightforward physiologic interpretation [73]. A 

number of ICA algorithms are extended to the complex domain and can be utilized for 

processing the fMRI data in its native complex domain. The performance of the complex 

infomax algorithm that uses an analytic (and hence unbounded) nonlinearity with the traditional 

complex infomax approaches that employ bounded (and hence non-analytic) nonlinearities as 

well as with a cumulant-based approach has been studied [74]. Results from a magnitude-only 

and complex-valued analysis are presented in Figure 3.11. The complex-valued approach results 

in a larger contiguously activated region in all subjects (from [75]). In addition, the phase 

information is captured by the complex-valued approach (c,d). 

Figure 3.11: Results from magnitude-only analysis (a) and complex-valued analysis (b,c,d). 



4. CONCLUSION 
The application of ICA to fMRI data has proved to be quite fruitful. However there is still 

much work to be done in order to take full advantage of the information contained in the data. 

Additional prior information about multiple expected sources (both interesting and non-

interesting) and their properties (fMRI properties, physiologic recording, etc) can be utilized. In 

addition to incorporating appropriate assumptions (and moving towards a semi-blind source 

separation) it is important to relax inappropriate assumptions (such as having a fixed temporal 

delay for each source). One of the strengths of ICA of fMRI is its ability to characterize the high-

dimensional data in a concise manner. Continuing to do this and developing ways to mine the 

unexpected information in fMRI data will provide an exciting future for ICA of fMRI. 
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LEGENDS 

 

Figure 1.1: (a) The joint density of two independent signals, (b) PCA projection ( 1 2,u u ), (c) ICA projection ( 1 2,a a ) (adopted 
from [1]) 

Figure 1.2: Basic ICA model for blind source separation 

Figure 2.1: Motion-related signal due to mouth movement from inferior temporal and orbitofrontal regions 

Figure 3.1: Comparison of GLM and ICA (left) and ICA illustration (right).  The GLM (top left) is by far the most common 
approach to analyzing fMRI data, and to use this approach, one needs a model for the fMRI time course whereas in spatial ICA 
(bottom left), there is no explicit temporal model for the fMRI time course, this is estimated along with the hemodynamic source 
locations. (right) The ICA model assumes the fMRI data, x, is a linear mixture of statistically independent sources, s and the goal 
of ICA is to separate the sources given the mixed data and thus determine the s and A matrices 

Figure 3.2: Model for applying ICA to fMRI data 

Figure 3.3: (a,b,c) Hybrid-fMRI experiment in which a known source is added to a real fMRI experiment (from [29]). (d) 
Comparison of algorithms and preprocessing using hybrid data. 

Figure 3.4: FMRI single slice results (left visual cortex) 

Figure 3.5: fMRI Group ICA results (from [19]) 

Figure 3.6: Visual, motor, and visuomotor data comparisons (from [58]) 

Figure 3.7: (left) Mean activation maps from patients with schizophrenia and healthy controls.  Right auditory cortex 
demonstrated the greatest difference (white box); (middle) Right auditory cortex difference maps with optimized boundaries; 
(right) Individual classification results for cohort 1, and replication in cohort 2. Schizophrenia classification is indicated with the 
color red. 

Figure 3.8: Driving-related networks and their associated time courses compared while sober and at two doses of alcohol. 

Figure 3.9: Comparison between Source Density-Driven ICA and Infomax ICA 

Figure 3.10: Comparison of ICA and sbICA in one participant 

Figure 3.11: Results from magnitude-only analysis (a) and complex-valued analysis (b,c,d). 
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