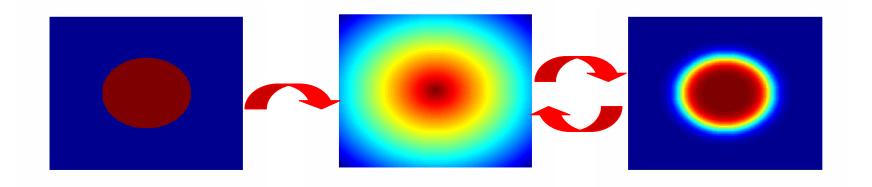
A Shape Representation based on the Logarithm of Odds By Kilian Pohl, John Fisher, William Wells



Overview

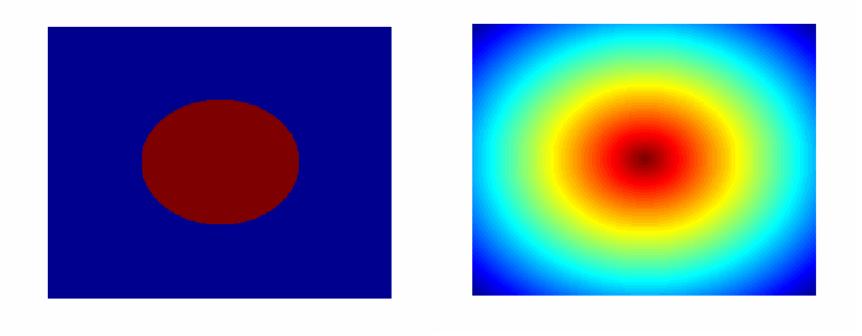
Motivation

LogOdds and Its Properties

Experiment

Additional Applications

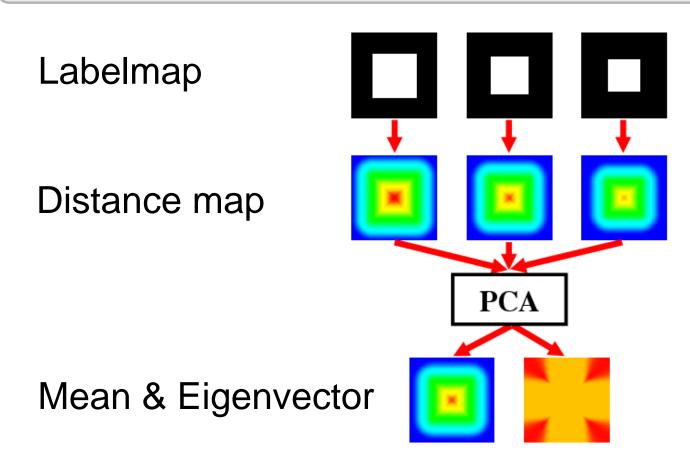
Signed Distance Maps



Outside Inside

Kilian M. Pohl - :

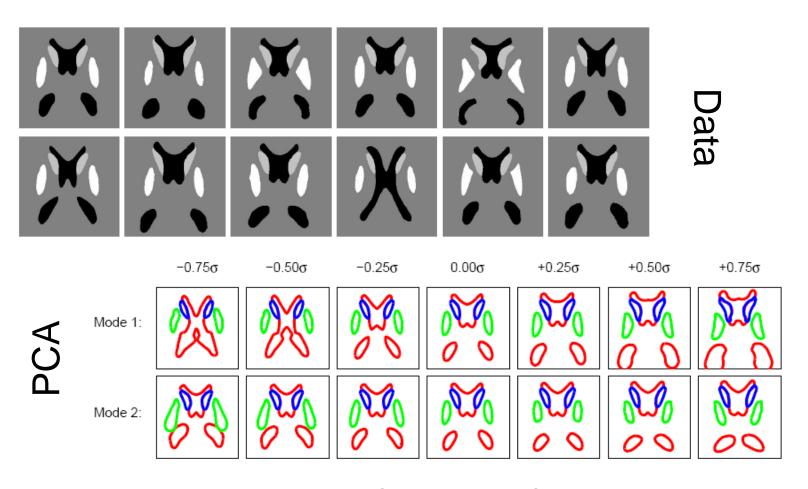
Principle Component Analysis



Leventon et al.: "Statistical Shape Influence in Geodesic Active Contours", Conf. on Computer Vision and Pattern Recognition, 2000

Kilian M. Pohl - 4 -

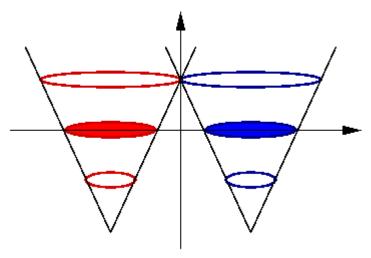
PCA for Multiple Objects



Tsai et al.: "Mutual Information in Coupled Multi-Shape Model for Medical Image Segmentation", Medical Image Analysis, 2004

Kilian M. Pohl - 5 -

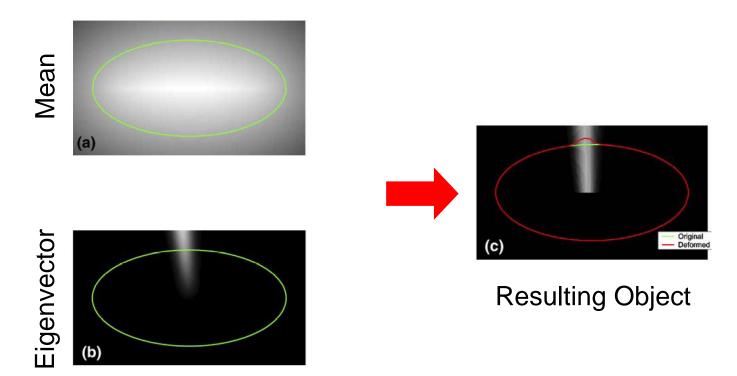
Example: PCA of Two Circles



Captures the covariation between two objects

Problem:
Define boundary between overlapping shapes?

Result of PCA



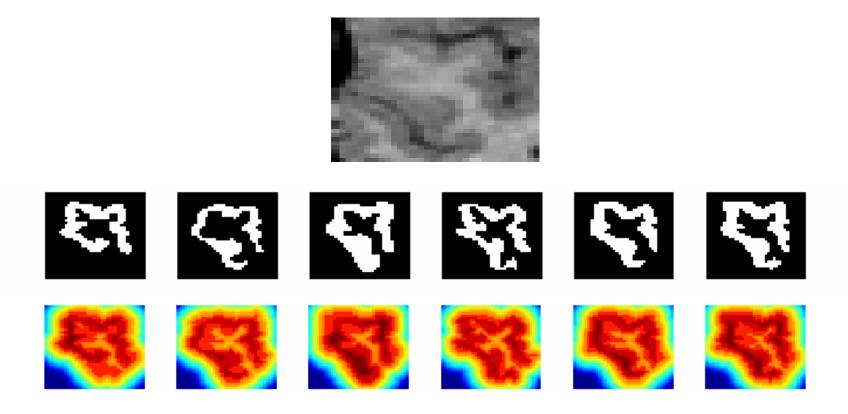
Problem:

Does generally not result in distance map

Golland et al.: "Detection and Analysis of Statistical Differences in Anatomical Shape", Medical Image Analysis, 2004

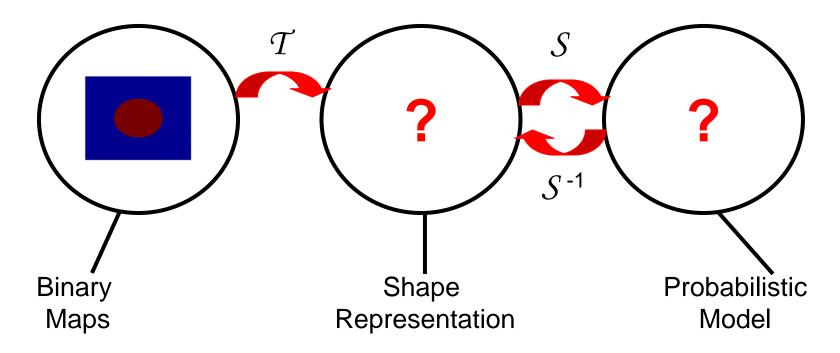
Kilian M. Pohl -7-

Indistinct Boundaries



Problem: Cannot capture uncertainty of shape

Goal



Define Shape Representation, that

- ullet alternative transformation ${\mathcal T}$ to distance maps
- defines a linear vector space and maintains intrinsic properties
- ullet relates to a probabilistic model via $\mathcal S$ indicating certainty about boundary location

Overview

Motivation

LogOdds and Its Properties Introduction

Probabilistic Interpretation

Experiment

Additional Applications

The Logarithm of Odds

Definition:

The **LogOdds** of a probability $p \in [0,1]$ is defined as the logarithm of the odds: the ratio of the probability p and its complement 1 - p

$$logit(p) \triangleq \log\left(\frac{p}{1-p}\right) = \log p - \log(1-p)$$

The inverse of the log odds function $logit(\cdot)$ is the standard logistic function or Sigmoid function

$$\mathcal{P}(t) \triangleq \frac{1}{1 + e^{-t}}$$

The Space of LogOdds

Definition:

The LogOdds space is composed by the LogOdds of all probabilities:

$$\mathbb{L} \triangleq \{ logit(p) \mid p \in \mathbb{P} \}$$

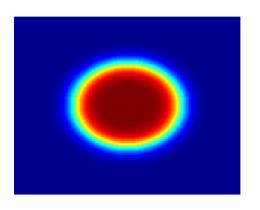
where

$$\mathbb{P} \triangleq \{ p \mid p \text{ is a probability } \}$$

represents the space of probabilities.

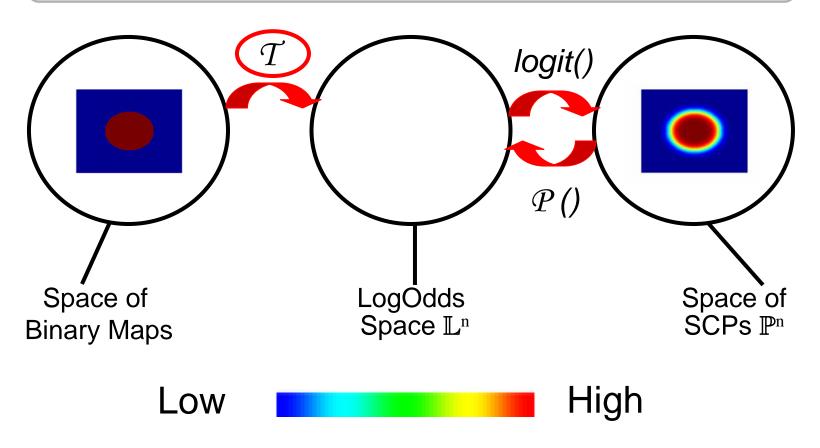
 \mathbb{L} is equivalent to $\mathbb{R} \Rightarrow \mathbb{L}^n = \mathbb{R}^n$ is a **vector space**

Example of Pⁿ

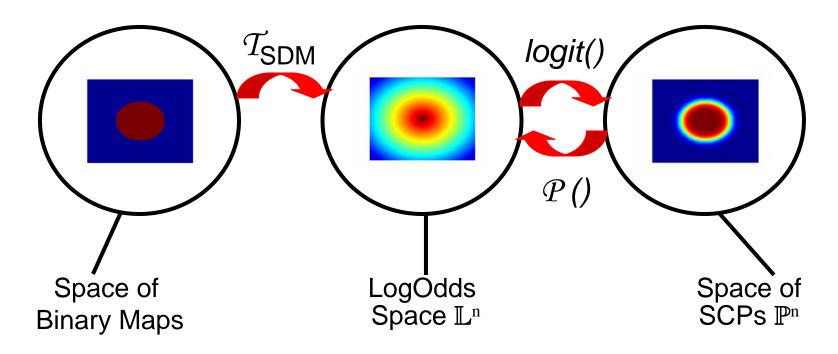


If voxels are Independent-Identical-Distributed (IID) then any element of \mathbb{P}^n defines a Space-Conditioned Probability (SCP), which is the probability that an object is present at a given the voxel location

LogOdds Space



Example for T- SDM



 \mathcal{T}_{SDM} = Any monotonic transform of the Signed Distance Map (SDM) is in \mathbb{L}^n

Overview

Motivation

LogOdds and Its Properties

Introduction

Probabilistic Interpretation

Applications

Experiment

Revisit Multi Rater Example

Defining an Abelian Group in P

Definition:

The *probabilistic addition*, \oplus , of $p_1, p_2 \in \mathbb{P}$ is defined as

$$p_1 \oplus p_2 \triangleq \mathcal{P}(logit(p_1) + logit(p_2)) = \frac{p_1 \cdot p_2}{p_1 \cdot p_2 + (1 - p_1)(1 - p_2)}$$

Properties:

- (\mathbb{P} , \oplus) defines an Abelian group with the null element 0.5 and the additive inverse (1-p)
- ⊕ corresponds to normalized multiplication of two probabilities
- The complement

$$1 - (p_1 \oplus p_2) = (1 - p_1) \oplus (1 - p_2)$$

and Bayes' Rule

Let the normalized likelihood for an event A with respect to the random variable X be

$$p_1 \triangleq \frac{P(A|X)}{P(A|X) + P(A|\bar{X})} = 1 - \frac{P(A|\bar{X})}{P(A|X) + P(A|\bar{X})}$$

along with

$$p_2 \triangleq P(X) = 1 - P(\bar{X})$$

then

$$p_{1} \oplus p_{2} = \frac{p_{1} \cdot p_{2}}{p_{1} \cdot p_{2} + (1 - p_{1})(1 - p_{2})}$$

$$= \frac{\frac{P(A|X)}{P(A|X) + P(A|\bar{X})} P(X)}{\frac{P(A|X)}{P(A|X) + P(A|\bar{X})} P(X) + \frac{P(A|\bar{X})}{P(A|X) + P(A|\bar{X})} P(\bar{X})}$$

$$= \frac{P(A|X) P(X)}{P(A)} = P(X|A)$$

Defining a Vector Space in P

Definition:

The probabilistic scalar multiplication, \circledast , between the scalar $\alpha \in \mathbb{R}$ and probability $p \in \mathbb{P}$ is defined as

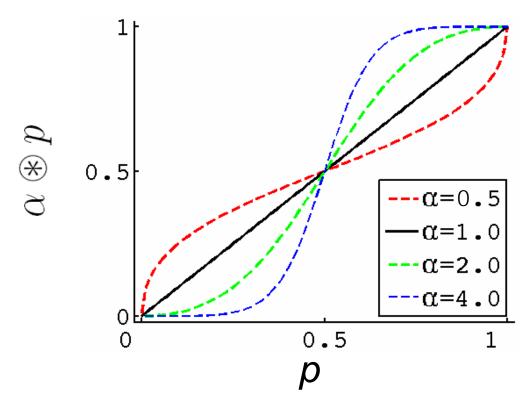
$$\alpha \circledast p \triangleq \mathcal{P}(\alpha * logit(p)) = \frac{1}{1 + e^{-\alpha \cdot \log(\frac{p}{1-p})}} = \frac{p^{\alpha}}{p^{\alpha} + (1-p)^{\alpha}}$$

Properties:

- (ℙ,⊕,⊛) defines a Vector space with 1 as the identity of the scalar multiplication
- ($\mathbb{P}, \oplus, \circledast$) is equivalent to ($\mathbb{L}, +, *$)
- The complement

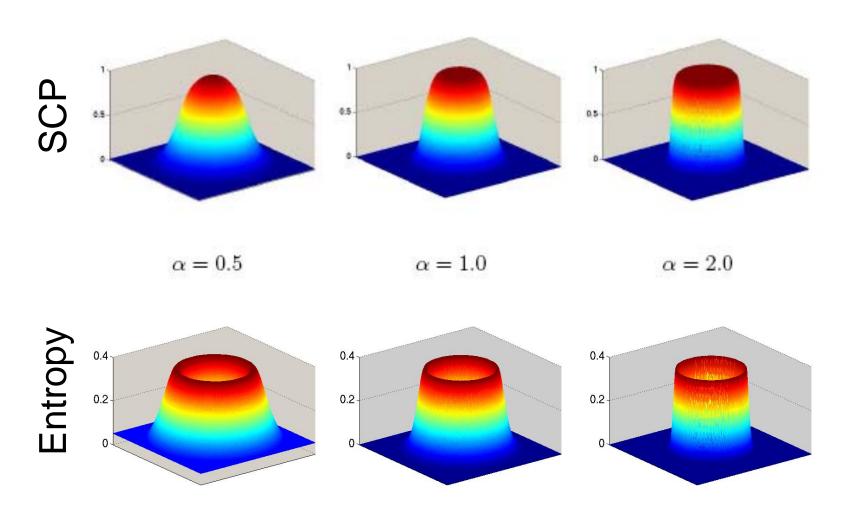
$$1 - (\alpha \circledast p) = \alpha \circledast (1 - p) = -\alpha \circledast p$$

Impact of α

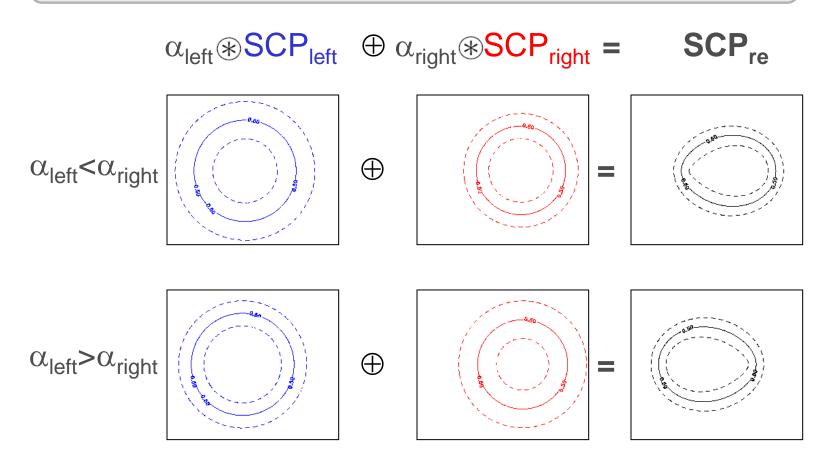


If voxels are iid then α represents the certainty within the boundary location of a binary image.

Scalar Multiplication of an SCP



Addition and Multiplication in Pⁿ



Kilian M. Pohl - 22 -

Overview

Motivation

LogOdds and Its Properties

Experiment

Additional Applications

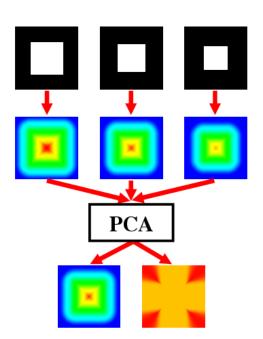
Kilian M. Pohl - 23 -

Principle Component Analysis

Labelmap

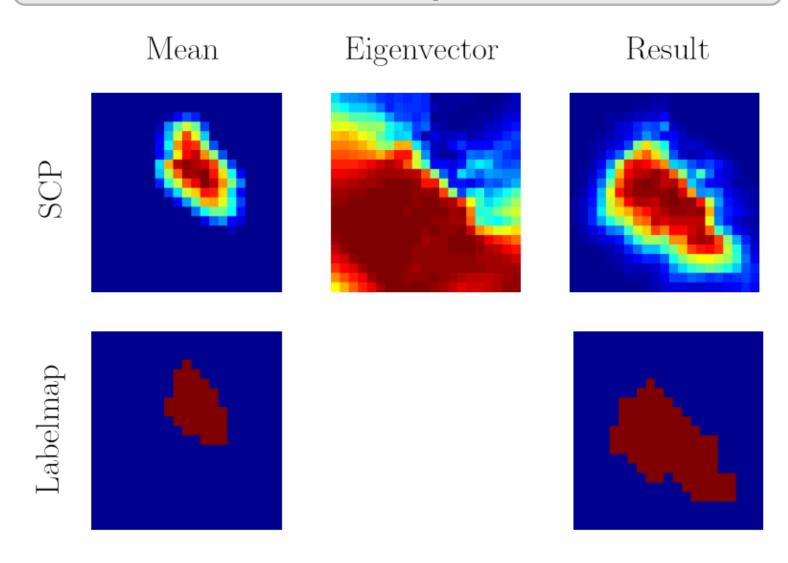
LogOdds

Mean (M) & Matrix of Eigenvectors (E)



where LogOdds $V = M + \alpha E \in \mathbb{L}^{n \times m}$ with n = number of objects without the background <math>m = number of voxels in the image

Example



Define Segmentation Model

Data

Labelmap T

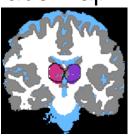
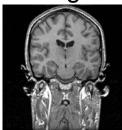
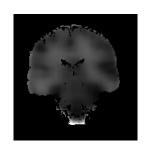


Image I



$$\hat{\mathcal{B}} = \operatorname{argmax}_{\mathcal{B}} \log(\sum_{\mathcal{T}} P(\mathcal{T}, \mathcal{B}|\mathcal{I}))$$

Paramete



Inhomogeneity B

Define Segmentation Model

Data

Labelmap T

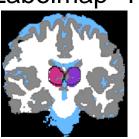
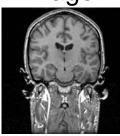
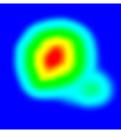


Image I

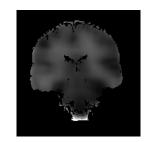


$$(\hat{\theta}, \hat{\mathcal{B}}) = \arg \max_{\theta, \mathcal{B}} \log \left(\sum_{\mathcal{T}} P(\mathcal{T}, \theta, \mathcal{B} | \mathcal{I}) \right)$$

Paramete



Shape θ



Inhomogeneity B

EM Implementation

Expectation Step: Calculate Weights

$$\mathcal{W}_{x} \equiv E_{\mathcal{T}|\mathcal{I},\mathcal{B}',\theta'} (\mathcal{T}_{x})$$

Maximization Step: Optimize the Estimates

$$\mathcal{B}' {\leftarrow} \mathrm{arg} \, \mathrm{max}_{\mathcal{B}} \sum_{t} \mathcal{W}_{x}^{t} \log P(\mathcal{I}_{x} | \mathcal{T}_{x}, \mathcal{B}_{x}) {+} \log P(\mathcal{B})$$

$$\theta' \leftarrow arg \max_{\theta} \sum_{x} \mathcal{W}_{x}^{t} log P(\mathcal{T}_{x}|\theta) + log P(\theta)$$

Defining Likelihood of Shape

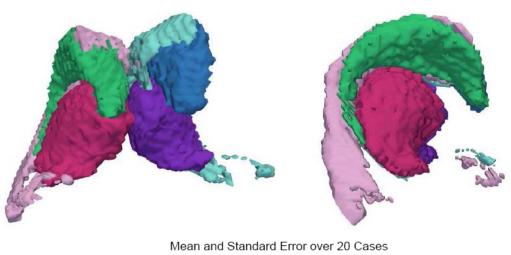
Level Set Formulation

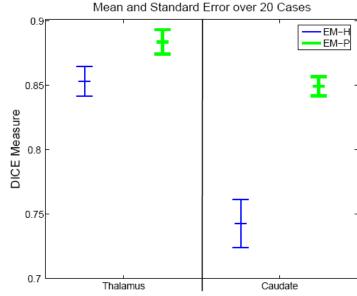
$$\mathcal{H}(v) := \begin{cases} 1 & \text{, if } v \ge 0 \\ 0 & \text{, otherwise} \end{cases} \Rightarrow P_{\mathcal{H}}(\mathcal{T}_x = e_a | \theta) \triangleq \frac{\mathcal{H}(\mathcal{D}_{\theta, a}(x))}{\sum_{a'} \mathcal{H}(\mathcal{D}_{\theta, a'}(x))}$$

Log Odds Representation

$$P_{\mathcal{P}}(\mathcal{T}_x = e_a | \theta) \triangleq \left[\mathcal{P}_M(\mathcal{D}_{\theta}(x)) \right]_a = \frac{e^{\mathcal{D}_{\theta,a}(x)}}{1 + \sum_{a'=1,\dots,M-1} e^{\mathcal{D}_{\theta,a'}(x)}}$$

Study of 20 Cases





- 30 -

Overview

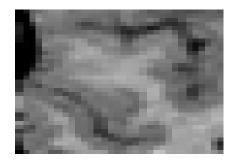
Motivation

LogOdds and Its Properties

Experiment

Additional Applications

Multi Rater Example Revisited



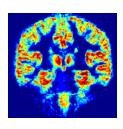
Longitudinal Study

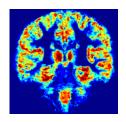
Time Point 1 Time Point 2 Time Point 3

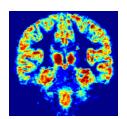
Subject 1

Subject N

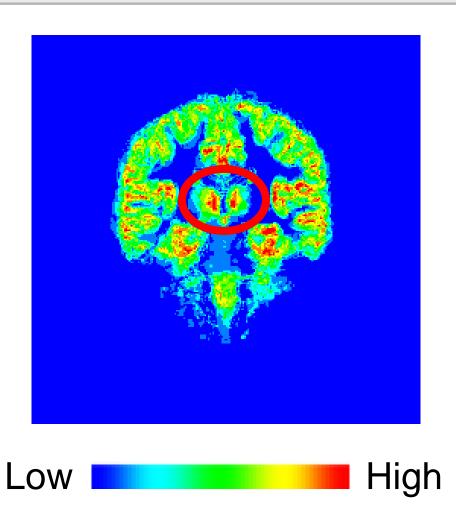
Sum





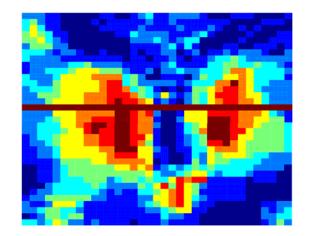


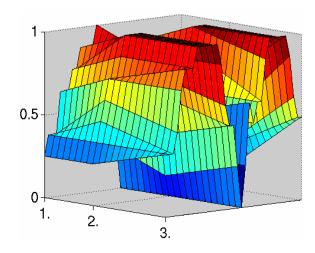
Interpolation



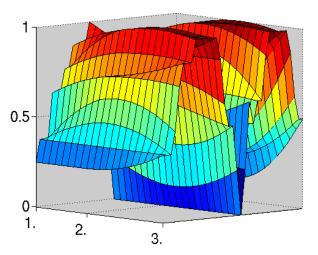
Kilian M. Pohl - 34 -

Convex vs. Non Convex





Linear Convex Combination



Quadratic Spline Interpolation

Kilian M. Pohl

- 35 -

Summary

We presented a new shape representation called LogOdds. The representation

- encodes shapes as well as their variations
- defines a linear vector space
- provides a spatial probabilistic interpretation
- addresses certain problems in vision
- achieves higher accuracy then the level-set representation in the experiment.

Thank You

Kilian M. Pohl - 37 -