

NA-MIC National Alliance for Medical Image Computing http://na-mic.org

ABC: Atlas-Based Classification

Marcel Prastawa and Guido Gerig, University of Utah and SCI Institute Martin Styner, UNC

ABC: Fully Automatic Segmentation Method

- Fully automatic, no user interaction required
- Arbitrary #channels/modalities: Co-registration
- Integrates <u>brain stripping</u>, <u>bias correction</u> and <u>segmentation</u> into one optimization framework ≠ set of separate procedures
- Atlas to subject warping: New deformable fluid flow registration
- Generic framework: Needs image(s) and prob. atlas \rightarrow RUN
- Rigorous validation and testing
- Run time: Affine atlas matching: 0.5h, deformable: 2-3hrs
- In progress: Extension to pathologies
 - K. Van Leemput, F. Maes, D. Vandermeulen, P. Suetens, P., Automated model-based tissue classification of MR images of the brain, IEEE TMI, 18(10) 1999
 - N. Moon, E. Bullitt, K. van Leemput, G. Gerig, Automatic Brain and Tumor Segmentation, Proc. MICCAI '02, Springer LNCS 2488, 09/2002

ABC in human traveling phantom across-site MRI calibration

Scanner type \mathcal{A}		
tissue class	COV (%)	
wm	0.573	
gm	0.471	
csf	0.988	
icv	0.267	

Courtesy ACE-IBIS autism study, Piven, UNC

UNIVERSITY OF UTAH

Co-Registration of structural MRI: Multi-contrast view of tissue & lesions

TSE

FLAIR

SWI

Mprage postcontrast GRE-bleed

Automatic Brain Segmentation "ABC" applied to multi-modal MRI of TBI case

ABC performs co-registration of all input modalities (here 5 MRI channels) and atlas-based segmentation of brain tissue and csf. Bias-correction (all modalities) and brain-stripping is an integrative, automatic part of ABC.

White matter lesions and ventricles were segmented via postprocessing using level-set segmentation. MRI data courtesy of UCLA (John Van Horn and David Hovda).

"Byproduct" of ABC: Bias inhomogeneity correction

T1 registered Corrected image

Bias field

National Alliance for Medical Image Computing http://na-mic.org

1.5T

"Byproduct" of ABC: Brain Stripping

MRI segmentation: ICV as result of brain segmentation (gm+wm+csf)

DTI: Brain masking via tissue segmentation of B0 image.

Typical Clinical Study

- Drug addition, effects on brain morphometry and function (sMRI/DTI)
- Yale: Linda Mayes, Marc Potenza
- UNC: Joey Johns
- Utah: Gerig/Gouttard

Brain Tissue

• Parcellation by nonlinear registration of template

Table of gm/wm/csf per lobe -> biostatistical analysis

ABC Application: Joint analysis of sMRI and DTI

- Co-registration of structural modalities to DTI (baseline image registered to TSE) using ABC.
- DTI tensor field and structural images available in same coordinate system.

DTI (mean diffusivity) TSE GRE-bleed Segmentation

Slicer-3: Tractography and joint display of segmented objects and MRI

- Tractography, fiber clustering and composition by Ron Kikinis
- Co-registration DTI/sMRI and brain/lesion segmentation by Guido Gerig

Monkey Brain Segmentation

ABC applied to macaque brain processing: M. Styner, I. Oguz, UNC

ABC for Mouse "Brain Stripping"

ABC applied to mouse brain processing: M. Styner, I. Oguz, UNC

FA

UNC Conte Center EAB meeting Feb 2010

Integration into Slicer 3

telp & Acknowledgem	sent
ABC (Atlas Based Clas	aification)
	Parameter set 🔤 🚭
	Status Idie
Input Images	
	input image 1 N.e. 🔤 🚭
	Input image 2 N.e. 🔤
	input image 3 N.e 🔤 🛋
	input image 4 N.e 💳 🖨
	Input image 5 N.e 🔤 📥
Atlas	
	Atlas Directory 📴
	Atlas Orientation
Output Images	
	Output label image N.e 🔤 🖨
	Biar corrected output image 1 N.e 😑 🖨
	Bias corrected output image 2 N.e 🔤 🖨
	Bias corrected output image 3 N.e 🔤 📮
	Bias corrected output image 4 N.e 😑 🚔
	Biaz corrected output image 5 N.e 🔤 📮

Input image 1 🛛 🖂 🚍
Input image 2 🛛 🖂 🚔
Input image 3 N.e 🔤 🖨
Input image 4 N.e 🔤 🖨
Input image 5 N.e 🔤 🚭
Atlas Directory 🛅 adult-atlas-ab-
Atlas Directory 🔂 adult-atlas-ab-
Atlas Directory 🛅 adult-atlas ab Atlas Drientation RAI

National Alliance for Medical Im. http://na-mic.org

Advanced Se	gmentation Parameters	
	Bias Field Polynomial Degree (0 = off) 4	*
	Atlas Transform Type 🔳 affine 📃 rigid 📃	identity
	Coregistration Transform Type 🔳 affine 📃 rigid 📃	identity
	Atlas Warping Fluid Iterations (0 = off) 10	÷

Advanced parameter settings:

- Type of linear transformation for intra-subject modalities
- Bias correction polynomial degree
- Amount of deformation of atlas (affine, fluid w. #iterations)

Current Extensions: Lesions and Pathology

WM lesions in lupus (MIND, J. Bockholt)

T2

3D

Marcel Prastawa and Guido Gerig. *Brain Lesion* Segmentation through Physical Model Estimation. International Symposium on Visual Computing (ISVC) 2008. Lecture Notes in Computer Science (LNCS) 5358, Pages 562-571

UNIVERSITY OF UTAH

Segmentation Case 1 TBI

TBI data courtesy UCLA (D. Hovda)

- T1 difficult quality (low contrast, non-isotropic voxels, brain damage)
- Automatic brain segmentation.
- User-supervised level-set segmentation of lesions and ventricles.
- Cursor points to right frontal brain damage, T1 hyperintense lesions shown in yellow.

Segmentation Case 2 TBI

- Automatic brain segmentation.
- User-supervised level-set segmentation of lesions and ventricles.
- T1 hyperintense lesions shown in yellow.

TBI data

courtesy

UCLA (D.

Hovda)