

Towards Validation of DTI Tractography

Sonia Pujol, Ph.D.

Surgical Planning Laboratory Harvard University

39th Annual Meeting of the Society for Neuroscience – Oct. 17-21, 2009 Chicago, IL

Brain Connectivity

- 100 billions of neurons
- Complex neuronal networks

Brain Connectivity

Courtesy of L O'Donnell & CF Westin

- 100 billions of neurons
- Complex neuronal networks
- Diffusion MRI is the first noninvasive window on the organization of the brain white matter pathways

Visualization of *in-vivo* normal and pathological anatomy

 Insights into white matter abnormalities which may include changes in direction, radial displacement or diameter of white matter fiber bundles

DTI Analysis Pipeline

Stejskal-Tanner
$$S_i = S_0 e^{-b\hat{g}i^T} \underline{D}\hat{g}_i$$

$$\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix}$$

Physical Interpretation

The diffusion tensor <u>D</u> in the voxel (I,J,K) can be visualized as an ellipsoidal isoprobability surface in which the principal axes correspond to the eigenvectors.

 Hypothesis: the direction of the fibers is collinear with the direction of the eigenvector associated with the largest eigenvalue.

The goal of tractography is to determine white matter fibers' trajectory from a set of DTI voxels.

Courtesy of J De Siebenthal & CF Westin

Courtesy of A. Areza & CF Westin

Courtesy of T.Fletcher & R. Whitaker

Courtesy of A. Tannenbaum

Current achievements include:

- 3D visualization of healthy & pathological anatomy
- Assessment of group differences (e.g Schizophrenia, Alzheimer's disease)

Courtesy of J De Siebenthal, CF Westin

Courtesy of A. Areza CF Westin

Courtesy of T.Fletcher & Ross Whitaker

Courtesy of A. Tannenbaum

Current Challenge:

Characterization of different tractography approaches

Validation Approaches

Mathematical Phantoms

Physical Phantoms

Histological Studies

Real Subject Data

Mathematical Phantoms

- Known absolute ground truth
- Freedom of shape design

Math

Mathematical Phantoms

- Known absolute ground truth
- Freedom of shape design
- Freedom of parameter selection

Performance evaluation

 Simple/complex tract configurations

Poupon et al. Magn Reson Med. 2008 Dec;60(6):1276-83.

Physical Phantom

- Simple/complex tract configurations
- Real MR images
- Variations in voxel size, B-value and SNR

Courtesy of C.Poupon and P.Fillard, LNAO

Histological studies

 Real anatomical structures

Dauguet et al, MICCAI 2006

Histological studies

Dauguet et al, Neuroimage 2007

- Real anatomical structures
- Correlation with ground truth white matter anatomy

- Non parametric statistical approach
- Assessment of the precision of
 DTI tractography

Jones and Pierpaoli, MRM 2007

NA-MIC pilot initiative

- Exploratory work initiated by the National Alliance for Medical Image Computing
- 7 major research centers across the US
- Cross-comparison of tractography algorithms on five white matter fascicles

Fiber Tracking SCI, Utah

GTRACT Iowa University

Volumetric Connectivity SCI, Utah

 Comparison of segmentation of structural images in the absence of ground truth: STAPLE

Warfield SK, Zou KH, Wells WM. STAPLE. Simultaneous Truth and Performance Level Estimation (STAPLE): An algorithm for the Validation of Image Segmentation. IEEE Trans Med Imaging. 23(7):903-21.

Tractography evaluation

- The complete data (D,T) is composed of the detected tracts D (known), and true tracts T (unknown).
- The tractography algorithm decision at each voxel is regarded as being incomplete, and is regarded as an observable of the complete data.
- The models parameters $\theta = (p,q)$ are given by the sensitivity p and the specificity q.

(Simultaneous Truth and Performance Level Evaluation)

 Expectation-Maximization algorithm (EM) to maximize the incomplete data log likelihood function

In $f(D \mid p,q)$

Warfield SK, Zou KH, <u>Wells WM.</u> STAPLE. Simultaneous Truth and Performance Level Estimation (STAPLE): An algorithm for the Validation of Image Segmentation. IEEE Trans Med Imaging. 23(7):903-21.

E-Step: Evaluate the posterior distribution $f(T, D | \theta^{(0)})$ and compute the Conditional Expectation of the complete data log likelihood

$$Q(\theta \mid \theta^{(0)}) = \sum_{T} f(T \mid D, \theta^{(0)}) Ln f(T, D \mid \theta)$$

M-Step: Maximization step

$$\theta^{(new)} = \arg_{\theta} \max Q(\theta, \theta^{(0)})$$

Acquisition:

- 1.5 T Siemens scanner 60 gradient & 10 baselines
- B = 700 s/mm²
- 2.0 mm voxel size

Pre-Processing:

- Eddy-current and EPI distortion correction
- Weighted least square tensor estimation

 Preliminary results showed differences in sensitivity among algorithms

(Pujol et al, ISMRM 2009)

Internal Capsule

Fib.Tract	Slicer WB	Gtract	Vol Conn
Left - (0.52, 0.99)	(0.80, 0.99)	(0.42, 0.99)	(0.74, 0.99)
Right -(0.52, 0.99)	(0.81, 0.99)	(0.42, 0.99)	(0.75, 0.99)

 Preliminary results showed differences in sensitivity between algorithms

→What is the statistical significance of the differences observed ?

Arcuate Fasciculus:

- connects the Broca's and Wernicke's area
- involved in language function

Statistical Analysis: Tractography Algorithms

- A1: Fast Marching (FMT)
- (Parker et al, TMI 2002)
- A2: Guided Tracking (GTRACT)
- (Cheng et al, Neuroimage 2006)
- A3: Streamline Tractography brute force approach
- (SLT) (Basser et al, MRM 2000)
- A4: Stochastic Tractography
- (Frieman et al, TMI 2006)

Results: Sensitivity

	A1 (FM)	A2 (GTRACT)	A3 (SLT)	A4 (Stochastic)
Tractography Algorithm	R	R		R
μ	0.29	0.45	0.51	0.48
std	0.01	0.04	0.03	0.08

Results: Sensitivity

Results: Specificity

	A1 (FM)	A2 (GTRACT)	A3 (SLT)	A4 (Stochastic)
Tractography Algorithm	R	R Contraction of the second se	F C C C C C C C C C C C C C C C C C C C	R
μ	0.99	0.99	0.99	0.99
std	3.10 ⁻⁵	3.10-4	3.10 ⁻⁵	7.10 ⁻⁵

ANOVA: F = 313.13, p = 0

Results: Specificity

	A1 (FM)	A2 (GTRACT)	A3 (SLT)	A4 (Stochastic)
Tractography Algorithm	R	R CONTRACTOR	F C C C C C C C C C C C C C C C C C C C	R
μ	0.99	0.99	0.99	0.99
std	3.10 ⁻⁵	3.10-4	3.10 ⁻⁵	7.10 ⁻⁵

No practical significance

NA-MIC Pilot Study

- Preliminary results on DTI tractography evaluation in the absence of ground truth
 - Statistical analysis showed significant differences in sensitivity among algorithms

- Evaluation of various tractography approaches in the absence of ground truth
 - Validation is key to the transfer from bench to bedside
- DTI tractography as an *invivo* neuroimaging marker

Acknowledgements

National Alliance for Medical Image Computing (NA-MIC) (NIH Grant U54EB005149)

