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Abstract-An image processing technique is presented for find- 
ing and localizing the centroids of cylindrical markers externally 
attached to the human head in computed tomography (CT) and 
magnetic resonance (MR) image volumes. The centroids can be 
used as control points for image registration. The technique, 
which is fast, automatic, and knowledge-based, has two major 
steps. First, it searches the entire image volume to find one voxel 
inside each marker-like object. We call this voxel a “candidate” 
voxel, and we call the object a candidate marker. Second, it 
classifies the voxels in a region surrounding the candidate voxel 
as marker or nonmarker voxels using knowledge-based rules and 
calculates an intensity-weighted centroid for each true marker. 
We call this final centroid the “fiducial” point of the marker. The 
technique was developed on 42 scans of six patients-one CT and 
six MR scans per patient. There are four markers attached to 
each patient for a total of 168 marker images. For the CT images 
the false marker rate was zero. For MR the false marker rate 
was 1.4% (Two out of 144 markers). To evaluate the accuracy 
of the fiducial points, CT-MR registration was performed after 
correcting the MR images for geometrical distortion. The fiducial 
registration accuracy averaged 0.4 mm and was better than 0.6 
mm for each of the eighteen image pairs. 

I. INTRODUCTION 

IFFERENT imaging modalities provide different types of D information that can be combined to aid diagnosis and 
surgery. Bone, for example, is seen best on X-ray computed 
tomography (CT) images, while soft-tissue structures are seen 
best on magnetic resonance (MR) images. Because of the com- 
plementary nature of the information in these two modalities, 
the registration of CT images of the head with MR images is of 
growing importance for diagnosis and for surgical planning. 
Furthermore, registration of images with patient anatomy is 
used in new interactive image-guided surgery techniques to 
track in real time the changing position of a surgical instrument 
or probe on a display of preoperative image sets of the patient 
[21], [23], [34]. We define registration as the determination of 
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a one-to-one mapping between the coordinates in one space 
and those in another, such that points in the two spaces that 
correspond to the same anatomic point are mapped to each 
other. 

Many methods have been used to register medical images 
[40], [53]. In this paper we are primarily concerned with 
point-based registration. Point-based registration involves the 
determination of the coordinates of corresponding points in 
different images (andor physical space) and the estimation 
of the geometrical transformation using these corresponding 
points [36], [41]. The points may be either intrinsic [16], 
[181, 1271 or extrinsic [lo], [17]-[191, [281, [301, 1331, [361, 
1411, 1471, 1541. Intrinsic points are derived from naturally 
occurring features, e.g., anatomic landmark points. Extrinsic 
points are derived from artificially applied markers, e.g., tubes 
containing copper sulfate. We use external fiducial markers 
that are rigidly attached through the skin to the skull [36], 
[41]. We call the points used for registration Jiducial points or 
jiducials, as distinguished from “fiducial markers,” and pick 
as the fiducials the geometric centers of the markers. 

Determining the coordinates of the fiducials, which we 
callJiducia2 localization, may be done in image space or in 
physical space. Several techniques have been developed for 
determining the physical space coordinates of external mark- 
ers. Examples include articulated arms [ll, 1231, [331, [491, 
optical triangulation systems [22], magnetic field digitizers 
[30], and ultrasonic range finders [19]. This paper is concerned 
with determining the CT and MR image space positions 
of external markers. Image localization can be performed 
manually, semiautomatically, or fully automatically. Mandava 
[35], [36] and DeSoto [ 131 have presented semiautomatic 
fiducial localization techniques that use adaptive intensity- 
based segmentation algorithms. In this paper we improve 
Mandava’s work by applying a more accurate knowledge- 
based segmentation method, and we automate each step so that 
no human activity is involved. We include the results of tests 
with four cylindrical markers on 42 scans of six patients-one 
CT and six MR scans per patient. 

11. ALGORITHM 

A. Overview 

The algorithm finds markers in image volumes of the head. 
A three-dimensional (3-D) image volume typically consists of 
a stack of two-dimensional (2-D) image slices. The algorithm 
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finds markers whose image intensities are higher than their 
surroundings. It is also tailored to find markers of a given size 
and shape. All of the marker may be visible in the image, or 
it may consist of both imageable and nonimageable parts. It 
is the imageable part that is found by the algorithm, and it 
is the size and shape of this imageable part that is important 
to the algorithm. Henceforth when we use the term “marker” 
we are referring to only the imageable portion of the marker. 
Three geometrical parameters specify the size and shape of the 
marker adequately for the purposes of this algorithm: 1) the 
radius T, of the largest sphere that can be inscribed within 
the marker; 2) the radius R, of the smallest sphere that 
can circumscribe the marker; and 3) the volume V, of the 
marker. In this paper we use cylindrical markers with diameter 
d and height h for clinical experiments. For these markers 
T, = min(d, h)/2,  Rm = d-12, and V, = xd2h/4. 

Our problem is two-fold. First, we must search the entire 
image volume to find marker-like objects. Second, for each 
marker-like object, we must decide whether it is a true marker 
or not and accurately localize the centroid for each true one. 
Therefore, the algorithm consists of two parts. Part One finds 
“candidate voxels.” Each candidate voxel lies within a bright 
region that might be the image of a marker. The requirements 
imposed by Part One are minimal with the result that, for the 
M markers in that image, there are typically many more than 
M candidate points identified. If, for example, M is four, Part 
One might identify eighty candidates. Part Two selects from 
these candidates M points that are most likely to lie within 
actual markers and provides a centroid for each one. Part One 
is designed so that it is unlikely to miss a true marker. Part 
Two is designed so that it is unlikely to accept a false marker. 

B. Inputs and Outputs 

Part One takes the following input: 
The image volume of the head of a patient. 
The type of image (CT or MR). 
The voxel dimensions Axv,  Ayv, and Az,. 
The marker’s geometrical parameters T,, R,, and V,. 
The intensity of an empty voxel. 

Part Two takes the same input as Part One, plus two 

The set of candidate voxels produced by Part One of the 

The number of external markers M known a priori to be 

Part Two produces as output a list of M “fiducial points.” 
Each fiducial point is a 3-D position (zf, y f ,  z f )  that is an 
estimate of the centroid of a marker. The list is ordered with 
the first member of the list being most likely to be a marker 
and the last being the least likely. 

Part One produces as output a set of candidate voxels. 

additional pieces of information: 

algorithm. 

present in the image. 

C. The Steps of Part One 

the following steps (see Figs. 1 and 2) 
Part One operates on the entire image volume. It comprises 

1) If the image is an MR image, a 2-D, three-by-three 
median filter is applied within each slice to reduce noise. 

To speed up the search, a new, smaller image volume 
is formed by subsampling [see Figs. l(a) and 2(a)]. The 
subsampling rate in x is calculated as Lrm/Ax,J, where 
1. J is the floor function. The subsampling rates in y and 
z are similarly calculated. 
An intensity threshold is determined. For CT images, 
the threshold is the one that minimizes the within-group 
variance [45]. For MR images, the threshold is computed 
as the mean of two independently determined thresholds. 
The first is the threshold that minimizes the within-group 
variance. The second is the threshold that maximizes the 
Kullback information value [31]. 
This threshold is used to produce a binary image volume 
with higher intensities in the foreground [see Figs. l(b) 
and 2(b)]. Foreground voxels are typically voxels that 
are part of the image of markers or of the patient’s head. 
If the original image is an MR image, spurious detail 
tends to appear in the binary image produced by the pre- 
vious step. The spurious detail is composed of apparent 
holes in the head caused by regions that produce weak 
signal, such as the skull and sinuses. Thus, if the original 
image is an MR image, these holes in the binary image 
are filled [see Figs. l(c) and 2(c)]. In this step each slice 
is considered individually. A foreground component is a 
two-dimensionally connected set of foreground voxels. 
The holes are background regions completely enclosed 
within a slice by a single foreground component. This 
step reduces the number of false markers. 
Two successive binary, 2-D, morphological operations 
are performed on each slice [see Figs. l(d), l(e), 2(d), 
and 2(e)]. The operations taken together have the effect 
of removing small components and small protrusions 
on large components. In particular, the operations are 
designed to remove components and protrusions whose 
cross sections are smaller than or equal to the largest 
cross section of a marker. The operations are erosion 
and dilation, in that order. The structuring element is 
a square. The x dimension (in voxels) of the erosion 
structuring element is calculated as [2R,/Axk], where 
1.1 is the ceiling function and the prime refers to 
the subsampled image. The y dimension is similarly 
calculated. The size of the dilation structuring element in 
each dimension is the size of the erosion element plus 
one. 
The binary image that was output by the previous step 
is subtracted from the binary image that was input to 
the previous step [see Figs. l(f) and 2(f)]. That is, a 
new binary image is produced in which those voxels 
that were foreground voxels in the input image but 
background in the output image are set to foreground. 
The remaining voxels are set to background. The result is 
a binary image consisting only of the small components 
and protrusions that were removed in the previous step. 
For the entire image volume, the foreground is parti- 
tioned into 3-D connected components. The definition 
of connectedness can be varied. We have found that in- 
cluding the eight 2-D eight-connected neighbors within 
the slice plus the two 3-D six-connected neighbors on 
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the neighboring slices works well for both CT and MR 
images. 

9) The intensity-weighted centroid of each selected com- 
ponent is determined using the voxel intensities in the 
original image. The coordinates of the centroid position 
(x,, y,, z,) are calculated independently as follows 

i 

i 
Yc = 

(Ii  - Io) 
i 

i zc = 
( A  - Io) . 

i 

The sums are taken over all voxels in the component. 
The value Ia is the intensity of voxel i; IO is the intensity 
of an empty voxel; and xi, yz, and z; are the coordinates 
of the center of voxel i .  

10) The voxels that contain the points (x,, y,, z,) are 

The voxels identified in the last step are the candidate 
identified. 

voxels. 

D. The Steps of Part Two 
Part Two operates on a region of the original image (i.e., 

not the subsampled image) around each candidate voxel. We 
desire to use the smallest region possible to improve speed. 
The region must contain all voxels whose centers are closer 
to the center of the candidate voxel than the longest marker 
dimension (2R,), plus all voxels that are adjacent to these 
voxels [see rule (a) in Step 1) below]. For convenience, we 
use a rectangular parallelepiped that is centered about the 
candidate voxel. The x dimension (in voxels) is calculated as 
2r2R,/Axwl + 3. The 3 represents the center voxel, plus 
an adjacent voxel on each end. The y and z dimensions 
are similarly calculated. For each of these regions Part Two 
performs the following steps 

1) It is determined whether or not there exists a “suitable” 
threshold for the candidate voxel. This determination 
can be made by a brute-force checking of eachhtensity 
value in the available range of intensities. We use instead 
a more efficient binary search strategy. In either case 
a suitable threshold is defined as follows. For a given 
threshold the set of foreground (higher-intensity) voxels 
that are three-dimensionally connected to the candidate 
voxel are identified. We use the same connectedness as 
in Step 8) of Part One. The threshold is considered suit- 
able if the size and shape of this foreground component 
is sufficiently similar to that of a marker. There are two 

Erosion 

Dilation 

Components 

0 Calldidate 

Fig. 1. Schematic outline of Part One of the localization algorithm. The 
labels (a) through (f) refer to sample images in Fig. 2. See the text for details. 

rules that determine whether the size and shape of the 
component are sufficiently similar. 
a) The distance from the center of the candidate voxel 

to the center of the most distant voxel of the compo- 
nent must be less than or equal to the longest marker 
dimension (2R,). 

b) The volume, V,, of the component, determined by 
counting its voxels and multiplying by the volume 
of a single voxel V,  = Axv x Ayv x Az,, must be 
within the range [aV,, ,6Vm]. See the Section VI 
for information about factors influencing the choice 
of the values of a and p. 

2) If no such threshold exists, the candidate point is dis- 
carded. If there are multiple suitable thresholds, the 
smallest one (which produces the largest foreground 
component) is chosen in order to maximally exploit the 
intensity information available within the marker. 
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Fig. 2. Sample image slices produced after various steps of Part One of 
the localization algorithm. The input volume image is an MR T1-weighted 
Spin-Echo scan. The image labels correspond to labels in Fig. 1 .  The images 
were produced after (a) subsampling, (b) thresholding, (c) region filling, (d) 
erosion, ( e )  dilation, and (f) subtraction of (e) from (c). 

If the threshold does exist, the following steps are taken. 
a) The intensity-weighted centroid of the foreground 

component is determined using the voxel intensities 
in the original image. The coordinates of the centroid 
position (sf, yf, z f )  are calculated as in Step 9) of 
Part One of the algorithm but with the foreground 
component determined in Step 1). 

b) The average intensity of the voxels in the foreground 
component is calculated using the voxel intensities 
in the original image. 

The voxel that contains the centroid (sf, yf, zf) is 
iteratively fed back to Step 1 of Part Two. If two 
successive iterations produce the same centroid, the 
centroid position and its associated average intensity is 
recorded. If two successive iterations have not produced 
the same centroid by the fourth iteration, the candidate 
is discarded. 

The centroid positions (zf, yf, zf) are ranked according to 
the average intensity of their components. The M points with 
the highest intensities are declared to be fiducial points and are 
output in order by rank. A candidate with a higher intensity is 
considered more likely to be a fiducial point. 

111. EXPERIMENTAL METHODS 

A. Image Acquisition 

We use X-ray, CT, and MR head image volumes acquired 
from six patients that underwent craniotomies in a stereotactic 
neurosurgical clinical trial. Each patient had four external 
markers attached to posts screwed into the outer table of the 
skull. Each patient also had a COMPASS stereotactic head 
frame (Stereotactic Medical Systems, Inc., Rochester, MN) 
applied. The base ring of the frame was attached to the bed 
of the scanner during image acquisition. (The frame is a 
redundant reference system and was ignored for our purposes. 
Nonetheless, it also serves as a head fixation device.) The 

CT images were acquired using a Siemens DR-H scanner. 
Each CT image contained between 27 and 34 slices that 
were 4 mm thick; each slice contained 512 x 512 pixels of 
size 0.65 x 0.65 mm. The MR images were acquired using a 
Siemens SP 1.5 Tesla scanner. Images were obtained using 
the body coil (because the stereotactic frame will not fit 
within the head coil). Each MR image contained either 20 
or 26 slices that were 4 mm thick (with no interslice gap); 
each slice contained 256 x 256 pixels of size 1.25 x 1.25 mm. 
Transverse T1-weighted (Tl), proton density-weighted (PD), 
and T2-weighted (T2) Spin-Echo images were acquired for 
each patient. The imaging parameters for the T1 images were 
TE = 15 ms, TR = 650 or 800 ms, readout gradient magnitude 
= 2.45 mT/m, slice selection gradient magnitude = 6.8 mT/m, 
four acquisitions, and half-Fourier reconstruction [26], [37]. 
The imaging parameters for the dual echo PDm2 images were 
TE = 20/90 ms, TR = 2550 or 3000 ms, readout gradient 
magnitude = 1.47 mT/m, slice selection gradient magnitude = 
6.8 mT/m, two acquisitions, and half-Fourier reconstruction. 
Three additional MR images were acquired for each patient 
with the identical imaging parameters except that the readout 
gradient was reversed. Acquisition takes approximately eight 
(14) min for each T1 (PDR2) image. The patient is in the MR 
scanner for approximately one hour (including patient setup 
and scout image acquisition). 

B. Geometrical Distortion Correction 

We have shown that correction of geometrical distortion in 
MR images can significantly improve the accuracy of point- 
based, surface-based, and frame-based registration [ 141, [38], 
[39]. The MR images are corrected for scale distortion by 
using the COMPASS stereotactic frame as an object of known 
shape and size. The MR images are corrected for static field 
inhomogeneity by using the pair of distorted images acquired 
with reversed readout gradients. It is possible to do full 
“image” rectification as detailed in [61, [71, [381, and [391. 
We instead perform “point” rectification as described in [ 141. 

C. Markers 

The markers were designed to be bright in both CT and MR 
images (see Fig. 3). They are constructed from hollow plastic 
cylinders with an inside diameter d = 7 mm and an inside 
height h = 5 mm (see Fig. 4). The values of the geometrical 
parameters defined in Section 11-A are T, = 2.5 mm, R, = 
4.3 mm, and V, = 192 1.11. The cylinders are filled with an 
aqueous solution of 165-mg/ml iothalamate meglumine and 
0.5-mM gadopentetate dimeglumine and sealed. The marker 
is bright in CT images because iodine attenuates X-rays. The 
marker is bright in MR images because gadolinium reduces the 
T1 relaxation parameter of the hydrogen protons in the water. 

Markers are implanted after obtaining informed consent in 
accordance with Institutional Review Board approved clinical 
protocol guidelines. Implantation sites are selected on an 
individual basis, depending on clinical circumstances. One 
milliliter of local anesthetic is instilled subcutaneously at each 
site to minimize discomfort during application. After making 
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Fig. 3. Appearance of the marker in CT and MR T1-weighted Spin-Echo 
images. Images (a) and (b) show transverse CT and MR image slices, 
respectively, of the head. Four markers appear in these slices. The markers 
are close to the skin. The nine (a) or 12 (b) dots in the image periphery are 
cross sections of the stereotactic frame N-bars. Thin plastic protective covers 
are faintly visible in the CT images. Images (c) through (f) are enlargements 
of the four markers in image (a); images (g) through 6) are enlargements of 
the four markers in image (b). 

a 3.5-mm skin incision, a sterile guide is advanced to the outer 
table of the skull and a premeasured drill is inserted to produce 
a 4-mm-deep anchoring hole. An applicator, preloaded with a 
marker base, is advanced down the guide cannula and the 
base is screwed into the bone of the skull. The plastic marker 
base is 13 mm in length and 3 mm in diameter; the threaded 
end is 3 mm in length (see Fig. 4). Marker bases may remain 
in place for weeks at a time. The markers are attached to the 
bases during image acquisition. Patients can undergo surgery at 
any time after image acquisition. There is a risk of superficial 
infection at the implantation sites. Strict aseptic technique 
is utilized throughout the course of all implantations and 
prophylactic antibiotics are used (they are already routinely 
administered preoperatively for all neurosurgical procedures). 
No such infections have been observed in clinical results to 
date. 

D. Point-Based Registration 
When we use markers to register images, we call them 

fiducial markers and call their positions fiducial points or 
fiducials. We register CT and MR images by calculating the 
rotation and translation parameters of the rigid body trans- 
formation that minimizes the mean square distance between 
corresponding fiducials in the two images [36], (411. We have 
implemented the closed-form solution developed by Arun et 
al. [3]. The method decouples the calculations of the rotation 
and translation parameters. The translation vector is computed 
as the difference between the centroids of the two sets of 

( 4  (b) (C) 

Fig. 4. Photograph of (a) marker. The fiducial markers are constructed 
from hollow plastic cylinders with an inside diameter d = 7 mm and an 
inside height h = Smm, and thus have an internal volume V, = 192 pl. 
The cylinders are filled with an aqueous solution of 165-mg/ml iothalamate 
meglumine and 0.5-mM gadopentetate dimeglumine and sealed. The threaded 
ends of @) plastic marker bases or posts are screwed into the outer table of 
the skull of the patient. The marker base is 13 mm in length and 3 mm in 
diameter; the threaded end is 3 mm in length. The markers are attached to 
the (c) bases during image acquisition. 

fiducials. The rotation matrix is computed using the singular 
value decomposition of the covariance matrix of the centroid- 
subtracted position vectors in the two spaces. We define the 
jiducial registration error (FRE) as the root-mean-square (rms) 
distance between corresponding fiducials after registration and 
transformation. 

IV. RESULTS 

We developed and tested our automatic localization tech- 
nique on 42 image volumes from six patients-one CT and 
six MR (forward and reverse readout gradient T1, PD, and T2) 
image volumes per patient. There are four markers attached to 
each patient for a total of 168 marker images (24 in CT, 144 
in MR). Using a Silicon Graphics Indy R4400SC/150MHz 
workstation with sufficient random access memory (RAM) to 
keep the largest image volume in memory, the processing time 
averaged 87 s (range = 82-91) per image volume for CT and 
18 s (9-48) for MR. 

We set the values of a and p in Step 1-b) of Part Two to a = 
1.3 and ,L? = 2.7 (CT) or p = 3.4 (MR). With these values the 
algorithm never failed to find a threshold that obeyed the rules 
in Step 1) of Part Two in any of the 168 fiducial localizations. 
See Section V for information about factors influencing the 
choice of the values of Q! and p. 

In the six CT images, 277 candidate voxels were identified 
by Part One. Of these candidates all but 35 were discarded by 
Part Two. After ranking the markers by average intensity and 
selecting the four markers with the highest average intensity, 
all 24 true markers were recognized. Thus, the algorithm 
exhibited a false marker rate of zero for the CT images. 
We note that because the algorithm is given the number 
A4 of markers, the false positive rate must equal the false 
negative rate. We refer to both of them as the “false marker” 
rate. In the 36 MR images, 2237 candidate voxels were 
identified by Part One. Of these candidates all but 178 were 
discarded by Part Two. After selecting the four markers with 
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Candidates Markers Produced by Part Two 

Image Produced by Before Ranking After Ranking 

Modality Part One True False True False 

CT 277 24 11 24 0 

MR T1 219 48 2 47 1 

MR PD 288 48 3 47 1 

MR T2 1,730 48 29 48 0 

MR Total 2,237 144 34 142 2 

CT & MR Total 2,514 168 45 166 2 
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False Marker 

Rate (%) 

0.0 

2.1 

2.1 

0.0 

1.4 

1.2 

Summary of the output of Parts One and Two of the localization algorithm. For each image 
modality, this table lists the number of candidate voxels produced by Part One, the number 
of true and false markers produced by Part Two before and after ranking the markers by 
average intensity, and the false marker rate. The false marker rate is the number of false 
markers misidentified as true markers as a percentage of the number of true markers. 

the highest average intensity, 142 of the 144 true markers were 
recognized. Thus, the false marker rate was 1.4% for MR. 
These results are summarized in Table I. Fig. 5 illustrates a 
false marker produced by Part Two that was misidentified as 
a true marker. 

In order to test the accuracy of the localization algorithm, 
CT-to-MR image registration was performed using the four 
fiducial points in each image. Before registration, compen- 
sation for geometrical distortion in the MR images due to 
static field inhomogeneity and gradient error was applied 
to each corresponding pair of centroids in the forward and 
reverse readout gradient images as described in [7], [14], and 
[42]. Each CT image was thus registered to the geometrically 
corrected T1, PD, and T2 images from the same patient. The 
FRE of the 18 registrations was 0.41 f 0.09 mm [mean f 
standard deviation (SD)]. The maximum FRE observed was 
less than 0.6 mm. 

The fiducial positions are calculated as intensity-weighted 
centroids in Step 2-a) of Part Two of the localization algorithm. 
To investigate the importance of intensity weighting, the FRE 
was also determined using fiducial positions calculated without 
intensity weighting. That FRE was 0.55 f 0.18 mm, which is 
significantly higher than the FRE determined using intensity- 
weighted centroids (one-tailed paired t-test, P = 0.05). Fig. 6 
compares the FRE' s calculated using intensity-weighted and 
unweighted fiducial positions. The preponderance of points be- 
low the 45" dashed line illustrates the importance of intensity 
weighting. The three points above the line all came from one 
patient. There is no significant difference in FRE among the 
T1, PD, and T2 images (ANOVA, P = 0.05). 

We tested the sensitivity of the output of Part Two of 
the algorithm to the candidate voxel input to it by Part 
One as follows. We ran the algorithm normally and saved 
every voxel belonging to every marker. Then each of these 
voxels was used as an input to Part Two. We found that the 
output of Part Two is completely insensitive to the candidate 
voxel provided to it. That is, it finds the same fiducial 

position regardless of which voxel belonging to the marker 
was input. 

V. DISCUSSION 

A common approach to image matching that might be 
useful for finding and localizing fiducial markers is the cross- 
correlation technique, also known as template matching [4], 
[12], [25], [29]. In its most basic form this method provides 
pixel accuracy. One way to achieve subpixel accuracy for 
images that differ only by translation is to calculate the 
discrete cross-correlation function between two images, fit an 
interpolation surface to samples of this function, and then 
search for the maximum of this surface [ 2 ] ,  [15]. Another way 
of achieving subpixel accuracy is to calculate the correlation 
on a finer grid by interpolating one of the images. Tian 
and Huhns [51] have shown that using bilinear interpolation, 
a 0.01-0.05-pixel registration accuracy of 2-D images that 
differ only by a translation can be achieved. They assume 
a sampling rate greater than the Nyquist frequency. Since 
the size of our marker is on the order of the thickness of 
an image slice, this assumption is violated, and it is unclear 
what accuracy could be achieved. A cross-correlation approach 
in our case is also complicated by the fact that a marker 
has an arbitrary orientation in 3-D space. A marker image 
and a template image will differ by a rotation as well as a 
translation, and marker shape in an image slice varies with 
orientation (see Fig. 7). Interpolating and exhaustively search- 
ing a dense grid in transformation parameter space can be 
computationally demanding, especially in the six-dimensional 
(6-D) parameter space of a 3-D rigid body transformation. The 
time requirements can be reduced with an efficient iterative 
search. Also, functions that are invariant under some of the 
allowed geometric transformations allow one to reduce the 
dimension of the parameter space in which the correlation cost 
function must be optimized. For example, one well known 
invariant function is the Fourier-Mellin transform, which 
is translation invariant and represents rotation and scaling 
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as translations along the corresponding axes in parameter 
space [8]. Unfortunately its usefulness is limited to 2-D 
transformation. 

Though a cross-correlation or template-matching approach 
might be useful for finding and localizing markers, we elected 
instead to define the fiducial point of the marker as its centroid. 
This approach requires that we first segment the marker from 
background and then calculate its intensity-weighted centroid. 
Our markers were designed to be bright in both CT and MR 
images, and in the ideal case they lie against a background of 
air, which does not image. Thus, our segmentation problem 
should be relatively straightforward: divide the image into 
marker and background voxels by thresholding; and region- 
grow connected marker voxels. 

Thresholding is complicated by a number of factors. First, 
the marker is not necessarily the brightest object in the image, 
though it should be brighter than its immediate surroundings. 
Second, the intensity of the marker is unknown. The intensity 
scale of an MR image is variable and unknown. The intensity 
scale of a CT image is fixed and known, but the maximum 
intensity of the voxels containing marker will be lower than 
the expected maximum intensity if no voxel is completely 
filled with marker. Third, the background is not always air. 
Sometimes marker voxels are adjacent to skin tissue. Also, 
the plastic marker housing and post appear, albeit dim, in CT 
images. For example, the base of a marker can be seen in 
Fig. 3(c) and ( f )  (the marker is white, the base is gray). Finally, 
we wish to set the intensity threshold as low as possible in 
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Fig. 6. Comparison of CT-to-MR fiducial registration errors (FRE) deter- 
mined using fiducial positions calculated with and without intensity weighting. 
The preponderance of points below the 45' line shows the importance 
of intensity weighting. The FRE determined using fiducial positions with 
intensity weighting is 0.41 f 0.09 mm (mean f SD). The FRE without 
intensity weighting is 0.55 f 0.18 mm. 

order to maximally exploit the intensity information available 
within the marker. 

Thus we need to use an adaptive thresholding technique. 
Sahoo [481 and Glasbey [24] review and compare thresholding 
algorithms. Unfortunately, these techniques generally assume 
that foreground and background voxels come from two dom- 
inant modes. Since the size of the marker is on the order of 
the thickness of an image slice, many of the voxels containing 
marker suffer from the partial volume effect, i.e., they contain 
a mixture of marker and air. Thus the intensity histogram of 
the image in a region surrounding a marker frequently does not 
have two dominant modes. Typically it has a dominant mode 
corresponding to background noise and a widely dispersed 
region corresponding to foreground marker. The background 
mode can also be dispersed if it contains tissue or, in the case 
of CT, a marker post. 

For Part One of the algorithm, which locates candidate 
marker voxels, we found that traditional histogram-based 
thresholding algorithms are adequate since the exact threshold 
used is not critical. However, for Part Two, we found that 
several traditional histogram-based thresholding algorithms, 
including [3 11, [32], and [45], produced unreliable thresholds. 
Sometimes the threshold was set so low that the connected 
foreground components would attach to the head across a tis- 
sue or marker post "bridge." Other times, the threshold was set 
so high that many voxels that were obviously within a marker 
by visual inspection were classified as background. Thus we 
invented the thresholding technique that is the first step of Part 
Two. The idea is simple, but is, to the best of our knowledge, 
novel. The technique essentially finds the lowest threshold 
such that an object formed from voxels whose intensities 
are higher than the threshold and that are three-dimensionally 
connected to the candidate marker voxel is neither too small 



634 IFEE 

ation of marker shape in an image slice with orientation. 

s not possible to find 
er is identified as a false 

Vc of a foreground component in terms of the 
of the marker, i.e.. a! 5 VJV, 
merical simulations in which we rando 

5 x 4.0 mm), 1.6 5 2.7 (mean = 2.0); for 
x 1.25 x 4.0 mm), 1.7 

sconnect” foregroun 



WANG et al.: AUTOMATIC TECHNIQUE FOR FINDING AND LOCALIZING EXTERNALLY ATTACHED MARKERS IN CT AND MR VOLUME IMAGES 635 

the two images (i.e., CT and MR). By using this method, we 
estimated that the FLE for our markers in the images used 
in this paper is approximately 0.4 mm. We can compare this 
with three other observations. 

We have previously estimated FLE by means of phantom 
experiments [44]. For the markers and image protocols 
used in this study, the experimentally estimated FLE is 
approximately 0.3-0.4 mm. This FLE is a true measure 
of accuracy (as opposed to reproducibility) since in these 
experiments localized image positions were registered to 
physically known positions. 
We have previously estimated FLE by means of numerical 
simulations [55]. For the marker shape and size, image 
voxel dimensions, and image signal-to-noise ratio (SNR) 
in our study, the predicted FLE is approximately 0.2 mm. 
The FLE of infinitely small markers whose locations 
within voxels are randomly (uniformly) distributed is 

which is 1.2 (CT) and 1.3 (MR) mm for the images used 
in this study. 

In summary, the FLE estimated from clinical trial data 
in this paper is similar to the FLE estimated from phantom 
experiments. It is slightly higher than the FLE predicted by 
numerical simulations, probably because of imperfect marker 
segmentation. It is considerably better than the theoretical FLE 
of infinitely small markers, demonstrating the advantage of 
larger markers in producing smaller %E’s [5], [9]. 

MR images frequently have spatial intensity inhomo- 
geneities due to machine imperfections. Interslice intensity 
variability is sometimes as high as 10%. Since our technique 
uses image intensity as a weight when determining the fiducial 
centroid position, the accuracy of our technique will be 
affected by intensity distortion. We are currently investigating 
the use of recently published techniques that correct for MR 
intensity distortion [lll, 1561. 

Though the algorithm has been written generally so that 
it will work with arbitrary voxel dimensions, we note that 
we have tested it only on CT and MR image volumes with 
slice thickness Az, = 4 mm. We do not expect that the 
algorithm will perform well when the largest voxel dimen- 
sion (Ax,) exceeds the shortest marker dimension (2rm). As 
mentioned above, the parameters a! and ,L? will need to be 
changed for different voxel dimensions. We look forward to 
investigating the performance of this algorithm with image 
volumes that have various voxel dimensions, with different 
image modalities (e.g.. Gradient-Echo MR images), and with 
different types of markers. For example, the algorithm may be 
useful for localizing titanium pins that are used to register 
CT images with physical space in total hip replacement 
surgery [50], oil pellets that are used to register MR images 
with neuroelectromagnetic functional images (e.g., equivalent 
current dipoles and current distributions) 1201, or any of the 
many other external markers that have been used to register 
3-D medical images [lo], [17]-[19], [30], [33], [47]. 

Whereas most people use convex markers such as spheres or 
cylinders, Van den Elsen [52], [54] uses a V-shaped marker. 
Each leg of the “V” appears as a series of oval marks in 
the image slices that intersect it. These marks are localized 
with a semiautomatic algorithm. The fiducial is the vertex of 
the “V”, calculated as the intersection of two lines fit to the 
localized marks. An advantage of these markers is that they 
can be used in image volumes with relatively thick image 
slices (slice thickness > 5 mm), and with image volumes that 
have inter-slice gaps. We note that Part One and a 2-D version 
of Part Two of the algorithm in this paper could be used to 
fully automate localization of these markers. 

The brain can move relative to the skull and thus also to the 
markers. For example, while the patient is lying in the scanner 
the brain will settle in the skull. Also, the brain is known to 
pulsate. Parenchymal excursions in temporal synchrony with 
systole up to 0.5 mm have been observed [46]. To the extent 
that the brain moves relative to the skulllmarkers, the accuracy 
of the registration of brain tissue will be affected. We note 
that this is true not only for our marker-based registration 
method, but for all registration methods based on the skull 
or something rigidly attached to it, e.g., stereotactic frames. 
Registration methods based on the skin or something taped 
or glued to it are even more susceptible to error, since the 
skin can move relative to the skulllmarkers as well as the 
brain. 

VI. CONCLUSION 

We have presented a fast, automatic, knowledge-based tech- 
nique for finding and localizing the centroids of markers 
externally attached to the head in CT and MR image volumes. 
The technique is reliable and accurate. We have applied the 
technique to CT and MR scans from a series of six patients. 
The image voxeI size for each patient is 0.65 x 0.65 x 4.00 
mm for CT and 1.25 x 1.25 x 4.00 mm for MR. For the CT 
images the false marker rate was zero. For MR the false marker 
rate was 1.4% (2 out of 144 markers). The CT-to-MR fiducial 
registration error averaged 0.4 mm and was better than 0.6 
mm for each of the eighteen image pairs. 
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