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Predicting Error in Rigid-Body
Point-Based Registration

J. Michael Fitzpatrick,*Member, IEEE, Jay B. West, and Calvin R. Maurer, Jr.,Member, IEEE

Abstract—Guidance systems designed for neurosurgery, hip
surgery, and spine surgery, and for approaches to other anatomy
that is relatively rigid can use rigid-body transformations to
accomplish image registration. These systems often rely on
point-based registration to determine the transformation, and
many such systems use attached fiducial markers to establish
accurate fiducial points for the registration, the points being
established by some fiducial localization process. Accuracy
is important to these systems, as is knowledge of the level
of that accuracy. An advantage of marker-based systems,
particularly those in which the markers are bone-implanted, is
that registration error depends only on the fiducial localization
error (FLE) and is thus to a large extent independent of the
particular object being registered. Thus, it should be possible
to predict the clinical accuracy of marker-based systems on the
basis of experimental measurements made with phantoms or
previous patients. This paper presents two new expressions for
estimating registration accuracy of such systems and points out
a danger in using a traditional measure of registration accuracy.
The new expressions represent fundamental theoretical results
with regard to the relationship between localization error and
registration error in rigid-body, point-based registration.

Rigid-body, point-based registration is achieved by finding
the rigid transformation that minimizes “fiducial registration
error” (FRE), which is the root mean square distance between
homologous fiducials after registration. Closed form solutions
have been known since 1966. The expected valuehFRE2i
depends on the numberN of fiducials and expected squared
value of FLE, hFLE2i, but in 1979 it was shown thathFRE2i is
approximately independent of the fiducial configuration C: The
importance of this surprising result seems not yet to have been
appreciated by the registration community: Poor registrations
caused by poor fiducial configurations may appear to be good
due to a small FRE value.

A more critical and direct measure of registration error is
the “target registration error” (TRE), which is the distance
between homologous points other than the centroids of fiducials.
Efforts to characterize its behavior have been made since 1989.
Published numerical simulations have shown that hTRE2i
is roughly proportional to hFLE2i=N and, unlike hFRE2i,
does depend in some way onC: Thus, FRE, which is often
used as feedback to the surgeon using a point-based guidance
system, is in fact an unreliable indicator of registration-
accuracy.
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In this work we derive approximate expressions forhTRE2i,
and for the expected squared alignment error of an individual
fiducial. We validate both approximations through numerical
simulations. The former expression can be used to provide
reliable feedback to the surgeon during surgery and to guide
the placement of markers before surgery, or at least to warn
the surgeon of potentially dangerous fiducial placements; the
latter expression leads to a surprising conclusion: Expected
registration accuracy (TRE) is worst near the fiducials that are
most closely aligned! This revelation should be of particular
concern to surgeons who may at present be relying on fiducial
alignment as an indicator of the accuracy of their point-based
guidance systems.

Index Terms—Accuracy prediction, fiducial markers, image
registration, target registration error.

I. INTRODUCTION

A common approach to surgical guidance is to perform
point-based registration intraoperatively to tomographic

images that were obtained preoperatively. Guidance is then
provided by tracking a three-dimensional (3-D) probe whose
physical position is linked to the image position through
the registration transformation. Systems have been developed
for neurosurgery [1]–[3], [5], for hip surgery [6], and for
radiotherapy [4], [7]. These systems take advantage of the
approximate rigidity of the anatomy in the vicinity of the
surgery, e.g., the contents of the head or the femur, so that
the registration can be accomplished by a well-defined rigid-
body transformation. The typical feedback provided by the
registration system to the surgeon regarding the accuracy of
the transformation is confined to a measure of the degree of
alignment of the points used in the registration. In this paper
we argue that such measures are at best naive and at worst
misleading, and we derive a new predictor of accuracy that is
more reliable (a preliminary version of this work was presented
at SPIE Medical Imaging 1998, in San Diego, CA, February
23, 1998 [8]). Our driving application lies in medical imaging,
but our results should be of general interest to anyone engaged
in point-based, rigid-body registration.

Image registration has been important for many years, but
until computed tomography (CT) made the 3-D cross-sectional
image possible, the images to be registered were typically
two dimensional. When the number of physical dimensions
is three, as in the case of surgical guidance, the problem
becomes considerably more difficult. The derivations that we
present below are correct for arbitrary. CT imaging became
widely available (in the West) in the late 1970’s, and the
field of 3-D image registration began to evolve rapidly in
the early eighties [9]. A survey of medical image registration
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published in 1993 [10] listed 202 references; a new one to
be published in early 1998 will list about 300 [11]. More
than 70 of the publications in the latter survey are devoted
to point-based registration; most of those involve rigid-body
registration. In the typical medical application two volumetric
images of a patient, such as X-ray CT and magnetic resonance
(MR) images, are to be registered with each other, as is
done, for example, during preoperative planning, or one such
image is to be registered directly to the patient, as is done
at the beginning of intraoperative guidance. In either case,
registration errors can have serious consequences. Improved
knowledge of their statistics will improve the quality of both
surgical and diagnostic decisions.

Rigid-body registration is appropriate only when the imaged
object is itself rigid, prominent examples being the human
head, which for many diagnostic and therapeutic purposes may
be considered to be rigid, the vertebrae, the pelvis, the femur,
and other bones. The most accurate point-based methods
utilize points defined by markers that are attached physically
to bone through a skin incision [4], [6], [1], [5]. Because the
positions of the points are trusted to determine the true trans-
formation between spaces, they are termed “fiducial” points,
and markers that are used to provide such points are called
“fiducial markers” [12]–[17], [1], [5], [18]–[20]. Point-based
registration is achieved by finding the rigid transformation that
brings the fiducial points in the two spaces into approximate
alignment.

Error in the fiducial alignment, which can be directly
measured by the registration system and provided as feed-
back to the surgeon, is the result of inevitable errors in
the localization of the exact geometrical positions of these
points. More importantly, these localization errors cause error
in the registration of lesions, such as tumors, arteriovenous
malformations, and the bones into which the markers are
implanted, any of which may be the targets of surgery or
diagnosis. Errors in the registration of these targets, which are
the reason for the registration itself, cannot be measured by the
registration system. Instead, the surgeon must rely on statistical
predictors of these errors based on the known localization
accuracy of the fiducials. Statistics on both fiducial registration
error and target registration error have been studied for many
years with target registration error being of most interest to the
medical community. Target registration error can be expected
to be related to the localization error of the fiducials, the
fiducial configuration, and the position of the target itself,
but heretofore no analytical expression for this relationship
has been available. Lacking such an expression, researchers
have resorted to numerical simulations to gain a qualitative
notion of its form [21], [22], [1]. This simulation approach
works to some extent, but it also has serious shortcomings. Its
limitations spring from the time required to carry out a single
simulation and the sparseness of the information contained
in a set of simulations. What has been needed is an explicit
expression. Such an expression reveals error patterns that are
difficult to discern from simulations, they can be used in
optimizations, and they put the field on a more solid footing.
In this paper we provide such an expression. Specifically,
we provide an approximate expression for the expected value

of the squared target registration error. The expression is of
particular value when fiducial markers are used. Unlike image
registration procedures that use information contained in the
object being registered in order to find a matching transfor-
mation, the accuracy of fiducial-based registration is largely
independent of the object to be registered. This independence
arises because the accuracy of the registration is determined
not by any characteristics of the object to be registered but
by the number, placement, and localization accuracy of the
fiducial markers. Once the localization accuracy has been
measured for the given imaging modality via experiments with
phantoms or with previous patients, it will be possible with
the expression given here to determine the expected target
registration accuracy for the current patient.

In addition to our expression for target registration error
we present expressions for two different measures of fidu-
cial registration error, one of which has been available, but
unnoticed by the medical community, since 1979 [23]. By
comparing these two expressions with our expression for target
registration error, we show that as a predictor of registration
accuracy fiducial registration error is not only unreliable
but may in fact be misleading. This revelation should be
of particular concern to surgeons who may at present be
relying on fiducial alignment as an indicator of intraoperative
registration accuracy for their patients.

II. THE POINT-BASED REGISTRATION PROBLEM

While there are variations on the size and shape of the
landmarks or markers, their number and configuration, and
the method for locating their positions, the basic mathematical
statement of the point-based registration problem remains the
same in most applications. In each case it is required to find a
3-D translation and rotation that aligns one set of points

with a corresponding set, such that the
distance between corresponding points is minimized in the
root-mean-square (rms) sense. In medical applications each

represents the centroid of an anatomical landmark or one
fiducial marker that has been localized in a 3-D, cross-sectional
image of a patient (CT, for example). The point is the
corresponding centroid in a second image (MR, for example)
or the centroid physically measured in the operating room, if
the registration is being performed from image to patient (i.e.,
instead of from image to image) as part of a surgical guidance
system. The rms distance to be minimized is commonly termed
the “fiducial registration error,” or “FRE.” Thus, the problem
of registration reduces to finding a rotation and translation
that minimizes FRE, where

(1)

If , the fiducial registration is perfect. Typically,
however, because of errors in localizing the points, the fit will
be only approximate. It may easily be shown [24] that the
optimal translation is given by

(2)
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where the bar indicates a mean over . The calculation
of the optimal is more difficult because of the nonlinear
constraint that a rotation matrix be orthogonal. The first
universal solution for was published by Schönemann in
1966 [25] in a paper on the so-called “orthogonal procrustes
problem” in factor analysis.1 Many others have produced
independent solutions of the problem, either by methods
equivalent to Scḧonemann’s [27], [28] (see also [29]) or by
representing rotations in terms of quaternions [30]–[32]. The
problem is important to the statistical theory of shape [33]–[35]
and to the fields of photogrammetry and robotics [36], [37],
where it is known as the “absolute orientation problem.” In
Schönemann’s original work, which was unrelated to image
registration, the goal was to find the orthogonal matrix

that optimally transforms one set of observations
into another set of observations, where and are

observation matrices of dimension Here, “optimally”
means that a quantity is minimized, where

(3)

The image registration problem can be reduced to the
orthogonal procrustes problem by letting rowof be the
elements of the demeaned vector and row of be

, an approach first employed for a similar problem
by Schönemann in 1970 [38]. With these assignments we have

(4)

The solution that Scḧonemann found to minimize (and
FRE ) is

(5)

where is the singular value decomposition (SVD) of
. Thus

(6)

where and are and are orthogonal,
is diagonal, and the elements of are nonnegative. This

solution, which we will call the “SVD” solution, was an
improvement over a solution published in 1952 by Green [39]
that was based on the concept of the square root of a symmetric
matrix and required that be nonsingular, a restriction not
required for the SVD solution.

III. ERROR STATISTICS

In the field of medical image registration the importance
of the error statistics of point-based rigid-body registration
was recognized by Evans as early as 1989 [21], [40] and has
since been considered by many others [1], [4], [12], [22],
[41]–[43]. Here, the researchers in image registration were

1The term “procrustes” was originally pejorative. It was first used by Hurley
and Cattell [26] in 1962 to express disapproval of a perceived tendency of
some to distort one set of observations to support their claim that they fit
another set. Hurley and Cattell were drawing an analogy to the way the
character of the same name from Greek mythology stretched or squeezed
visitors to fit his guest bed. The term is now common in the statistical theory
of shape with no negative connotation attached.

unaware of earlier, related work on the procrustes problem. In
1979 [23] Sibson in a study of scaling theory first considered
the effect of localization error on one of the point sets. He
included translation in addition to rotation as part of the
alignment procedure, as in the image registration problem.
He observed that the distribution of the was completely
determined by localization error and not at all by any universal
translation or rotation between the two point sets. Therefore
he was able to confine his attention to the simple case in
which the only difference between and is caused by
localization error. As a simplification he set the localization
error to zero in the space. Sibson incorporated a smallness
parameter so that he could applyperturbation theoryto
find an approximate expression for FRE. Perturbation theory
is a branch of mathematics which deals with the solution of
problems that are by some measure close to a problem whose
solution is known. By expressing the problem to be solved in
terms of the known problem and a small positive parameter

multiplied by a function representing the deviation from the
soluble problem, it is possible to write the desired solution
in terms of the known solution and a power series in. In
Sibson’s formalism

(7)

where the elements of are independent, identically dis-
tributed, random variables. Choosing a normal distribution,

he found that to second-order is chi-square dis-
tributed with degrees of freedom. Thus,
its expected value is to second-order

(8)

The next higher terms are , and Sibson reported that
computer simulations showed excellent agreement with the

approximation. We can easily relate this result to the
image registration literature by incorporating the definition of
“fiducial localization error,” or “FLE,” which is the distance of
the localized point from the (forever unknown) actual fiducial
position before any alignment is done. We note that, because
the components of error are orthogonal and independent

(9)

Using this relationship in (8) with gives

(10)

Sibson’s result has important implications: we see that
is independent of the fiducial configuration. In most medical
applications, however, another error is of more concern: the
“target registration error” (TRE) at a spatial position, denoted

, which is the distance between this point and the
corresponding point in the other space after registration has
been performed. The target may be any point in the space,
and is commonly chosen within a point of interest, e.g., a
lesion to be resected during surgery. We show in Section IV
that TRE is strongly dependent on the fiducial configuration,
thus leading to the conclusion that the traditional method of
using FRE as a figure of merit for registration accuracy may
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in some cases lead to a bad choice of fiducial configuration,
and to the surgeon having a false sense of security about
the accuracy of the surgical guidance system. It has long
been known that better point-based registrations, i.e., smaller
TRE’s, can be obtained by using more fiducial points to guide
the registration [12], [21], [22], [40], [41]. More specifically,
based on numerical simulations it has been conjectured that
TRE has an approximate dependence, given that points
are added in some consistent way, such as choosing them
randomly within or on the surface of a specified region, a
sphere, for example, [1], [21], [22]. We have searched the
procrustes literature carefully but have found no work on this
error statistic in that community. However, in 1991 Goodall
did propose an expression for the first-order approximation of

based on Sibson’s perturbation approach [34]. We begin the
next section by deriving that expression.

IV. DERIVATION OF THE TRE STATISTIC

Our goal is to find an approximate expression for
Following Sibson, we note that this statistic, like

, depends only on errors in localizing the fiducials,
as opposed to gross motion between the two spaces. Also,
following Sibson, we will continue to treat the case in which
the localization error is negligible in the “X” space. With
these two assumptions we may use (7) above. The following
expression results:

(11)

where we have used matrix notation in the second and third
lines, with and being row vectors. We have made explicit
the fact that translation is first-order in, as can be seen from
(2) and (7). Expanding the rotation matrix in, and noting
that when , we have
Thus, to second-order

(12)
There are three terms on the right-hand side corresponding

to pure translation, correlation between translation and rota-
tion, and pure rotation. In this section we derive expressions
for each of these terms. We find that the second term is equal
to zero, thus the rotational and translational motion are shown
to be uncorrelated. The remainder of this section is divided
into five parts—the derivation of an expression for , the
derivation of each of the three second-order terms in (12), and
an examination of the resulting expression for

A.

We begin by imposing the orthogonality requirement on

Therefore, is antisymmetric

(13)

We note from (5) and (6) that for the optimal
, from which we see that

(14)

(Note that we will make no other use of the SVD solution. In
fact in Scḧonemann’s derivation this symmetry is established
before decomposition is employed. Thus, we do not need to
know the complete solution in order to derive the first-order
approximation.) For convenience we choose the origin of our
coordinate system to lie at the centroid of the fiducial points,
which means that

(15)

We use (7), for , but in order to account for translation,
we must use demeaned versions of and as discussed
earlier (4). We have demeaned by our choice of origin; we
demean by demeaning

(16)

where

(17)

We now use (16), the expansion of, and (13), in (14).
The result is a series of equations for each power ofThe
linear terms yield this equation

(18)

We wish to solve this equation for The solution is
made difficult by the fact that occurs multiplied on both
the right and left. Following Goodall [34], we perform singular
value decomposition on to get , where and

are orthogonal and is diagonal. Our assumption that the
elements of are identically distributed [see after (7)] assures
isotropy in the perturbations. Thus, we can without loss of
generality orient our coordinate system in any direction we
choose. We pick the orientation to be along the principal axes
of the distribution of fiducial points, which means that
Thus, we have

(19)

(Note: Neither this re-orientation nor the special positioning
of the origin above is necessary to effect a solution to (18),
nor for any part of the derivation that follows. However, they
do reduce the complexity considerably, and they can be easily
undone at the end.) Employing (19) enables us to solve (18)

(20)

which is the result given by Goodall in 1991 [34], and similarly
to Goodall we have defined

(21)
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B. First Term

From (15) we have that , which in (2) gives that
, or

(22)

Thus, the first term in (12) becomes

(23)

We assume that the elements of are independent and
identically distributed with variance Thus, using as
the Kronecker delta function if

C. Second Term

In terms of elements the second term of (12) has the form

(24)

where we have used the antisymmetry of to eliminate
terms. Using (20) and (22) gives

From (21) and (17) we have that for

(25)

by our assumption of independence between distinct elements
of Equations (21) and (17) also give us

where we have used the independence of the elements of
in the second line to get the delta functions.

Thus, is equal to zero.

D. Third Term

In terms of elements the third term of (12) has the form

(26)

where we have once again used the antisymmetry of
Using (20) gives

(27)

We need to evaluate four terms involving expected values
of products of ’s in the numerator. From (17) we have

(28)

From (21) and (28) we have

(29)

where we have made use of the orthogonality of, (15) and
(19), in the last line. Using (29) in (27) we get

(30)

E. The Resulting Expression

Combining the three terms in (12) and using (9) we have
finally that to second-order

(31)

V. FIDUCIAL MISALIGNMENT AND TRE

In Fig. 1, we can see the simple geometric relationship
between FRE and TRE. We start with the unperturbed
fiducial position , perturb this by to give position , and
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Fig. 1. Geometrical relationship between�Fi, FRE, and TRE.

perform a registration which maps to Denoting
the fiducial registration error measured at fiducialas ,
we can see that

(32)

We note that the expected squared value of is equal
to Squaring both sides of (32) and taking expected
values gives that

(33)

We will now show that the directions of and
are uncorrelated, i.e., that the third term is zero, yielding

(34)

Using (32), we may write

Following (11), we rewrite as
which to first-order equals First, we note that

(35)

The remaining component of is
Using the expression for from (20)

we have that

(36)

From (21) we recall the definition thus allowing
us to expand the terms in terms of and Performing
this expansion, and taking expected values, we can see from
(25) that for hence the second term in the
numerator has expected value zero. From this we may deduce

that

(37)

From (15) and (19) we see that is zero,
hence the component of the above sum goes to zero. We
are left with only one term,

(38)

Combining this result with that of (35), and using this in
(35) gives that

(39)

which verifies (34). We rearrange (34)

(40)

to emphasize the counter-intuitive result that small values of
are indicative of large values of In order to

check this expression, we may sum the expected values of
over the fiducials. This gives

(41)

Using (31) for each value of we have that

(42)

Noting that by orthogonality of
we may write

(43)
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TABLE I
MEAN SQUARED TRE VALUES FROM SIMULATION VERSUSPREDICTED SQUARED TRE VALUE FROM (31) (ALL VALUES IN mm2)

Thus we may make the simplification

(44)

This gives the result that

(45)

which, substituting for is exactly the result of
(8) given by Sibson in 1979 [23].

VI. NUMERICAL SIMULATIONS

In order to verify the correctness of (31) and (40), we
performed some numerical simulations. First, we chose five
values of for which to perform the test:
For each of these values of we generated the correct number
of fiducial positions randomly with uniform distribution within
a cube of side 200 mm, and one target position randomly
with uniform distribution within a cube of side 400 mm.
In order to model fiducial localization error, we perturbed
independently the and components of the fiducial
positions in one space, using normally distributed independent
random variables with zero mean and variance 1/3 mmIn
this way, we produced the same model as was used by Sibson
in 1979 [23], and that is shown in (7). We registered the
perturbed positions to the original ones, measuring the target
registration error at the target position and at each fiducial
position according to (11), and the fiducial registration error
at each fiducial position according to Fig. 1. One simulation
consisted of 1 000 000 repetitions of the perturbation and
registration step, allowing us to estimate the mean squared
target and fiducial registration errors. Ten such simulations
were performed, thus allowing us to estimate the standard
deviation of the mean figures given in the previous step.
In Table I we compare the simulated TRE results at the
randomly chosen targets with those predicted by (31); in
Table II we compare the simulated values of with those
of , where the fiducial index is chosen
so that the absolute percentage difference between the two
quantities is maximized.

VII. D ISCUSSION

Equation (31) is the expression for the TRE statistic that we
have sought. Like , it is proportional to , but,
unlike , it also depends on the fiducial configuration.
It is this dependence that makes it superior to as a
figure of merit for registration accuracy. For example, we find,
not surprisingly, from this expression that for a given fiducial
configuration the optimal position for a target lies at the
centroid of the configuration, which for our choice of origin
means that At that position the minimum expected
squared error is achieved, which we find is It
can be seen from the derivation that arises from
the error in the centroid of the fiducials, the remainder being
the result of rotational error in their configuration. It is thus
clear from the derivation of this expression that a target
at the centroid of the fiducial configuration is immune to
rotational error in the transformation, which is represented in
our derivations by , and it is subject only to its translational
error, which is represented by. It can be seen also from
the null value of the second term, derived in Section IV-
C, that to second-order the motion of the target due to
rotation is uncorrelated with the motion due to translation.
As the distance of the target from the fiducial centroid
increases, the error increases, approachingdependence.
The error also increases as the configuration of the fiducials
becomes smaller. In particular, suppose the shape of the
configuration remains the same while its size is changed by
some scale factor . Thus, suppose is multiplied by .
We note from (19) that Thus each element
of is scaled by , and the summation in (31) is propor-
tional to . Thus, for large , increases as

.
Equation (31) agrees with Hill’s and Maurer’s simulations

[22], [1]. The simulations in Table I are the first ones to
give a value of for a particular target and fiducial
configuration, as opposed to merely a dependence of
on, for example, the number of fiducials or the value of
the fiducial localization error. We note that in all cases the
predicted results are within one standard deviation of those
produced by the simulations. This leads us to believe that
(31) is sufficiently accurate for surgical guidance, and that the
terms of and higher are approximately zero in expected
value.

The expression in (31) also explains for the first time
an dependence for TRE reported by Evans [21]
in 1993, by Hill in 1994 [22], and by Maurer in 1997
[1]. That dependence arises when restrictions imposed
on choices of new points cause the denominator inside
the summation to grow in proportion to . While that
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TABLE II
SIMULATED MEAN SQUARED FRE VALUES VERSUS SIMULATED VALUES OF hFLE2i � hTRE2i (ALL VALUES IN mm2)

dependence can be established for any value of, we
will specialize to the image registration problem now by
setting . Since the origin is at the centroid of ,
it is easy to show that if permutation of 1, 2,
3, then is the moment of inertia of the
fiducial configuration about principal axis We note that

, where is the rms distance of the
fiducials from principal axis . With this substitution we
find that

(46)

where is the distance of the target from principal axis
Thus, when is increased by adding additional fiducial

points, the expected dependence occurs when points
are added such that their rms distance to the three axes remains
constant.

Equation (46), like (40), can be divided into translational
error, , and rotational error, the three components of
which are inversely proportional to the spread of the fiducials
about the corresponding axis. From (46) it may be deduced
that a fiducial configuration that lies close to one of its own
principal axes, i.e., one which is almost collinear, will give
rise to large TRE values at locations distant from the line of
fiducials. It is also easy to see from (46) that isocontours of

are ellipsoidal and are centered at the centroid of
the fiducial configuration. This finding explains the ellipsoidal
isocontours of observed recently by Maurer [1] and by
Darabi [44].

In some cases it may be known that the motion is entirely
two-dimensional. In that case the term in parentheses in (46)
reduces to , where is the distance of the target
from the origin and is the rms distance of the fiducials from
the origin.

From (40), we can see that TRE is expected to be worst at
the places where FRE is best, i.e., near pairs of fiducial points
that are in close alignment. From Table II, we can see that
the results of the simulations are in excellent agreement with
those predicted by (40). In fact, the agreement is so close (in all
cases the predicted values are within two standard deviations
of the simulated values, despite the fact that the fiducial
giving the worst agreement was chosen) that we are led to
the same statement for (40) as was made for (31), i.e., that the
expression is sufficiently accurate for use in surgical guidance.
The intuitive explanation for the relationship described by
(40) is that the largest motion occurs at those fiducials that
lie farthest away from the centroid: A small change in the
rotation parameter will have little effect on the positions of

the fiducials that are close to the centroid, but the relatively
large motion at a point distant from the centroid may be used
to bring a distant fiducial pair into close correspondence, thus
reducing . However, while the overall quality of the
registration is expected to be improved by this change in
due to a single fiducial pair, the error due to the rotational
misregistration becomes large as the distance from the fiducial
centroid increases. In any case, both (40) and (31) should
serve as a stern warning to those who would use fiducial
registration error as a measure of the quality of point-based
registration.

VIII. C ONCLUSION

With (31) we have provided an approximate answer to
a long-standing question in point-based, rigid-body image
registration: How does target registration error depend on
the relative positions of the target and the fiducial points?
Our approximation agrees closely with simulations, both those
reported here and those reported by others in previous pub-
lications, showing that it is an excellent indicator of target
registration error. Equation (10) shows that overall fiducial
alignment is, by comparison, a poor indicator of target reg-
istration accuracy, and (40) shows that individual fiducial
alignment is worse. These two equations, although derived
using approximations, are in extremely close agreement with
simulations.

The availability of (31) puts the theory of image registration
on a more solid footing. It also has immediate practical
application for surgical guidance systems that rely on fiducial
markers. It can provide the surgeon with more meaningful
feedback regarding the accuracy of guidance during surgery,
and it can guide the surgeon in placing the fiducials before
surgery. Equations (10) and (40), on the other hand, serve as
a warning that fiducial alignment alone should not be trusted
as an indicator of registration success.
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[38] P. H. Scḧonemann and R. M. Carroll, “Fitting one matrix to another

under choice of a central dilation and a rigid motion,”Psychometrika,
vol. 35, pp. 245–255, 1970.

[39] B. F. Green, “The orthogonal approximation of an oblique structure in
factor analysis,”Psychometrika, vol. 17, pp. 429–440, 1952.

[40] A. C. Evans, S. Marrett, D. L. Collins, and T. M. Peters, “Anatomical-
functional correlative analysis of the human brain using three dimen-
sional imaging systems,”Medical Imaging III: Image Processing, vol.
Proc. SPIE 1092, pp. 264–274, 1989.

[41] C. R. Maurer, Jr., J. J. McCrory, and J. M. Fitzpatrick, “Estimation of
accuracy in localizing externally attached markers in multimodal volume
head images,”Medical Imaging 1993: Image Processing, vol. Proc. SPIE
1898, pp. 43–54, 1993.

[42] S. C. Strother, J. R. Anderson, X.-L. Xu, J.-S. Liow, D. C. Bonar,
and D. A. Rottenberg, “Quantitative comparisons of image registration
techniques based on high-resolution {MRI} of the brain,”J. Comput.
Assist. Tomogr., vol. 18, pp. 954–962, 1994.

[43] P. F. Hemler, S. Napel, T. S. Sumanaweera, R. Pichumani, P. A. van
den Elsen, D. Martin, J. Drace, and J. R. Adler, “Registration error
quantification of a surface-based multimodality image fusion system,”
Med. Phys., vol. 22, pp. 1049–1056, 1995.

[44] K. Darabi, P. Grunert, and A. Perneczky, “Analyzing the relationship
between fiducial position and the geometrical error of intraoperative
navigation,” Comput. Aided Surg., vol. 2, pp. 224, 1997; Abstract in
Computer Integrated Surgery 1997 Conf.


