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Abstract

Functional Magnetic Resonant Imaging (fMRI) is a non-invasive imaging technique
used to study the brain. Neuroscientists have developed various algorithms to de-
termine which voxels of the images are active. Most of these algorithms, operating
on the signal of each voxel separately, are referred to as the voxel-by-voxel detec-
tors. Among those voxel-by-voxel detectors, paired T-test and General Linear Model
(GLM) are the most popular. The Mutual Information (MI) based detector has re-
cently been introduced. It is interesting to compare these three detectors’ modelling
assumptions, as well as their performance, in order to understand their advantages
and shortcomings.

Due to the low signal-to-noise ratio (SNR), the voxel-by-voxel detectors usually
result in fragmented activation pattern, which is not in agreement with our under-
standing of brain activation. The biological models of brain activation suggest that
adjacent locations of the brain tend to be in the same activation state. We take
advantage of these models and apply a Markov Random Field (MRF) spatial prior
to the statistics provided by the voxel-by-voxel algorithms. MRF has been shown to
be able to overcome the effect of over-smoothing, which is the major drawback of the
conventional spatial regularization models such as the Gaussian smoothing model.
We adopt Mean Field, a variational algorithm, to estimate the MRF solution. We
show that Mean Field can provide reasonable approximation compared with the exact
solver in the case of binary MRFs, while reducing the computations by one to two
orders of magnitude in our simulated and real data sets. In addition, unlike the exact
solver, it can handle multiple-state MRFs.

Inspired by atlas-based segmentation, we further refine the spatial regularization
process by incorporating anatomical information, such as segmentation results from
Magnetic Resonance Imaging (MRI), into the MRF prior. The extended MRF model
encodes both tissue type and activation state. To our knowledge, our approach is the
first spatial smoothing method that utilizes anatomical information without cortical
surface extraction. To evaluate the smoothing models, we performed ROC and con-
fusion matrix analysis on synthetic data. We also evaluate them by studying their
ability to recover activation from significantly shorter time course using real data. In-
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cluding anatomical information improves detection accuracy for both the Gaussian-
smoothing-based detector and the MRF-based detector. The Gaussian-smoothing
model provides poor results if we are interested in both positive and negative activa-
tion regions in the brain. Furthermore, the anatomically guided MRF-based detector
improves the detection quality compared with the anatomically guided Gaussian-
smoothing-based detector for standard fMRI in standard SNR quality.

Thesis Supervisor: Polina Golland
Title: Assistant Professor
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Chapter 1

Introduction

Modelling brain activation based on fMRI has been an active research area since

the genesis of its development. fMRI signal, obtained based on the different para-

magnetic properties of oxygenated and deoxygenated blood, reflects the underlying

information processing function mediated by neuronal activity. According to a pre-

designed experimental protocol, a subject undergoes fMRI scans while alternating

between performing tasks and resting. With fast encoding techniques, images are

generated as fast as once per second.

Neuroscientists have developed various detectors to determine which voxels of the

image are active. Most of these detectors, operating on the signal of each voxel

separately, measure the difference in the signal obtained between the task and rest

periods or the correlation between the signal and the experimental protocol. This

kind of detector is usually referred to as a voxel-by-voxel detector.

Two most popular voxel-by-voxel detectors for activation detection in fMRI im-

ages are the paired T-test and the General Linear Model (GLM). They are parametric

approaches with simple implementations (reliable software is widely available). Re-

cently, several alternatives, such as Mutual Information (MI), have been proposed to

relax some of the assumptions on the temporal structure of the signal and the statis-

tics of noise. Combining the statistic of each voxel, we obtain a statistical parametric

map (SPM). Researchers usually convert the statistic into a P-value if the distribu-

tion of the statistic is known; otherwise, it is converted into a Z-score. A voxel with
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a P-value or Z-score beyond a certain threshold is considered an active voxel. As a

result, an activation map is created for mapping brain function onto brain anatomy.

Due to a low signal-to-noise ratio (SNR) in fMRI signal, thresholded SPMs pro-

duced by various voxel-by-voxel detectors usually have a highly fragmented activation

pattern, which is not in agreement with our understanding of brain activation. The

biological models of brain activation suggest that adjacent locations of the brain tend

to be in the same activation state. Many researchers take advantage of the general

understanding of brain activation and smooth the signal spatially using a Gaussian

filter prior to detection, but the resulting SPMs are usually overly-smoothed. An

alternative spatial smoothing prior is a Markov Random Field (MRF), which has

been shown to be able to overcome the effect of over-smoothing in other applications.

We adopt Mean Field, a variational algorithms, to estimate the MRF solution. We

show that Mean Field can provide reasonable approximation compared with the ex-

act solver in the case of binary MRFs, while reducing the computations by one to

two orders of magnitude in our simulated and real data sets. Compared with the

Gaussian-smoothing-based detector, the MRF-based detector achieves a higher de-

tection rate in our experiment using synthetic and real data sets and in binary and

trinary activation configurations.

Atlas-based segmentation inspired our idea of further refinement of the spatial

regularization process by incorporating anatomical information, such as segmentation

results from Magnetic Resonance Imaging (MRI), into the MRF prior. Anatomical

information biases the detections towards a correct location. The extended MRF

model encodes both tissue type and activation state. Our approach is one of the first

few spatial smoothing methods that utilize anatomical information in fMRI detection.

On the other hand, it is straightforward to inject anatomical structure into the GLM

detector and the Gaussian-smoothing-based detector. We also show that all three

anatomically guided detectors can achieve high detection accuracy in experiments

using synthetic (Fig. 1-1) or real fMRI data compared to their corresponding detec-

tors without anatomical information. Furthermore, Fig. 1-1 also illustrates that the

anatomically guided MRF-based detector improves the detection quality compared
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Figure 1-1: ROC curves for different smoothing techniques augmented with the
anatomical information. False positive rate is shown on the log scale.

with the anatomically guided Gaussian-smoothing-based detector and the anatomi-

cally guided GLM detector for fMRI in standard SNR quality.

Contributions of this thesis include:

• In the context of a block-design fMRI study, we empirically compare selected

voxel-by-voxel detectors and discuss their theoretical similarities and differences.

• We compare detection accuracy of an MRF-based detector with a Gaussian-

smoothing-based detector in both simulated and real fMRI data sets.

• A fast variational approximation algorithm, Mean Field, is adopted for solving

MRFs, and we compare its result with the exact solution in binary MRFs.

• We refine selected detectors by injecting anatomical information and compare

their performance by performing ROC analysis and by presenting confusion

matrices. The resulting activation maps generated by these detectors are also

presented in order to give readers insight into the advantages of incorporating

anatomical information into the detectors.

This thesis is organized as follows. Chapter 2 presents basic physical mechanisms

and biological assumptions for generating fMRI images. Chapter 3 begins with the
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modelling assumption and a mathematical derivation of various voxel-by-voxel algo-

rithms for fMRI detection, including paired T-test, GLM, and MI. Then, it presents

the empirical comparisons of selected pairs of algorithms using real fMRI data. Chap-

ter 4 begins with the background of MRF and the derivation of the Mean Field al-

gorithm in variational approximation point of view. Then, we present the results of

performing spatial smoothing using MRF priors. Chapter 5 introduces the novel spa-

tial smoothing method that incorporates anatomical structure. We discuss possible

ways to incorporate anatomical structure into different conventional detectors and

compare anatomically guided MRF-based detector’s experimental results with other

anatomically guided detectors. Discussion and conclusions follow this section.
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Chapter 2

Background on fMRI

Functional Magnetic Resonance Imaging (fMRI) is a relatively new non-invasive tech-

nique used to study the brain. fMRI signals reflect differences in the paramagnetic

properties of oxygenated and deoxygenated blood as a consequence of activation [20].

The development of fMRI is based on Magnetic Resonance Imaging (MRI), invented

by Felix Bloch and Edward Purcell in the 1940s. MRI utilizes combinations of mag-

netic fields and radio waves to create three-dimensional internal images of soft tissue,

including the brain, the spinal cord, and the muscle. The development of Echo Planar

Imaging (EPI) enables fast MRI scans and has facilitated fMRI’s development. This

chapter begins with the background of MRI and fMRI. It then explains how psycho-

logical research and clinical practise benefit from fMRI, followed by a brief discussion

of fMRI’s future development.

2.1 Basics of MRI

MRI is used to generate static images of soft tissue, such as the brain, for anatomy

identification. It is based on the principles of nuclear magnetic resonance: the vibra-

tion of molecules in a strong magnetic field. A nucleus of an atom has spin states

of different energy levels which can be excited to make a transition from a low en-

ergy state to a higher state if the atom absorbs a photon whose energy matches the

difference between the states. The nucleus can also make a transition from a high
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energy state to a lower one by emitting a photon whose energy matches the difference

between the states. MRI only focuses on the hydrogen atoms, among all different

types of atoms in the body, because of their high concentration and large magnetic

moment.

When placed in a magnetic field of strength B, a nucleus with a net spin can

absorb a photon of frequency ν. ν depends on the gyromagnetic ratio, γ, of the

particle. Eq. (2.1) illustrates this relationship.

ν = γB (2.1)

Hydrogen, 1H, has a single unpaired proton and 1/2 net spin. The proton spins and

creates magnetic field. Spin is used to characterize this fundamental property of a

charged particle, such as the proton in this case. We can consider the spin of this

proton as a magnetic moment vector, causing the proton to behave like a tiny magnet

with a north and a south pole. The gyromagnetic ratio for hydrogen is γ = 42.58

MHz/T. When the energy of the photon, E = hγB, matches the difference between

two spin states, an absorption occurs.

MRI is a non-invasive imaging technique. A subject lies inside an MRI scanner,

with his/her head surrounded by a strong magnet and a radio wave transducer. The

induced magnetic field causes the spin of a small amount of hydrogen protons (around

10−4%) within the subject’s head to align with the magnetic field. In fact, each of

these proton spins is slightly tilted away from the external magnetic field. The protons

precess, or wobble, about the axis of the external field. The frequency of the precession

is directly proportional to the strength of the magnetic field, and it is defined by the

Larmor Equation (Eq. (2.1)), which is the underlining principle of magnetic resonance

imaging. The rest of the proton spines are at random orientations, whose induced

magnetic fields cancel out with each other. Therefore, the average spin of all protons

is in the same direction as the external field.

A radio frequency pulse is then directed at the subject’s head, exciting some

of the hydrogen protons, which causes their spins’ mis-alignment with the induced

20



magnetic field. If the radio frequency pulse is at the resonance frequency, ν, then the

protons can absorb the energy and jump to a higher energy state. Additionally, the

protons start spinning in-phase. Once the pulse is removed, the mis-aligned protons

emit radio waves as they realign themselves to the external magnetic field, and this

process is referred to as the longitudinal relaxation. Additionally, the spinning starts

to de-phase, and this process is referred to as the transverse relaxation. Various

tissues have different relaxation time constants in the two relaxation processes. The

following is the description of the time constants of the longitudinal and transverse

relaxation.

T1, also called spin lattice1 relaxation time, is the time constant that describes

the return to equilibrium of the longitudinal (Z component) magnetization. The

longitudinal component is in the same direction as the induced magnetic field. T1

relaxation is the process in which the energy absorbed by the excited protons is

released back into the surrounding lattice, reestablishing thermal equilibrium.

T2, also called spin-spin relaxation time, is the time constant which describes the

return to equilibrium of the transverse (X and Y components) magnetization. The

transverse component is in the plane perpendicular to the longitudinal component.

We can also consider T2 relaxation as the random interaction among spins that causes

a cumulative loss in phase, resulting in an overall loss of signal.

T1 is always longer than T2. In general, T2 values are not related to the field

strength, but T1 values are. T1 and T2 are unique for different tissue types, so it is

sufficient to use one of them to represent the signal. The emitted radio waves can be

captured by a receiver and used to construct an image of the soft tissue. TE is the

time period between the initial perturbing radio frequency pulse and the center of

the acquisition interval. TR stands for repetition time, or the elapsed time between

successive RF excitation pulses. These facts permit the introduction of contrast in

the images by appropriate manipulation of the TR and TE. Two types of contrasts

are possible based on weighting with T1 and T2, as described below.

T1-weighted imaging emphases the differences on longitudinal relaxation rates by

1In this context, lattice means the surrounding tissue of a proton.
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Table 2.1: Compare T1 and T2 Weighted Image

Image Type TR TE

T1 weighted short (450-850 ms) short (10-30 ms)
T2 weighted long (2000+ ms) long (60+ ms)

utilizing a short TR and short TE. The short TR allows a full recovery of tissues

with a short T1 (i.e., fat) while allowing only partial recovery of tissues with a long

T1 (i.e., CSF). The short TE used to obtain a T1-weighted image will allow minimal

loss of transverse magnetization due to T2 relaxation. Basically, short TR increases

T1 effects with the short TE minimizes T2 effects.

T2-weighted imaging emphases the differences on transverse relaxation rates by

utilizing a long TR and long TE. The long TR allows tissues to reach complete

longitudinal magnetization which will reduce T1 effects. The long TE will allow for

the loss of transverse signal enhancing T2 effects. Fluid has a very long T2 and

is frequently associated with pathology, so it is important to take advantage of the

imaging parameters to accentuate signal differences.

When a certain type of tissue experiences a uniform magnetic field, energy emitted

from different parts of the tissue are of identical frequency. Utilizing this fact, if a

unique magnetic field is applied to each of the spin regions, an image of their positions

can be constructed. Superimposing a spatially variant magnetic field, referred to as

the gradient magnetic field, allows us to accomplish this.

2.2 Basics of fMRI

fMRI, a variation of MRI, is used to study dynamical changes in the brain. Besides

the physical principles of MRI, fMRI takes advantage of two additional phenom-

ena. First, it is known that neural activation causes an increase in blood flow. The

blood is to provide extra oxygen and glucose for the active brain cells2. Second, iron

2However, for the first three to six seconds after activation occurs, the activated areas experience
a relative decrease in oxygenated blood as oxygen is extracted by the active regional neurons after
activation occurs, according to a recent neural study.
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atoms by themselves cause distortions in the magnetic field, but iron atoms that are

bound to oxygen do not. Blood contains iron, which is the oxygen-carrying part of

hemoglobin. Therefore, de-oxygenated hemoglobin (“deoxyhemoglobin”) has differ-

ent magnetic properties from oxygenated hemoglobin (“oxyhemoglobin”), where iron

atoms are bound to oxygen. As large amounts of freshly oxygenated blood pour into

any activated brain region, they cause reduction of the deoxyhemoglobin to oxyhe-

moglobin ratio. As a consequence, there is a small change in the magnetic field in

the active region, and thus a small variation in the MRI signal. This type of image is

called Blood-Oxygen-Level-Dependent (BOLD) fMRI. It is important to remember

that fMRI is a measure of blood flow and not a direct measure of neural activity.

BOLD-fMRI can provide some differentiation between types of tissue; however, the

image resolution is limited.

fMRI is generated by a conventional MRI machine, but with T2*-weighted imag-

ing. T2* decay is distinct from T2 decay in that T2 decay is the result of random

fluctuations in the Larmor frequency at the molecular level, whereas T2* decay re-

sults from larger scale variations in the applied static magnetic field. In practise the

magnetic field is not spatially uniform. Spins on one side precess at a different fre-

quency to those on the other side. Since the signal that is detected is the sum of all

spins in the sample, the greater the variation in field that exists across the sample,

the more rapidly the transverse magnetization will dephase. T2* is shorter than T1

and ranges from a few milliseconds to tens of milliseconds. Strictly speaking, T2*

processes include the effect of T2 processes. 1
T2∗ = 1

T2
+ γπ4B0 demonstrates the

relationship between T2 and T2*. 4B0 is the field variation across the sample, and

γ is the gyromagnetic ratio. The local T2* is determined by the balance of deoxy-

genated to oxygenated haemoglobin. T2* signal is retained longer in a region when

it has more oxygenated blood. Thus, an area with more oxygenated blood will show

up with higher intensity on T2*-weighted images.

fMRI offers a better tradeoff between spatial resolution and sensitivity to brain

activation. Compared with electrophysiological recording techniques such as elec-

troencephalography (EEG) or event-related potential (ERP) measurements, which
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have a better temporal resolution, fMRI provides a better spatial localization and

broader “windows” for electrical activity observation. Regional cerebral blood flow

(RCBF) based brain mapping techniques such as single-photon emission computed

tomography (SPECT) and positron emission tomography (PET) provide better lo-

calization, but are less sensitive to brain activation than fMRI. Also, fMRI is less

physically demanding on subjects than SPECT or PET, which require injection of a

small amount of radioactive drug.

2.3 fMRI Applications

fMRI has opened an era of functional studies of the brain. Neuroscientists take

advantage of this imaging technique to map brain function into brain anatomy. Sci-

entists are also starting to adopt fMRI in clinical applications, such as neurosurgical

planning.

2.3.1 Applications in Studies of Neuroscience

With carefully designed psychological experiments, we can understand the neural

basis for our behavior, from simple to cognitively complex functions. Simple tasks

include stimuli based on presentation of light, colors, tones, chords, music, syllables,

movement of fingers, and basic sensory perceptions. More complicated tasks include

memory, attention, inhibition, face recognition, communications, etc. The goal is to

functionally associate one or more brain regions with the tasks a subject performs.

The following shows the general procedure of an fMRI study.

Experimental Design → Image Acquisition → Image Reconstruction

→ Preprocessing → Statistical Analysis → Psychological Interpretation

In today’s neural study, block design (box-car) and event-related design are two

of the most common experimental techniques.
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Block Design

In a block design experiment, stimuli are usually presented at a constant pace over a

fixed period of time, alternating with a fixed-length rest period in which no stimuli

are presented. Blocks are also referred to as epochs. The experimental protocol

is fixed regardless of the subject’s response. Because a block is treated as a single

unit for analysis, samples within a block should all belong to a single condition. It

is important to note that a single condition may include more than one cognitive

task. For example, a very popular experiment used in the working memory studies

is the two-back word experiment, in which a subject taps his or her fingers together

if the number presented is identical to the one that is two back. In this experiment,

the subject has multiple cognitive tasks such as listening, memorizing the last two

numbers, comparing the current number with the one that is two back, tapping

fingers, and so on. Block design considers all of them as a single task condition.

Block design experiment is designed to locate regions with notable difference be-

tween these two conditions. Parts of such experiments are contrasted serially to deter-

mine the independent effects of the factors of primary interest. The simplest method

to do this is the Paired T-test (T-test), which measures the statistical significance

of the difference in mean image intensities obtained during the task condition and

the rest condition. This assumes that the effects of activation of individual cognitive

processing elements are linear additivity in a complex cognitive task. The validity of

interpretation of the results therefore depends on the accuracy of this model. Mutual

information (MI) based detector has a similar underlying principle as the T-test, but

it does not require the linearly addition assumption. Considering each sample as a

random variable, MI-based detector compares the different distributions of the task

signal and the rest signal. Chapter 3 describes these two methods in detail.

Event-Related Design

While block design has strong detection power, event-related design has the abil-

ity to estimate the shape of the hemodynamic response. Built on rapid imaging,
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event-related design experiments maximize the opportunity to analyze the data by

randomizing and mixing trials or by using differences in speed or accuracy of the

subject’s response. Event-related design does not generalize signal obtained under all

physiological tasks as a single task condition. It assumes that the HRFs correspond-

ing to various physiological tasks are different, signal is analyzed by task category.

Event-related design trades improved specificity for reduced sensitivity.

Similarly to the block-design experiments, subjects perform task according to an

experimental protocol in event-related experiments. Nevertheless, an event-related

design experimental protocol does not necessary have a fixed inter-stimulus length.

Instead, stimuli are presented according to a pre-designed varying-speed protocol, to

a subject’s response time to the previous stimulus, or to the accuracy of the subject’s

response. The event-related design is also called a single trial design because each

trial is statistically independent of the other trials. To be statistically independent,

different trial types must be intermixed so that it is impossible to predict the next

trial type from the previous one.

2.3.2 Other fMRI Applications

The field of fMRI is rapidly finding clinical application and is exciting scientists

from a wide range of disciplines, including neurology, pathology, psychiatry, and

psychology. fMRI holds considerable promise for unravelling the neuro-circuitry and

metabolic pathways of psychiatric disorders in the immediate future and in helping

in psychiatric diagnosis and treatment planning in the long term. Neurosurgical

planning, understanding neurological disorders, and drug studies are some of the

practices in which fMRI is heavily involved.

Being able to focus on the areas of the brain responsible for tremors or a seizure,

fMRI helps make decisions regarding the advisability of surgery and the optimal

surgical approach. fMRI can offer a three-dimensional surgical road map that is

useful for planning the surgical procedure. During a surgical procedure, fMRI helps

orient the neurosurgeon to both the structural and functional features of the anatomy

within the limited view of the craniotomy. When intraoperative mapping by direct
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cortical stimulation is still deemed necessary, fMRI directs the surgeon to the regions

of interest, and shortens the length of the procedure. However, fMRI has potential

limitations in the study of brain tumors. The presence of edema, tumor mass, or

radiation-induced tissue damage affects the microvasculature surrounding the lesion.

One must be careful in interpreting the data. The current most common applications

of presurgical fMRI are sensorimotor and language mapping.

fMRI shows valuable significance in early diagnosis for neurological disorders such

as schizophrenia, depression, and epilepsy. Applying identical task(s) to the patient

group and the control group during fMRI scans, we can investigate which regions

of the brain have malfunctions in the patient group. Those regions are critical for

neurological disorder diagnostics. Current study shows that the differences are widely

distributed in the brain, but a few consistent findings have emerged that hold promise

for the development of clinically useful fMRI in psychiatry. For example, the anterior

cingulate has been shown to be less active in schizophrenic patients [25], and some ev-

idence shows that depression is associated with hyperactivity in the anterior cingulate

cortex and that effective pharmacological treatment is associated with a normaliza-

tion of activity [38]. In both of these examples, the difference between patients and

controls was statistical. Using fMRI for individual diagnoses of mental disorders is

not yet a reliable diagnostic test.

fMRI is improving our understanding of a variety of brain pathologies. For ex-

ample, drug abuse has been shown to be without structural brain changes. Bloom’s

study [36] reports that nicotine produces a dose-related increase in fMRI signal in

specific regions of the brain such as the nucleus accumbens, amygdala, cingulate, and

frontal lobes. On the other hand, marijuana suppresses activation in the cerebellum,

anterior cingulate, insula, and superior temporal gyrus, while enhancing activation in

the globus pallidus, right middle frontal gyrus and areas of parietal cortex.

To conclude, fMRI allows us to see how a brain changes each second. It provides

a tool for mapping brain function in neuroscience research. It also has great potential

to help improve clinical practise.
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2.4 Future Development

While researchers and engineers continue to validate current fMRI applications and

to improve its reliability, it is expected that there will be a significant improvement

in fMRI quality with the rapid developments in the following areas.

MR signal intensity and BOLD contrast are proportional to the external mag-

netic field strength. Scanners with a higher field strength can achieve sub-millimeter

resolution in anatomical images. It can also increase the SNR level in T2* weighting

fMRI which leads to a better temporal resolution and improved sensitivity. One must

be careful with the physiological impact from a strong magnetic field.

Another development is to incorporate dynamic perfusion measurements into

fMRI imaging technique to quantify the BOLD signal, which is particularly important

in fMRI diagnosis, prognosis, and treatment. There are two promising methods: arte-

rial spin labelling (ASL) technique and dynamic perfusion imaging. ASL technique is

a type of perfusion MRI that can be used for noninvasive measurement of the regional

cerebral blood flow change associated with brain activation. In dynamic perfusion

imaging, subjects have injections of exogenous contrast agents such as gadolinium

chelate or super-paramagnetic iron oxide nano-particles. These agents can greatly

expand the capability of fMRI and provide an accurate measurement of task-induced

regional cerebral blood flow change. Either of these methods allows the calculation of

relative cerebral blood volume maps which are directly related to the hemodynamic

response.

An additional direction for fMRI future development is to integrate it with other

functional imaging techniques such as EEG, Magnetic Resonance Spectroscopy (MRS),

and Diffusion Tensor imaging (DTI). Combined fMRI and EEG recordings, which take

advantage of the greater spatial resolution of fMRI and the superior temporal discrim-

ination of EEG data acquisitions, enable extended forward modelling in fMRI time

series. Multi-modality imaging not only enables validation of any one of scanning

techniques, but also provides a multi-functional view of the brain.
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2.5 Summary

This chapter briefly introduced the fMRI imaging technique, listed its wide-range

applications, and described its future development. With fMRI, it is possible to link

information about brain function directly to information about brain structure in

order to understand the physical basis of the abstract mind. In the next chapter, we

will discuss current popular detectors for analyzing fMRI signals.
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Chapter 3

Voxel-by-voxel Detectors

As mentioned in the previous chapter, fMRI signals reflect differences in the param-

agnetic properties of oxygenated and deoxygenated blood as a consequence of neural

activity [20]. Several detectors, analyzing signal of each voxel separately, have been

proposed for fMRI analysis over the years. We refer these detectors as the voxel-

by-voxel detectors. Among them, the most basic detector, Paired T-test (T-test),

measures the statistical significance of the mean voxel intensities obtained during

task and rest conditions, treating each voxel separately. The General Linear Model

(GLM) framework augments this approach with a hemodynamic response function,

which is used to fit the recorded signal, leading to a more accurate modelling of the

response (e.g., providing a mechanism for modelling delays in the signal relative to

the onset of the task) [13, 20].

These two detectors have been widely used in fMRI analysis. Recent extensions

and alternatives include relaxing the constant signal and the Gaussian noise assump-

tions of T-test by employing Mutual Information (MI) as a statistic [39], augment-

ing GLM with a model of temporal dependency in the noise [5], and incorporating

spatial continuity constraints on the estimated signal to combat spurious false detec-

tion [7, 39].

This chapter compares the features and performance of several current fMRI de-

tectors. The empirical comparison was performed on images from an fMRI study that

focuses on an auditory memory task using a block-design protocol, with alternating
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Detectors Temporal Signal Model Spatial Signal Model Temporal Noise Model

T-test constant within condition – i.i.d. Gaussian

MI correlated with protocol – i.i.d.

GLM HRF – i.i.d. Gaussian

GLM + Temporal HRF – Gaussian

GLM + Spatial HRF MRF or Gaussian model i.i.d. Gaussian

MI + Spatial correlated with protocol MRF or Gaussian model i.i.d.

Table 3.1: Modelling assumptions made by different methods.

rest and task periods [40]. We present the activation maps and examine individual

time courses when they offer insight into the differences in behavior of the detec-

tors. In the next section, we provide a brief description of the detectors. Section 3.2

compares selected pairs of detectors with the goal of highlighting the fundamental

differences between them.

3.1 Background

Many detectors for fMRI analysis in block-design studies essentially measure the dif-

ference between voxel response signals, indicated by image intensity, acquired during

rest and task periods. Based on the statistical model specific to the method, the

estimated differences are translated into significance indicators, such as P-values. Ta-

ble 3.1 displays the differences in modelling assumptions made by the methods. This

section contains a detailed description of the detectors compared in this work, includ-

ing T-test, GLM, and the MI detector. Since there is no strong evidence of temporal

correlation noise in our fMRI data, we did not perform a comparison for detectors

that model temporal noise dependency. Details on the detectors that model temporal

noise dependency can be found in [5, 11]. On the other hand, we performed extensive

empirical evaluations of incorporation of spatial regularization for fMRI detection,

and the results are reported in Chapter 4 and Chapter 5.

3.1.1 Paired T-test (T-test)

T-test measures the difference between the mean of the signals observed during task

periods and those observed during rest periods. ~yitask
and ~yirest represent the samples
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of voxel i’s temporal responses under task and rest conditions. Their corresponding

sample means are yitask
and yirest

, respectively. The detector treats the observed

intensities as independent samples from two classes: task and rest. Assuming ~yitask

and ~yirest are independent Gaussian variables, we can use the T-distribution, also

called the Student distribution [37, 32], to convert the resulting statistic into the

corresponding P-value. Under certain assumptions, we can also derive the T-test

from the GLM framework (see AppendixA.4).

The T-test’s modelling assumption is that the samples drawn from the task and

the rest conditions are independently Gaussian distributed.

~yitask
∼ N (µitask

, σ2
itask

) and ~yirest ∼ N (µirest , σ
2
irest

)

where, µitask
and µirest are the population means of task and rest conditions; σ2

itask

and σ2
itask

are the corresponding population variances.

According to probability theory, the sample means of these two conditions, yitask

and yirest
, are also independently Gaussian distributed:

yitask
∼ N (µitask

,
σ2

itask

Ntask
) and yirest

∼ N (µirest ,
σ2

irest

Nrest
)

where, Ntask and Nrest are the numbers of samples taken during task and rest con-

ditions, respectively. The number of samples taken in an entire trial is NT , NT =

Ntask + Nrest. It is important to note that according to the Law of Large Number,

with sufficient samples, T-test is a valid method even though the samples does do not

have a Gaussian distribution.

If we let Mi = yitask
−yirest

, then Mi ∼ N (µiM , σ2
iM

). Through a simple derivation,

we can express µiM and σ2
iM

in terms of means and variances in the task and rest

conditions: µiM = µitask
− µirest , and σ2

iM
=

σ2
itask

Ntask
+

σ2
irest

Nrest
.

We are interested in whether these two groups of data, ~yitask
and ~yirest , have

different population means. Hence, we set the hypothesis testing as the following:

H0: µitask
= µirest

H1: µitask
6= µirest .
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The population means are unknown, and we replace them by sample means, yitask

and yirest
. Under H0, there is no difference in the sample means taken in the two

conditions, which implies Mi|H0 ∼ N (0, σ2
iM

).

We standardize Mi by letting

Ti =
Mi − µiM

σiM

. (3.1)

Therefore, Ti|H0 ∼ N (0, 1).

Since population variances, σ2
itask

and σ2
irest

, are unknown, we replace them by

sample variances, computed according to σ̂2 =
P

i(xi−x)2

|X|−1
. σ̂2

itask
and σ̂2

irest
are the

sample variances for the task and the rest condition, respectively. Depending on

whether we assume the two sets have identical population variances, there are two

derivations for the T-test.

• Under the assumption that σ2
itask

= σ2
irest

= σ2
i , we can rewrite Ti’s definition

(Eq. (3.1)) as

Ti =
yitask

− yirest√
S2

i

(
1

Ntask
+ 1

Nrest

) (3.2)

where the pooled variance estimate S2
i is defined as the following:

S2
i =

1

Ntask + Nrest − 2

( ∑

k∈task

(yik − yitask
)2 +

∑

k∈rest

(yik − yirest
)2

)
. (3.3)

Under H0, Ti is T-distributed with Ntask + Nrest − 2 degrees of freedom. Ap-

pendixA provides the proof. Section 3.1.3 shows how to derive T-test formula

using a GLM approach with particular assumptions. In other words, T-test is

a special case of GLM.

• Alternatively, we proceed without the assumption that σ2
itask

= σ2
irest

. This

becomes the Behrens-Fisher problem: finding a function of complete sufficient

statistics. Mathematicians have developed different methods to solve this prob-

lem, such as the iterative likelihood-ratio test. Among these methods, Welch’s
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approach is the most widely used [6].

Ti =
yitask

− yirest√
bσ2

itask

Ntask
+

bσ2
irest

Nrest

(3.4)

where,

E

[
σ̂2

itask

Ntask

+
σ̂2

irest

Nrest

]
=

σ2
itask

Ntask

+
σ2

irest

Nrest

(3.5)

and,

V ar

(
σ̂2

itask

Ntask

+
σ̂2

irest

Nrest

)
=

2σ4
itask

N2
task(Ntask − 1)

+
2σ4

irest

N2
rest(Nrest − 1)

. (3.6)

Here,
bσitask

Ntask
+

bσirest

Nrest
is approximately χ2 distributed. By matching the first and the

second moments, Ti|H0 is approximately T-distributed using Satterthwaites’s

approximation [6].

The second derivation of the T-test is more popular in fMRI analysis because there

is no indication that the population variances of the samples taken in the task and

rest conditions should be equal. In either case, we use the T-distribution to convert

Ti into its corresponding P-value, pi, which is used to set the threshold for graphical

display of the activation maps:

pi = 2P (Ti > |ti| |H0)

where, ti is one observation. For example, ti is a particular T-test result of voxel

i according to Eq. (3.2) or Eq. (3.4). P-value indicates the probability of getting a

T-statistic greater than the magnitude of the current observation ti under the null

hypothesis. We can obtain pi from the T-distribution table.

In practice, a confidence level, α, is selected as a threshold. 2P (Ti > |ti| |H0) < α

indicates H0 is unlikely to explain this observation, and H0 is rejected. We can obtain

t = t∗ for a certain α using the T-distribution table. Therefore, if the T-statistics

of voxel i, Ti, is greater than t∗, we label voxel i as an active voxel. We can also
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Figure 3-1: Graphical explanation of converting T-statistic to P-value

claim that we reject H0 with 100(1−α)% confidence. In fMRI detection, α is chosen

between 10−7 and 10−4. Such a low threshold is chosen in order to suppress most false

detections out side of the regions of interest (ROIs). In other areas, α is usually set

as 0.05. Either of these choices for α is entirely arbitrary. Fig. 3-1 shows a graphical

explanation of P-value. pi corresponds to sum of the area of the shaded regions.

We can consider T-test as a significance test. It measures how likely, in terms of

probability, yitask
− yirest

deviates from zero under the probability density function of

H0. The false positive rate is α. It is important to note that T-test does not provide

any evidence indicating the alternative hypothesis is true.

3.1.2 Mutual Information (MI)

Mutual Information (MI) measures statistical dependence by capturing the differences

between the probability distributions of the signal obtained during the task and the

rest periods. MI-based activation detection [39] takes a non-parametric approach to

model the dependencies between the experimental protocol of the study and the

observed fMRI signal, and can therefore detect activations whose dependency on

the protocol does not necessarily fit the model of T-test (i.e., non-linearities, partial

activations, etc.).

Due to the trade-off between the statistical power and the generalization ability
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of a model, MI-based activation maps typically exhibit lower significance values than

parametric approaches such as T-test. While this method still assumes temporal

independence in the noise, it removes the Gaussian assumption in modelling the

noise statistics. MI treats the signal of voxel i as a stochastic entity, Yi, and learns

its underlying distribution from the observed data yi,t, t = [1, ..., NT ]. A voxel is

declared active if its intensity and the protocol are statistically dependent, leading to

a hypothesis test:

H0(voxel i is not active) : Yi, Ω ∼ pYi,Ω(yi, ω) = pYi
(yi) · pΩ(ω)

H1(voxel i is active) : Yi, Ω ∼ pYi,Ω(yi, ω)

where Ω is the value of the protocol (0 - rest, 1 - task), and ωt is the protocol at

time t. Since the signal samples of each voxel correspond to the same experimental

protocol, there is no subscript for Ω and ω to indicate different voxels. This leads to

a sufficient statistic that is proportional to MI:

log
p~Yi,~Ω

(~yi, ~ω|H1)

p~Yi,~Ω
(~yi, ~ω|H0)

= log

∏NT

t=1 pYi,Ω(yit , ωt)∏NT

t=1 pYi
(yit) · pΩ(ωt)

(3.7)

=

NT∑
t=1

log
pYi,Ω(yit , ωi)

pYi
(yit) · pΩ(ωt)

(3.8)

=

NT∑
t=1

log pYi,Ω(yit , ωt)−
NT∑
t=1

log pYi
(yit)−

NT∑
t=1

log pΩ(ωt) (3.9)

≈ NT E[log pYi,Ω(yi, ω)]−NT E[log pYi
(yi)]−NT E[log pΩ(ω)]

(3.10)

= NT (−h(Yi, Ω) + h(Yi) + H(Ω)) (3.11)

= NT (H(Ω)−H(Ω|Yi)) (3.12)

= NT (h(Yi)− h(Yi|Ω)) (3.13)

= NT I(Yi; Ω). (3.14)

Eq. (3.7) is the log likelihood ratio of the two hypotheses. I(·; ·) is the mutual infor-
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mation between two random variables. H(Ω) is the entropy of the discrete random

variable Ω, and h(Y ) is the differential entropy of the continuous random variable Y .

We obtain Eq. (3.10) from the Weak Law of Large Numbers. Eq. (3.11) is based on

the definition of entropy. We can rewrite Eq. (3.13) as the following:

log
p~Yi,~Ω

(~yi, ~ω|H1)

p~Yi,~Ω
(~yi, ~ω|H0)

= NT (h(Yi)− P (Ω = 0)h(Yi|Ω = 0)− P (Ω = 1)h(Yi|Ω = 1))

(3.15)

where, P (Ω = 1) and P (Ω = 0) indicate the how often task and rest conditions

appear during the experiment.

From the basic information theory, we get 0 ≤ H(Ω|Yi) ≤ H(Ω) ≤ 1. Hence,

0 ≤ I(Yi; Ω) ≤ 1. We can consider that MI is a normalized measure of dependency

between Yi and Ω with a high mutual information near 1 bit, indicating that the voxel

is activated.

We estimate the unknown probability density function of Yi using the Parzen

density estimator.

h(Yi) = −
∫

pYi
(yi) log pYi

(yi)dyi (3.16)

= −E[log pYi
(yi)] (3.17)

≈ − 1

NT

NT∑
t=1

log pYi
(yit) (3.18)

≈ − 1

NT

NT∑
t=1

log p̂Yi
(yit) (3.19)

= − 1

NT

NT∑
t=1

log
1

NT

NT∑
s=1

K(yit − yis , κ). (3.20)

The estimated entropy is affected by the choice of κ, which is commonly referred to

as the kernel size or smoothing parameter. We can obtain κ by the leave-one-out

maximum likelihood estimator [22].

In order to quantitatively compare MI with the parametric detectors, we used per-
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mutations to convert the MI statistic into its corresponding P-value at each voxel [16].

In each iteration of the procedure, we permute the protocol values and re-estimate the

MI of this new association between the protocol values and the activation intensity.

After a large number of iterations, the histogram of MI values can be used to estimate

the probability of obtaining the observed MI value (or higher) by chance, using one

of such randomly generated associations. We use a fast procedure based on spacings

estimates of entropy [26] for evaluating MI in this procedure.

3.1.3 General Linear Model (GLM)

GLM models the brain as a Linear Time Invariant (LTI) system with an impulse re-

sponse function that reflects the hemodynamic properties of the brain tissue. A design

matrix B = [B1 B2] is used for linear regression. GLM assumes the signal is a lin-

ear combination of a protocol-dependent component, B1, and a protocol-independent

component, B2, such as physiological noise and drifting.

B1 is constructed based on the experimental protocol and the assumed Hemo-

dynamic Response Function (HRF). Two-gamma function [20]1, sinusoid functions,

and Finite Impulse Response (FIR) functions are popular regressor models for HRF.

Including assumptions of a specific form of HRF (e.g., two-gamma function) can in-

crease the sensitivity of the detector, though it is important to note that the detector

could not explain all the signals associated with the stimulus if the assumed shape was

wrong. Low order polynomials and low frequency Fourier basis are often employed

to model the protocol-independent component B2.

Voxels are declared to be active if the significant power of the observed response

is in the subspace of the active response. We will later show that the T- and the F-

statistics are commonly used to evaluate the significance. GLM is usually formulated

as

~yi = B1
~β1i

+ B2
~β2i

+ ~εi = B~βi + ~εi. (3.21)

1A two-gamma function captures the fact that there is a small dip after the HRF has returned
to zero: h(t) = (t/d1)a1 exp(−(t−d1)

b1
) − c(t/d2)a2 exp(−(t−d2)

b2
) where, dj = ajbj is the time to the

peak, and a1 = 6, a2 = 12, b1 = b2 = 0.9s, and c = 0.35
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~yi is the signal at voxel i, noise ~εi ∼ N (~0, Σi), but Σi is unknown. ~βi = [~β1i
~β2i

] is

a vector of estimated amplitudes of the hemodynamic responses and the protocol-

independent signals. Depending on the regression setting, either ~β1i
, ~β2i

, or both

may be a scalar. To get a generalized derivation, we assume ~β1i
and ~β2i

are vectors.

Assuming that noise is white, Σi = σ2
i I, we can estimate β using the ordinary least

square estimate2:

~̂βi = (BT B)−1BT~yi. (3.22)

The residual error is defined as,

~ri = ~yi − ~̂yi (3.23)

= ~yi −B~̂βi (3.24)

= (I −B(BT B)−1BT )~yi = R~yi (3.25)

where, R is an idempotent matrix, RR = R. We can calculate the residual error

variance as

σ2
ri

=
~rT

i ~ri

NT −Nβ

. (3.26)

where the normalization factor, NT − Nβ, is required because there are NT − Nβ

degrees of freedom left after estimating β. NT is the number of samples in a time

course, and Nβ is the number of regressors in ~βi. We can further show that R is

not a full rank matrix. To do so, we first perform the singular value decomposition

on B, B = USV T . Since B is an NT × Nβ matrix, U is NT × NT , S is NT × Nβ,

and V is Nβ × Nβ. U and V store orthogonal basis in each column entry for an

NT ×NT -dimensional space and an Nβ×Nβ-dimensional space, respectively. S stores

Nβ singular values along the diagonal of the first Nβ rows. R can be decomposed as

the following:

2Without the white noise assumption, Eq. (3.22) still provides an unbiased estimate of ~β.
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R = I − USV T (V ST UT USV T )−1V ST UT

= I − USV T (V ST SV T )−1V ST UT

= I − USV T V −T Λ−1V −1V ST UT

= I − USΛ−1ST UT

= I − U ′U ′T

= U ′′U ′′T . (3.27)

We let the orthogonal matrix U = [~u1, ~u2, · · · , ~uNβ
, · · · , ~uNT

]. U ′ and U ′′ are also

NT ×NT matrices. U ′ = [~u1, ~u2, · · · , ~uNβ
, 0, · · · , 0] and U ′′ = U −U ′. U ′ has rank Nβ,

and U ′′ has rank NT − Nβ. Therefore, R is also a rank NT − Nβ matrix. This non-

full rank matrix prevents inversion, so Σi cannot be derived from Cov(~ri), requiring

alternative ways to model the noise covariance matrix, such as auto-regressive noise

models and deterministic component identification. Detailed discussion on the noise

models can be found in [5, 11].

After estimation, we perform hypothesis testing to detect any voxel whose signal

corresponds to the protocol. Vector ~̂β1i
or linear combination of the elements of

this vector, depending on the test objective, is usually employed as the indicator for

this evidence. A contrast matrix, C, is introduced according the test objective. For

example, if we define activation as any element in ~̂β1i
being significantly different from

zeros, that means H0 : ~̂β1i
= ~0. If ~̂β1i

is a vector, we need to make a simultaneous test

for each element. It can be proved that the confidence interval testing is F-distributed

(Eq. (3.28)).

Fi =
(C~̂β1i

)T (Cov(C~̂β1i
))−1(C~̂β1i

)

Nβ1

(3.28)

Under H0, Fi is F-distributed, Fi|H0 ∼ FNβ1
,NT−Nβ

. In this case, C is an Nβ1 × Nβ1

identity matrix, and Nβ1 is the number of regressors in ~β1i
. On the other hand, if ~̂β1i

is a scalar or the test objective is a linear combination of the elements in vector ~̂β1i
,
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the confidence interval test follows T-distribution (Eq. (3.29)).

Ti =
(C~̂β1i

)

var(C~̂β1i
)

(3.29)

Under H0, Ti is T-distributed, Ti|H0 ∼ TNT−Nβ
. The corresponding contrast matrix,

C, is a row vector.

In addition, we can re-derive GLM using the maximum likelihood approach. The

presence of the protocol-dependent signal indicates that the corresponding voxel is

active due to the stimulus. This definition is equivalent to any element in ~̂β1 being

significantly different from zeros.

H0: ~yi = B2
~β2i

+ ~εi (or ~β1i
= ~0)

H1: ~yi = B1
~β1i

+ B2
~β2i

+ ~εi (or ~β1i
6= ~0)

where, ~εi ∼ N (~0, σ2
i I). We can express the signal by the sufficient statistic of the two

hypotheses, the maximum log likelihood ratio zi,

zi = log
max~β1i

,~β2i
,σ2

i
p(~yi|H1)

max~β2i
,σ2

i
p(~yi|H0)

(3.30)

= log
max~β1i

,~β2i
,σ2

i
N (~yi; B1

~β1i
+ B2

~β2i
, σ2

i I)

max~β2i
,σ2

i
N (~yi; B2

~β2i
, σ2

i I)
. (3.31)

The Maximum Likelihood (ML) estimates of the numerator are

[~̂β1i
~̂β2i

] = ~̂βi = arg max
~βi

logN (~yi; B~βi, σ
2
i I) = (BT B)−1BT~yi (3.32)

and

σ̂2
i = arg max

σ2
i

logN (~yi; B~̂βi, σ
2
i I) =

‖ ~yi −B~̂βi ‖2
NT

. (3.33)

Similarly, the ML estimates for the denominator are ~̂β2i
= (BT

2 B2)
−1BT

2 ~yi and σ̂2
i =

‖~yi−B2
~̂β2i
‖2

NT
.
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By substituting the ML estimates into Eq. (3.30), we get

zi = log
(‖ ~yi −B2

~̂β2i
‖)NT

(‖ ~yi −B~̂
iβ ‖)NT

(3.34)

=
NT

2
log

~yT
i

(
B(BT B)−1BT −B2(B

T
2 B2)

−1BT
2

)
~yi

~yT
i (I −B(BT B)−1BT ) ~yi

(3.35)

where, zi is a monotonically increasing function of the Fi (Eq. (3.28)) in the conven-

tional GLM detector (see Cosman [7] for detailed derivations). We can also consider

zi as a noisy statistic indicating a voxel’s activation state.

3.2 Experiments and Results

We compared the detectors on the fMRI scans obtained during an auditory memory

experiment. Each experiment consisted of five rest epochs and four task epochs,

each epoch 30 seconds long. In the rest condition, the subjects were instructed to

concentrate on the noise of the scanner and not to move. In the task condition,

the subjects were presented with a series of pre-recorded single-digit numbers, three

seconds per number. The subjects were asked to tap their index finger to their thumb

when hearing a number that was the same as the one spoken two numbers before.

Experiments were repeated ten times for each subject. The original study contained

nine subjects, but for the purpose of voxel-by-voxel comparison of the detectors,

we present the results for one subject across all detectors. T1-weighted structural

anatomical images were acquired for each subject on a 1.5 Tesla GE signa clinical

MR scanner using a 3D-SPGR sequence. Axial EPI images were acquired on the same

scanner with imaging parameters as follows: TR/TE=2500/50 msec, flip angle=90,

64x64 acquisition matrix, 24 slices, slice thickness=6mm. More details on this study

can be found in [40], which also presents the results of GLM-based detection performed

in SPM [13], one of the standard software packages for fMRI analysis.

3.2.1 T-test vs. MI

While T-test compares the means of the conditional intensity distributions for the

two conditions, implicitly assuming two Gaussian distributions, the MI compares the
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Figure 3-2: Left: maximum intensity projections (axial, coronal and sagittal) of the
activation maps detected by T-test (top) and MI (bottom). The colormap is used to
show the negative logarithm of P-values. Right: joint scatter of P-values (log-scale)
produced by T-test and MI.

shapes of the distributions. Thus we would expect T-test to yield a higher statistical

power (lower P-values) for voxels with a substantial difference between the two con-

ditions, and MI to be able to detect subtle dependencies between the voxel intensities

and the protocol that are typically missed by T-test.

Fig. 3-2 illustrates the detection results for the two detectors. The images on the

left show the activation maps obtained by thresholding the P-values. The plot on the

right displays the joint scatter of the (log) P-values estimated by the two methods.

As expected, strongly activated voxels are assigned much lower P-values by T-test

than by MI. We also observe that the mapping between the P-values is not linear

and some voxels are detected by MI that would not pass a threshold based on T-test.

Fig. 3-3 illustrates this point for the two voxels, A and B, marked on the scatter plot

of Fig. 3-2. We observe that voxel A is detected as highly significant by both methods

as its time course and the corresponding conditional intensity distributions fit the

Gaussian model fairly well. Voxel B corresponds to what we call a partial activation.

Its time course seems to have a global trend of declining activation, but in the first

several blocks, its intensity is definitely synchronized with the protocol. As a result,

the MI detector will label this voxel as active for a substantially more conservative

threshold relative to the most active voxels in the volume. This leads us to conclude
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Figure 3-3: Left: intensity histograms during task (pY |U=1(y), blue), during rest
(pY |U=0(y), red), and over the entire run (pY (y), black) for two voxels from the right
plot in Fig. 3-2. Voxel A: PT-test = 10−15, PMI = 10−7; Voxel B: PT-test = 10−2,
PMI = 10−5. Right: time course (black) and scaled protocol timeline (red) for the
same voxels.

that although the statistical significance of the most active voxels is reduced in MI-

based detection, the method can successfully detect the areas that are only partially

correlated with the protocol.

3.2.2 T-Test vs. GLM

GLM extends the statistical framework of T-test to include a model for the HRF,

yielding improved statistical significance (lower P-values) for the voxels whose tem-

poral response fits the specified model. Appendix A.4 shows that we can derive T-test

formula from GLM with certain assumptions. This section empirically illustrates the

difference of these two detectors.

Fig. 3-4 illustrates the detection results for both methods. Examining the acti-

vation maps, we note that incorporating a temporal response model allows GLM

to discriminate between the cortical activation and the artifacts caused by the eye

motion. It also improves detection in the cortical area, leading to more contiguous

activation maps. Fig. 3-5 illustrates the detailed differences between the two methods

on the four voxels highlighted on the joint scatter plot of Fig. 3-4. We first note that

the regressor in the GLM estimation (a convolution of the protocol with the HRF,

shown in blue), while similar to the protocol, models the delay of the response and the
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Figure 3-4: Left: maximum intensity projection (axial, coronal and sagittal) of the
activation maps detected by T-test (top) and GLM (bottom). The colormap is used to
show the negative logarithm of P-values. Right: joint scatter of P-values (log-scale)
produced by T-test and GLM.

slight over- and under-shoot in the intensity at the boundaries between the blocks.

The temporal responses of voxels A1 and A2 have a similar quality fit to the proposed

HRF model, leading to similar P-values in GLM detection. However, the response

of A1 is delayed relative to the protocol and is deemed much less significant under

the T-test. This points to a problem in the T-test detection that is often mitigated

by omitting several time points on each side of the block boundaries. However, this

practise discards valuable measurements and typically reduces the detector’s sensi-

tivity. On the other hand, voxels B1 and B2 are assigned similar P-values by T-test,

but B1 fits the HRF model better, and is declared more significant under the GLM.

This example highlights the importance of choosing the correct shape of the HRF

to be fitted to the voxel time courses. The response function might actually vary

spatially in the brain, which implies that we might get better detection by using less

restrictive HRF models, even if it leads to potentially reduced statistical power at the

most active voxels.

Modelling the temporal correlation of the noise in fMRI signals is out of the scope

of this project. Several different approaches have been proposed in [5, 11].
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Figure 3-5: Time course (black), T-test protocol (red), and the GLM regressor (blue)
for four voxels from Fig. 3-4. Voxel A1: PT-test = 10−2, PGLM = 10−13; Voxel A2:
PT-test = 10−14, PGLM = 10−13; Voxel B1: PT-test = 10−13, PGLM = 10−16; Voxel B2:
PT-test = 10−13, PGLM = 10−6.

3.3 Summary

In this chapter, we discussed the implicit modelling assumptions made by several

fMRI detectors used in the field and compared them empirically on a real fMRI

example. The experiments illustrate some of the theoretical points for specific voxels

in the images. In general, the trade-off between the statistical power gained by

stronger modelling assumptions and the ability to detect activations that violate

these assumptions was very pronounced throughout the experiments. GLM improves

detection power by explicitly modelling the system response, which causes it to miss

the areas whose responses do not fit the pre-specified shape of the response function.

MI, as a non-parametric technique, necessitates giving up some of the statistical power

for the ability to detect activations that are weakly coupled with the protocol. Such

methods can be useful in exploratory studies where the nature of the dependency

between the protocol and the activation is either not known or is suspected to be

nonlinear, such as in some of the auditory cortex activations.

This study points to several promising directions for research in this area. In-

corporating time response into MI-based estimation and detection can potentially

improve the quality of the detector, similar to the improvement we saw in the GLM

over the T-test. Another direction is to employ spatial modelling to combat noise in

47



the activation. We expect that the GLM- and MI-based detections can be further

strengthened by incorporating more sophisticated models of spatial structure of the

signal into the detectors. The next two chapters discuss such spatial models and their

benefits for fMRI detection.

48



Chapter 4

Spatial Regularization for fMRI

Detection

As discussed in Chapter 3, the voxel-by-voxel fMRI detectors compare the time course

of each voxel with the experimental protocol, labelling those voxels whose time courses

correlate significantly with the protocol as “active”. The analysis of each voxel with

these detectors results in the statistical parametric map (SPM). A threshold or a pair

of thresholds applied to the SPM produces a binary or a trinary map of active areas,

and this binary or trinary map is also called the activation map. It has been proven

that some parts of the brain are de-active associated with certain tasks that a subject

performs. The trinary activation maps can encode this information. As we saw in

the previous chapter, because of a low signal-to-noise ratio (SNR) in fMRI signal, the

activation map typically contains many small false positive islands.

To reduce these false positive islands, most researchers take advantage of biological

models that imply contiguous activation areas, choosing to smooth the signal spatially

using a Gaussian filter prior to detection. Unfortunately, Gaussian smoothing, though

intended to combat low SNR, leads to overly smoothed SPMs and a loss of detail in

the resulting activation maps. A number of alternative approaches have explicitly

incorporated spatial and temporal correlations into the estimation procedure. Ex-

amples include autoregressive spatio-temporal models [41, 5], Markov random fields

(MRFs) [10, 9, 7], Bayesian models inferring hidden psychological states [19], and
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adaptive thresholding methods that adjust the significance of active regions accord-

ing to their size, based on the Gaussian random field theory [12]. In this chapter, we

focus on MRFs for modelling spatial coherency and study their performance. We as-

sume that, given the activation state of each voxel, the time courses of different voxels

are independent and can be reduced to a sufficient statistic. Therefore we concentrate

on spatial regularization of the activation map. Temporal regularization models can

be easily incorporated into our framework by changing the activation statistic.

For MRFs with binary states, an exact solution can be obtained in polynomial

time [17]. Kim [39] introduced a fMRI detector by augmenting MI statistics with a

binary MRF prior; Cosman [7] introduced a similar detector by augmenting GLM

statistics with a binary MRF prior. However, if one wants to go beyond binary

states (e.g. treating positively and negatively activated voxels differently), the prob-

lem of estimating the optimal activation states becomes intractable and approxima-

tion algorithms must be used. Prior work in MRF-based fMRI detection employed

simulated annealing [10, 31] or iterated conditional modes [33]. We adopt the Mean

Field solver, introduced in statistical physics [27] and widely used for image segmen-

tation [21, 30, 42, 23]. In our experiments with binary MRFs, Mean Field algorithm

produced results comparable to those of the exact solver while reducing computation

time by one to two orders of magnitude. In trinary MRFs, its computation time is

on the same order of magnitude as that of the binary case.

We also experimented extensively with the Belief Propagation algorithm [28],

which often produces a better approximation, but did not find it to be more ac-

curate in this application. Treating messages from different neighbors independently,

Belief Propagation does not provide accurate approximation for graphs with many

small loops. We therefore primarily present the experimental results using the Mean

Field algorithm.

The next two sections explain how the GLM and MI detectors can be augmented

with an MRF prior. In the experiments, we focus on the results generated from

the GLM detector because it is the most popular fMRI detector in neuroscience. We

then review the Mean Field solution [27] and explain how to set the model parameters.
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Section 4.5 presents the empirical evaluation of the method using synthetic data. In

Chapter 5, we will combine the evaluations of the current detectors with the refined

detectors introduced in Chapter 5 on a real fMRI data set.

4.1 Background Statistics

In this section, we revisit two voxel-by-voxel detectors, GLM and MI, which are

discussed in Chapter 3. We omit the T-test here, because it can be derived as a

special case of GLM (see AppendA.4 for details). We will show how to incorporate

an MRF prior into the ML estimates of these two detectors.

4.1.1 Sufficient Statistic for the General Linear Model

In Section 3.1.3, we derived GLM through the maximum likelihood approach. We

write the two hypotheses as the following:

H0: ~yi = B2
~β2i + ~εi (or ~β1i = ~0)

H1: ~yi = B1
~β1i + B2

~β2i + ~εi (or ~β1i 6= ~0)

where ~εi ∼ N (~0, σ2I). The subscript i specifies voxel i. B1 represents the protocol-

dependent component, and B2 presents the protocol-independent component. Their

corresponding regression coefficient vectors are ~β1i
and ~β2i

. We obtain the maximum

log likelihood ratio as

zi = log
max~β1i

,~β2i
,σ2

i
p(~yi|H1)

max~β2i
,σ2

i
p(~yi|H0)

(4.1)

= log
max~β1i

,~β2i
,σ2

i
N (~yi; B1

~β1i
+ B2

~β2i
, σ2

i I)

max~β2i
,σ2

i
N (~yi; B2

~β2i
, σ2

i I)
(4.2)

= log
(‖ ~yi −B2

~̂β2i
‖)NT

(‖ ~yi −B~̂
iβ ‖)NT

(4.3)

=
NT

2
log

~yT
i (B(BT B)−1BT −B2(B

T
2 B2)

−1BT
2 )~yi

~yT
i (I −B(BT B)−1BT )~yi

(4.4)
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where zi is a monotonically increasing function of the F statistic (Eq. (3.28)) in the

conventional GLM detector (see Section 3.1.3 for detailed derivation). We can also

consider zi as a noisy statistic indicating voxel i’s activation state.

4.1.2 Sufficient Statistic for the Mutual Information Detec-

tor

As shown in Section 4.1.2, we declare a voxel active if there is significant dependency

between its signal and the experimental protocol. Assuming each sample in a time

sequence as an observation of the voxel’s signal, we can form the following hypotheses:

H0(voxel i is not active) : ~Yi, ~Ω ∼ p~Yi,~Ω
(~yi, ~ω) = p~Yi

(~yi) · p~Ω(~ω)

H1(voxel i is active) : ~Yi, ~Ω ∼ p~Yi,~Ω
(~yi, ~ω)

where, Ω is the value of the protocol (0 - rest, 1 - task), and ωt is the protocol signal

at time t. This leads to a sufficient statistic that is proportional to MI:

zi = log
p~Yi,~Ω

(~yi, ~ω|H1)

p~Yi,~Ω
(~yi, ~ω|H0)

(4.5)

= log

∏NT

t=1 pYi,Ω(yit , ωt)∏NT

t=1 pYi
(yit) · pΩ(ωt)

(4.6)

= NT I(Yi; Ω) (4.7)

where, I(·; ·) is the mutual information between two random variables.

4.2 Markov Priors

We let ~X = [X1, ..., XNV
] be the activation configuration of all voxels. Random

variable Xi denotes voxel i’s discrete activation state. In this work, we focus on Xi

being either a binary or a trinary random variable. The binary Xi indicates active

or not active states; the trinary Xi indicates positively active, negatively active, and
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not active states. ~x = [x1, ..., xNV
] is one possible configuration. Here, we assume

an MRF prior on ~X. According to Hammersley-Clifford theorem [4], ~X follows the

Gibbs distribution:

P ~X(~x) =
1

λ

∏
<i,j>

Ψij(xi, xj)
∏

i

Ψi(xi). (4.8)

Eq. (4.8) is defined in terms of the singleton potentials Ψi(xi) that provide bias over

state values xi for voxel i, and the pairwise potentials Ψij(xi, xj) (often referred to as

the compatibility matrices) that evaluate the compatibility of voxel i being in state

xi and voxel j being in state xj for each pair < i, j > of neighboring voxels. λ is a

normalization constant, also called the partition function. Since there are 2NV and

3NV possible configurations in binary and trinary MRFs, it is an NP-hard problem to

compute λ. Given the activation statistic values ~z, we seek the maximum a posteriori

(MAP) estimate of the activation configuration:

~x∗ = arg max
~x

P ~X|~Z(~x|~z) (4.9)

= arg max
~x

P ~X,~Z(~x, ~z) (4.10)

= arg max
~x

P ~X(~x)P~Z| ~X(~z|~x) (4.11)

= arg max
~x

1

λ

∏
<i,j>

Ψij(xi, xj)
∏

i

Ψi(xi)PZi|Xi
(zi|xi). (4.12)

We consider the statistic from either the GLM detector or the MI detector as a random

vector ~Z = [Z1, ..., ZN ]. zi is the statistic we obtain from voxel i using either of the two

detectors (Eq. (4.1) and Eq. (4.5)). Eq. (4.12) is obtained based on the assumption

that the noise statistics at different voxels are independent given the activation state

of each voxel, and the likelihood over the volume can therefore be written as a product

of the individual likelihood terms for each voxel.

Fig. 4-1 depicts the corresponding graphical model, using a two-dimensional grid

for illustration purposes only. The estimation is performed fully in 3D in all experi-

ments reported here. We assume a spatially stationary generative model, i.e., PZi|Xi
,

Ψi, and Ψij are identical for all voxels in the volume. The observations (the fMRI

53



Z4 Z3

Z1 Z2

X4 X3

X1 X2

Figure 4-1: Graphical model for P ~X,~Z.

signal, and in Chapter 5, the anatomical information) move the MAP estimate away

from the spatially stationary configurations.

Given either the GLM or the MI statistic, we aim to find the optimum activation

configuration. This is equivalent to the MAP solution (Eq. (4.9)). However, a direct

search for the optimal activation configuration is intractable because the search space

is an exponential function of the number of voxels in a volume. Under a binary MRF

assumption, Greig [17] showed that the search can be reduced to the Minimum-Cut-

Maximum-Flow network problem, which can be solved in polynomial time via the

Ford-Fulkerson algorithm. We refer to this exact solver as Min-Max throughout this

thesis. Cosman [7] and Kim [39] showed how to apply Min-Max to the GLM and MI

statistics. However, Min-Max is still computationally intensive when applied to the

volumetric data: in our experiments, it took 1-3 hours, depending on the pairwise

potential settings and the initial threshold applied to the GLM or MI statistic. On

the other hand, the Mean Field approximation for MRFs is fast (ten to hundred

times faster than Min-Max on the 3D grids we consider in this thesis) and reasonably

accurate, as our results in the remainder of this section indicate. In the next section,

we derive the Mean Field algorithm through a variation approximation approach.

4.3 A Variational Algorithm: Mean Field

A number of variational approaches have been successfully used for inference and

estimation in large densely connected graphical probability models for which exact
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probabilistic calculations are no longer feasible. The idea of variational algorithms

is to approximate P ~X|~Z( ~X|~z) by a relatively simple probability mass function, Q( ~X),

through minimization of KL-Divergence between the two distributions:

D(Q( ~X)||P ~X|~Z( ~X|~z)) =
∑

~x

Q(~x) log(Q(~x))−
∑

~x

Q(~x) log(P ~X|~Z(~x|~z)). (4.13)

Since the extremum problem in Eq. (4.13) involves an unknown function, P ~X|~Z( ~X|~z),

the variational algorithms solve this problem by restricting the space of admissible

functions Q( ~X). Q( ~X) is a valid probability mass function for all possible activa-

tion configurations such that
∑

~x Q(~x) = 1. KL-Divergence measures how well Q( ~X)

approximates P ~X|~Z( ~X|~z). It is non-negative and is zero if and only if the varia-

tional distribution over the hidden variables equals to the true posterior probability,

Q∗( ~X) = P ~X|~Z( ~X|~z). Using KL-divergence, we aim to find the best approximation

to P ~X|~Z(~x|~z).

It is easy to see that the minimum of D(·) is achieved for the same state configu-

ration ~x that minimizes the so called free energy, FMF :

FMF =D(Q( ~X)||P ~X|~Z( ~X|~z))− log(P~Z(~z)) (4.14)

=
∑

~x

Q(~x) log(Q(~x))−
∑

~x

Q(~x) log(P ~X|~Z(~x|~z))− log(P~Z(~z)) (4.15)

=
∑

~x

Q(~x) log(Q(~x))−
∑

~x

Q(~x) log(P ~X,~Z(~x, ~z)) +
∑

~x

Q(~x) log(P~Z(~z)) (4.16)

− log(P~Z(~z))

=
∑

~x

Q(~x) log(Q(~x))−
∑

~x

Q(~x) log(P ~X,~Z(~x, ~z)) (4.17)

=−H(Q)− EQ[log(P ~X,~Z(~x, ~z))] (4.18)

=−H(Q)− EQ[log((P~Z| ~X(~z|~x))P ~X(~x))]. (4.19)

The likelihood of observations given a hidden activation configuration, P~Z| ~X(~z|~x),
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is formulated according to the modelling assumptions. So far, we have not discussed

how to select Q(~x). The first term in Eq. (4.19) suggests that Q(~x) should describe

as much variation as possible to achieve large entropy. In other words, Q(~x) should

be close to an uniform distribution. The second term implies we should choose Q(~x)

that maximize EQ[log(P~Z| ~X(~z|~x)P ~X(~x))]. A variational algorithm usually restricts

the space of Q(~x) by selecting a certain parametric family of Q(~x). It then employs

an iterative algorithm to minimize FMF in terms of Q(~x)’s parameters. The solution

Q∗(~x) may set FMF to a local minimum rather than a global one. Therefore, Q∗(~x)

may not be the optimum choice among all Q(~x) in our search space.

In the case of probability distributions, the appropriate simplification comes from

properties of independence. The simplest family of variational distribution is one

where all the variables, {Xi : i = 1, ..., NV }, are independent of each other. More

precisely, the Mean Field approximation assumes

Q( ~X) =
∏

i

bi(xi) (4.20)

where bi(xi) is a valid probability mass function so that
∑M

xi=1 bi(xi) = 1. M is the

number of possible states of Xi.

Substituting Eq. (4.20) and Eq. (4.8) into Eq. (4.19), we get

FMF (bi) =
∑

{x1,...,xN}

∏

l

bl(xl) log(
∏

i

bi(xi))

−
∑

{x1,...,xN}

∏

l

bl(xl) log(
∏

<i,j>

Ψij(xi, xj)
∏

k

Ψk(xk)PZk|Xk
(zk|xk))

+ log(λ) (4.21)

= −
∑
<i,j>

M∑
xi=1

M∑
xj=1

bi(xi)bj(xj) log(Ψij(xi, xj))

+
∑

i

M∑
xi=1

bi(xi)[log(bi(xi))− log(Ψi(xi)PZi|Xi
(zi|xi))] + log(λ). (4.22)
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We can rewrite Eq. (4.22) as the following:

FMF (bi) = −
∑

i

∑

j∈N (i)

M∑
xi=1

M∑
xj=1

bi(xi)bj(xj) log(Ψij(xi, xj))+

∑
i

M∑
xi=1

bi(xi)[log(bi(xi))− log(PZi|Xi
(zi|xi)Ψi(xi))] + log(λ) (4.23)

whereN (i) is the set of neighboring voxels for voxel i. The approximation is a solution

of the following optimization problem:

min FMF (bi) (4.24)

s.t.
M∑

xi=1

bi(xi) = 1 ∀i. (4.25)

It is not necessary to solve this constrained extremum problem using Lagrange

multipliers because we can re-scale the solution to satisfy the constrain. Taking

derivative of FMF (bi) with respect to bi, we obtain

∂FMF (bi)

∂bi

= −
∑

j∈N (i)

M∑
xj=1

bj(xj) log Ψij(xi, xj) + log bi(xi) + 1

− log PZi|Xi
(zi|xi)Ψi(xi). (4.26)

Setting ∂FMF (bi)
∂bi

= 0 under the constrains
∑M

xi=1 bi(xi) = 1 ∀i, we obtain the

following update rule for voxel i that can be used in an iterative procedure:

bt+1
i (xi)← γ PZi|Xi

(zi|xi) Ψi(xi) e
P

j∈N (i)

PM
xj=1 bt

j(xj) log Ψij(xi,xj) (4.27)

The normalization constant γ, ensures that the solution is a valid probability mass

function. P~Zi| ~Xi
(zi|xi) is the likelihood of observing zi given state xi. Ψi(xi) is the

single node potential, and Ψij(xi, xj) is the compatibility matrix. N (i) is the set of

voxel i’s neighbors. In each iteration of the Mean Field algorithm, the voxel’s belief is

updated according to the linear combination of its neighbors’ beliefs in the previous

iteration. The probability model (i.e., PZi|Xi
, Ψi, and Ψij) determines the exact form
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of the update rule. Each voxel is assigned the state value with the highest belief at the

end of the procedure (e.g., for binary MRFs, the voxel is set active if bi(1) > bi(0)).

When the iterative procedure converges, we can obtain an approximation to the MAP

solution of the original MRF problem (Eq. 4.9).

~̂x∗ = arg max Q(~x) (4.28)

The parameter setting for Ψi(xi) and Ψij(xi, xj) will be discussed in the next section.

This iterated approximation algorithm is ten to one hundred times faster than the

Min-Max solver on the 3D grids we consider in our experiments.

4.4 Estimating Model Parameters

The potential functions Ψi, and Ψij and the observation likelihood PZi|Xi
must corre-

spond to our notions of the appropriate bias toward desired solutions. In this work,

we follow a common practice of setting the potential functions (same for all voxels) to

the corresponding marginal probability distributions estimated from the data: Ψi(xi)

is set to the expected percentage of voxels in state xi, Ψij(xi, xj) is set to the joint

frequency of the states xi and xj, and PZi|Xi
is approximated by a smoother version

of a class-conditional histogram. Other forms of potential functions have also been

explored in different applications [9, 14, 15].

Lack of training data or ground truth necessary for estimating the marginal fre-

quencies is a more serious problem. Unlike the segmentation application, where man-

ual segmentations by experts can be used to construct priors on the frequencies and

co-occurrences of tissue types, in most fMRI experiments even the experts cannot

provide such information. Model parameters in the currently used detectors are ei-

ther set using researcher’s intuition on the underlying activation properties (e.g., the

threshold in GLM or the kernel width in Gaussian smoothing) or estimated from

the input images (e.g., the noise variance in GLM). We take a similar approach of

first running the GLM detector without smoothing and using the resulting SPM at
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a user-chosen threshold to estimate the probability model. To study the sensitivity

of the method to the parameter settings, we ran experiments where the values of

the singleton potentials and the compatibility matrices varied substantially (0.1 to 2

times the estimated parameters). The variability in the detection accuracy (3-7%)

was within the variability across different data sets as reported below.

4.5 Empirical Evaluation

In this section, we study the performance of the GLM detectors each augmented

with Gaussian smoothing or MRF smoothing in synthetic fMRI data sets at differ-

ent SNR levels. The evaluation consists of two parts: binary and trinary activation

configurations. We start with the binary activation setting in order to evaluate the

performance of the Mean Field approximation compared to Min-Max solver. Then

we extended the evaluation to the three-state activation configuration. We would like

to examine whether smoothing is a necessary procedure in fMRI detection in both

activation settings. Besides a quantitative comparison presented in this section, we

also generated activation maps using the detectors. To reduce redundancy, we will

present the activation maps generated by these detectors along with their anatomi-

cally guided extensions, which are investigated in the next chapter, in Section 5.2.1.

Validation of these detectors using real fMRI data is shown in Section 5.2.2.

4.5.1 Synthetic Data Sets with Binary Activation States

To quantitatively evaluate the performance of the detectors, we generated realistic

phantom data by applying the EM segmentation [29] to an anatomical MRI scan and

placing activation areas of variable size (average diameter of 15mm) randomly in the

gray matter. We then downsampled the scan to an fMRI resolution volume. The gray

matter voxels represent 7 − 10% of the total number of voxels in a volume, and the

active voxels represent about 6− 10% of the gray matter voxels in these images. We

then created simulated fMRI scans based on the two-gamma hemodynamic response

function, on an event-related experimental protocol, and on different levels of noise.

59



SNR = -9dB SNR = -6dB

1e−05 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

T
ru

e 
P

os
iti

ve

No Smoothing
Gaussian
MRF
Min−Max

1e−05 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

T
ru

e 
P

os
iti

ve

No Smoothing
Gaussian
MRF
Min−Max

Figure 4-2: ROC curves for different smoothing techniques, at two noise levels. False
positive rate is shown on the log scale.

The ground truth is a binary activation configuration in these data sets. We will

discuss trinary activation configurations in the next section.

We used the estimated SNR, ŜNR = −10 log10(|B1β̂1|2)/σ̂2, to determine a real-

istic level of the simulated noise as the true SNR is unaccessible for real fMRI scans.

Since the signal and the noise overlap in some frequency bands, part of the noise

energy is assigned to the estimated signal during detection. The estimated SNR is

therefore an optimistic approximation of the true SNR, which can still be used as

a monotonic upper bound of the true SNR. In our real fMRI studies, the estimated

SNR is about -5dB. Here, we illustrate the results for two levels of true SNR, -6dB

and -9dB, which correspond to estimated SNR of -4.3dB and -6.2dB respectively.

In all the experiments with binary activation data sets, we used the same GLM

detector based on a 10-bin FIR function. To create a baseline for comparison, we first

ran the GLM detector without any smoothing. For the Gaussian-smoothing-based

detector, we first smoothed the signal spatially using a Gaussian filter, and then

applied a GLM detector. To evaluate the Markov priors, we ran GLM coupled with

the exact Min-Max solver and with the approximate Mean Field solver on the same

raw images. Fig. 4-2 shows the ROC curves created for the four methods by varying

the threshold applied to the GLM statistics. Due to the large number of voxels in

the volume and the relatively small number of active voxels, only the very low false
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positive rates are of interest (we focus on the false positive rates below 0.1%, which

corresponds to about 10% of the total number of the active voxels, or approximately

250 voxels). The error bars indicate the standard deviation of the true detection rate

over 15 different, independently created and processed, data sets. The Min-Max ROC

curve does not have the error bars, as the estimation takes too long (1 to 3 hours

for a single run). Moreover, the Min-Max ROC curve is incomplete because extreme

threshold values cause it to run even longer (we stopped the runs after 3 hours).

The Mean Field detection accuracy is very close to the exact Min-Max solution,

providing a reasonable approximation to the exact solution that also takes much less

time to compute (most Mean Field runs finished in a few minutes). The Min-Max

accuracy is sometimes lower than the Mean Field accuracy, which appears to contra-

dict the optimality of the Min-Max solver. However, we note that both algorithms

solve a particular estimation problem that does not necessarily describe the ground

truth precisely but rather approximates it using a Markov model. Thus, the lowest

energy state under this model might not be the best detector in practice. It is still

reassuring to see that the approximate solver performs as well as the exact algorithm.

It also suggests that even stronger spatial priors could improve detection accuracy.

As expected, the accuracy of all methods improves with increasing SNR. At

high noise levels (low SNR), the Gaussian-smoothing-based detector outperforms the

MRF-based detector. As the simplest smoothing technique, Gaussian smoothing is

more robust to noise. We also believe that our current way of constructing the likeli-

hood term in the MRF model over-emphasizes the data evidence over the prior. We

are investigating ways to compensate for this in the estimation of the model. As

the SNR increases, MRFs provide better regularization of the activation state (for

example, at SNR=-6dB, at the false positive rate of 0.01%, the MRF-based detector

outperforms the Gaussian-smoothing-based detector by about 15% in true detection

accuracy; at 70% true detection, the MRF-based detector approximately halves the

false detections compared to the Gaussian-smoothing-based detector). With the im-

proving scanning technology, we believe MRFs will become even more helpful in

reducing spurious false detection islands.
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4.5.2 Synthetic Data Sets with Trinary Activation States

According to neuroscience literature [3, 35, 24], some regions in the brain show neg-

ative activations when a subject performs certain tasks. For example, Schwartz [34]

found that the pre-frontal cortex regions usually show negative activation during rapid

eye movement sleep. Negative activation is caused by decrease in glucose metabolism,

with a detailed interpretation of this phenomenon still an active research area.

To examine the performance of our detectors in a more realistic setting, we gen-

erated synthetic data sets with three activation states. The data generating process

is very similar to the one explained in Section 4.5.1. The activation areas were placed

in the gray matter with average diameter 15mm. While all of the activation areas

were discussed are positively active in the previous section, we randomly assigned

the activation regions being either positively or negatively active in this experiment.

In other words, all voxels in an activation region have an identical activation state;

voxel belonging to different activation regions, though they are very close, may be in

different activation states. Approximately, 7% and 3% of the gray matter voxels are

positively and negatively active voxels respectively. We then created simulated fMRI

scans based on the same parametric hemodynamic response function, event-related

protocol, and noise levels as those in the binary simulated fMRI scans.

In the experiments with trinary activation states, we use a slightly modified GLM

detector based on the same 10-bin FIR function. The F statistic in this GLM

model is distributed as F10,NT−10. Since F statistic is one sided, it cannot distin-

guish between positive activation and negative activations. In the modified GLM

detector, a voxel is labelled as a positively active voxel if its positive regression

coefficients have a higher sum of energy than the sum of energy among the nega-

tive regressor coefficients:
∑

j(β1i
)2
j >

∑
k(β1i

)2
k, where (β1i

)j > 0, (β1i
)k < 0, and

~β1i
= [(β1i

)1, (β1i
)2, · · · , (β1i

)Nβ1
]. We augmented the negatively active voxel with

a minus sign to its corresponding maximum log likelihood ratio derived in Eq. (4.1).

Therefore, the statistics of the true negative activation voxels are usually below zero,

and the statistics of the true positive activation voxels are usually above zero. The
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non-active voxels’ statistics usually have small magnitudes.

The estimation procedure using the GLM detector, the Gaussian-smoothing-based

detector, and the MRF-based detector is the same as that discussed in Section 4.5.1,

except that we cannot solve the MRF problem using the Min-Max solver because

of the trinary activation configuration. Hence, we only report the results from the

MRF-based detector solved by the Mean Field algorithm, and the result is the MAP

solution of the marginal probability returned from Mean Field: ~̂x∗ = arg max~x Q(~x).

~̂x∗ is the approximate MAP solution for the original MRF problem.

We adjust the definitions of false positive and true positive rate for the trinary

activation state case. False positive rate is defined as the percentage of non-active

voxels being classified as either positively or negatively active voxels. We define true

positive rate as the percentage of the active voxels (including positively and nega-

tively active voxels) that are classified correctly. As we can see, the misclassifications

between the two activation types are ignored. In addition to the ROC analysis, we

also report the results in a form of a confusion matrix.

Fig. 4-3 shows the ROC curves for the GLM detector, the Gaussian-smoothing-

based detector, and the MRF-based detector by varying the threshold applied to the

GLM statistics. Similar as Section 4.5.1, the error bars are computed over ten data

sets, independently created and processed. Since we do not include misclassifications

between the positively and the negatively active voxels, the true positive rate cannot

reach 100% if there are any misclassifications between the two activation types.

Since the difference in the statistic value is larger between voxels in the positive

and negative activation states than the one between the positive and the non-active

states or between the negative and the non-active states, there are few negatively

active voxels falsely labelled as positively active voxels or vice versa. Misclassifications

between the positively active and non-active voxels or between the negatively active

and non-active voxels are more common.

Tables 4.1 shows the average confusion matrices of the three detectors over the

same ten data sets when false positive rate is fixed at 0.05%. Confusion matrices list

the percentage of voxels in state Si that are classified as state Sj. For instance, the
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Figure 4-3: ROC curves for different smoothing techniques, at two noise levels. False
positive rate is shown on the log scale. It is impossible to achieve 100% true detection
rate, since false detections between positively and negatively active states are ignored.

(a) GLM detector, SNR = -9 dB (b) GLM detector, SNR = -6 dB

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 9.03 89.73 1.24 Negative Active 46.6 50.02 3.34

Not Active 0.03 99.9 0.02 Not Active 0.03 99.9 0.02

Positive Active 0.88 89.51 9.61 Positive Active 3.53 49.60 46.87

(c) Gaussian-smoothing-based detector, SNR = -9 dB (d) Gaussian-smoothing-based detector, SNR = -6 dB

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 54.59 44.43 0.98 Negative Active 57.45 42.35 0.20

Not Active 0.02 99.95 0.03 Not Active 0.02 99.95 0.03

Positive Active 1.14 32.03 66.83 Positive Active 0.14 28.23 71.63

(e) MRF-based detector, SNR = -9 dB (f) MRF-based detector, SNR = -6 dB

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 15.46 82.74 1.80 Negative Active 74.85 20.69 4.45

Not Active 0.03 99.94 0.03 Not Active 0.02 99.95 0.02

Positive Active 1.01 79.44 19.55 Positive Active 4.45 16.28 79.26

Table 4.1: Detection performance of three selected detectors at two SNR levels.
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first and the second entries in Table 4.1(a) mean that 9% of the true negatively active

voxels are detected correctly and that 89.73% of the true negatively active voxels are

detected as not active voxels when we control the false positive rate at 0.05%. The

standard deviations of all detectors are 1-5%.

Comparing the ROC curves (Fig. 4-3) or the confusion matrices (Table. 4.1) with

the ROCs generated in the binary activation data sets at SNR= −6dB (Fig. 4-2), the

MRF-based detector outperforms the Gaussian-smoothing-based detector by a larger

margin in the trinary activation data set. In the binary case, the detection difference

is approximately 10% between the MRF-based detector and the Gaussian-smoothing-

based detector; in the trinary activation case, there is approximately 20% (in both

negatively and positively active states) between these two detectors. The Gaussian-

smoothing-based detector outperforms the MRF-based detector by a smaller margin

in the low SNR setting. The Gaussian-smoothing-based detector performs worse in

the trinary case than in the binary case, because spatial averaging suppresses the

signals of adjacent voxels that are in positive and negative activation states. As a

result, both of the two voxels are classified as non-active voxels. In addition, due to the

fact that there are twice as many positively active voxels as negatively active voxels

in our synthetic data, the Gaussian-smoothing-based detector shows worse detection

performance for the negatively active voxels. Another interesting observation is that

the Gaussian-smoothing-based detector has similar performance in both high and low

SNR data sets. We again see the robustness of the Gaussian smoothing method.

4.6 Summary

We investigated improvements in fMRI detection provided by Gaussian smoothing

and Markov priors spatial modelling, and our experiments confirmed the importance

of spatial regularization in reducing fragmentation of the activation maps. We evalu-

ated the methods on phantom data by performing the ROC analysis and the confusion

matrix analysis. In the high-noise setting, the Gaussian-smoothing-based detector

outperformed other methods; as the SNR in the images increased, the Markov pri-
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ors offered a substantial improvement in detection accuracy. At high SNR levels,

there is a larger margin, in terms of true detection, between the MRF-based detector

and the Gaussian-smoothing-based detector in the trinary activation configuration

than that in the binary activation configuration. This difference occurs because the

Gaussian-smoothing-based detector suppresses the signal when it averages positively

active signals with negatively active signals. We will further validate the detectors

using real fMRI data sets in the next chapter.

In this chapter, we introduced a fast approximate solver, Mean Field, in applica-

tion to MRF-based fMRI detection and showed that it provides reasonably accurate

approximations to the exact solution while taking substantially less time to evaluate.

We note that since the Markov model itself is an approximation of the real geometry

of the activation regions, we should not dwell on the small differences in the activation

maps introduced by the approximate solvers but rather focus on their performance

relative to the ground truth. An MRF provides a spatial prior that refines the struc-

ture of the resulting activation map over the Gaussian smoothing, as demonstrated

by our experiments on the phantom data sets. The general nature of the Mean Field

algorithm allows straightforward extension of the probabilistic model to include the

tissue type for each voxel. We will present this refined detector in the next chapter.
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Chapter 5

Spatial Regularization with

Anatomical Structure

Chapter 4 presented MRFs for modelling spatial coherency of the activation maps.

We adopted the Mean Field algorithm to approximate the MAP solution for the

MRF problem. We also compared our detectors with the Gaussian-smoothing-based

detector on binary and trinary activation configurations, as well as at different SNR

levels.

We further refine the activation priors by incorporating anatomical information.

Similarly to the atlas-based segmentation, where a probabilistic atlas serves as a

spatially varying prior on the tissue types, the anatomical information can provide

a prior on the activation map. Intuitively speaking, we want the prior to reflect

the fact that activation is much more likely to occur in gray matter than in white

matter, and not at all in cerebrospinal fluid (CSF) or bone. In addition, the spatial

coherency of activation is strong within each tissue and not across tissue boundaries.

To incorporate the anatomical information, we augment the MRF model introduced

in Chapter 4 with tissue type information. In this refined model, each hidden node

encodes both the tissue type and the activation state. The segmentation from the

anatomical scans provides an additional, potentially noisy, observation at each node.

We derive the detection algorithm for this model and evaluate it on simulated and

real data. The anatomically guided MRF-based detector is able to achieve high
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Figure 5-1: Graphical model for P~U,~Z, ~W .

detection accuracy with significantly shorter time courses compared to the standard

GLM detector.

Anatomical scans have certainly been used in fMRI analysis and visualization

before. Hartvig [18] used the anatomical information in his marked point process spa-

tial prior. In many systems (e.g., BrainVoyager [1]), the subject’s anatomical image

is transformed into a standard coordinate frame (such as Talairach) and the func-

tional activation map is displayed on the surface that corresponds to the cortical

sheet in that coordinate frame. Other systems (e.g., FSL [2]) rely on sophisticated

segmentation algorithms to extract a topologically correct representation of the cor-

tical surface from the anatomical scan [8]. Performing Gaussian smoothing on the

surface eliminates irrelevant voxels from the weighted average for the cortical loca-

tions. In contrast, our approach does not require a surface extraction algorithm, but

instead utilizes anatomical information to inject the anatomically based coherency

bias into the detection algorithm while performing the computation directly on the

volumetric data. The inspiration for this work comes from the success enjoyed by

MRFs in providing spatial smoothing priors for image segmentation [21, 23, 30, 42].

5.1 Anatomical Priors for Spatial Regularization

The general nature of the Mean Field algorithm allows straightforward extension of

the MRF model to include the tissue type for each voxel. We define ~V = [V1, ..., VNV
]

to be the tissue types of all voxels, and ~W = [W1, ..., WNV
] the tissue type observations,
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such as a result of an automatic segmentation procedure. Wi’s are noisy observations

due to imperfect registration between the fMRI image and the anatomical scan, the

mismatch in their resolutions, and the noise in the segmentation itself. Now each

voxel has two hidden attributes: the activation state Xi and the tissue type Vi. We

combine these attributes into a single hidden node Ui, as illustrated in Fig. 5-1. For

example, for binary activation states (active or not active) and three tissue types (gray

matter, white matter, or other) case, Ui has six possible states. In our experiments

with synthetic and real data sets, we combined binary or trinary activation states

with three tissue types.

The MRF prior on ~U is similar to the one introduced in Eq. (4.8):

P~U(~u) =
1

λ

∏
<i,j>

Ψij(ui, uj)
∏

i

Ψi(ui) (5.1)

where, Ψij(ui, uj) and Ψi(ui) are pairwise and singleton potentials. Similarly to the

derivations in the previous section, the MAP estimate in this case is as follows:

~u∗ = arg max
~u

P~U |~Z, ~W (~u|~z, ~w) (5.2)

= arg max
~u

P~U(~u)P~Z|~U(~z|~u)P ~W |~U(~w|~u) (5.3)

= arg max
~u

1

λ

∏
<i,j>

Ψij(ui, uj)
∏

i

Ψi(ui)PZi|Ui
(zi|ui)PWi|Ui

(wi|ui) (5.4)

where, PZi|Ui
(zi|ui) is the likelihood of obtaining statistic zi given that voxel i is at

state ui, and PWi|Ui
(wi|ui) is the likelihood of obtaining segmentation observation wi

given that voxel i is at state ui. We assume that the segmentation observation ( ~W )

and the fMRI observation (~Z) are conditionally independent given the state of the

voxel since they are obtained from two different images.

We again use the Mean Field algorithm to approximate P~U |~Z, ~W (~u|~z, ~w) by selecting

a distribution Q∗(~u), among the family of voxel-independent distribution, Q(~u) =
∏

i bi(ui), in terms of minimizing the KL-divergence.

It is straightforward to derive the iterative update rule following the procedure
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presented from Eq. (4.21) to Eq. (4.27), resulting the following update rule:

bt+1
i (ui)← γPWi|Ui

(wi|ui)PZi|Ui
(zi|ui)Ψi(ui)e

P
j∈N (i)

PM
uj=1 bt

j(uj) log Ψij(ui,uj) (5.5)

This update rule is similar to Eq. (4.27), with the exception of the extra likeli-

hood term PWi|Ui
(wi|ui) for the tissue type observation. The compatibility matrix

Ψij(ui, uj) is M ×M , where M is the number of states in Ui. Ψij(ui, uj) is a larger

compatibility matrix compared with Ψij(xi, xj) (Eq. 4.27), because it includes tissue

type information. We follow the same parameter estimation procedure as described

in Section 4.

Since we are interested in the MAP estimate of the activation state, we first

marginalize Q(~u) = Q({~x,~v}) with respect to the tissue type ~v, and then obtain the

approximation MAP solution.

~̂x∗ = arg max
∑

~v

Q({~x,~v}) (5.6)

5.2 Empirical Evaluation

In this section, we use both synthetic and real data sets to study the detection im-

provement introduced by incorporating anatomical information. We compare dif-

ferent ways of incorporating anatomical information into the GLM detectors1: the

anatomically guided GLM detector, the anatomically guided Gaussian-smoothing-

based detector, and the anatomically guided MRF-based detector that was intro-

duced in Section 5.1. The anatomically guided GLM detector suppresses activations

outside of the gray matter using segmentation as a map (“soft” masking could also

account for mis-registration and errors in segmentation). To incorporate anatomical

information into the Gaussian filter, we adjust the weights of the filter based on the

tissue types of the voxel’s neighbors: while evaluating the filter at voxel i, we assign

higher weights to the neighbors sharing the same segmentation results as voxel i.

1It is straightforward to augment the MI detector with anatomical information, but we focus on
the GLM detector in this thesis.

70



5.2.1 Synthetic Data Sets

In this section, we use synthetic data to compare the performance of the anatomically

guided detectors by performing the ROC analysis and the confusion matrix analysis.

Synthetic Data Sets with Binary Activation States

We use the same phantom data sets described in Section 4.5.1 to evaluate the perfor-

mance of the anatomically guided detectors. Fig. 5-2 illustrates the ROC analysis for

the three regularization methods investigated in Section 4.5.1 (solid lines) and their

anatomically based variants (dashed lines). We omit the Min-Max solver for the MRF

model, as it cannot handle multi-valued states.

In addition to the trends observed before, we note that the anatomical information

significantly boosts the performance of all detectors at all noise levels. At high noise

levels (SNR = -9dB) and false positive rates between 0.01% and 0.1%, all methods

gain at least 10% in true detection rate when using anatomical information. The

MRF model benefits more than the Gaussian-smoothing model, but its detection

accuracy is still lower. At a lower noise level (SNR = -6dB), the anatomically guided

GLM detector approaches the performance of the Gaussian-smoothing-detector. At

0.01% false positive rate, the anatomically guided MRF-based detector outperforms

the anatomically guided Gaussian-smoothing-based detector by about 15% in true

detection rate, achieving over 90% detection accuracy. The large boost experienced

by the basic GLM detector when augmented with anatomical information is easy to

understand: since false detections occur relatively uniformly throughout the volume,

masking the gray matter improves the performance substantially. It is important to

note that applying the gray-matter mask ignores the false detections inside the gray

matter.

Besides the quantitative analysis presented above, we find it useful to visually

inspect the resulting activation maps. Fig. 5-4 at the end of this section illustrates

the detection results by showing one axial slice of the estimated activation map. The

top image shows the phantom activation areas that were placed in the volume and
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Figure 5-2: ROC curves for different smoothing techniques augmented with the
anatomical information, at two noise levels. False positive rate is shown on the log
scale.

used to generate the simulated fMRI scan. The bottom four rows show the same slice

in the reconstructed volume at two different noise levels. All the reconstructions were

performed at 0.05% false positive rate. In other words, each image in Fig. 5-4 shows

one slice in the reconstructed volume that corresponds to a point on the ROC curve

of the respective detector at 0.05% false positive rate.

The basic GLM detector produces a fragmented activation map that contains a

number of false detection islands at high SNR (Fig. 5-4g) and shows very little of the

original activation at low SNR (Fig. 5-4b). Given either of these maps, the users would

have troubles inferring the true activation areas and disambiguating them from spu-

rious false detections. The Gaussian-smoothing-based detector (Fig. 5-4c,j) leads to a

reasonable estimate of the ground truth, and its result largely tends to be “spherical”,

which may change the shape of the detected activations. The smoothing effectively

overestimates the extent of the regions. Consequently, many false positive voxels in

the Gaussian-smoothing-based detector’s activation map occur at the boundaries of

the activation regions. Injecting anatomical information reduces this over-smoothing

effect for some of the areas. At low SNR (-9dB), the MRF model (Fig. 5-4d) fills

in many of the active pixels that were missed by the GLM detector, but as we saw

before, its results are not as good as that produced by the Gaussian-smoothing-based
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Figure 5-3: ROC curves for different smoothing techniques augmented with the
anatomical information, at two noise levels. False positive rate is shown on the log
scale. It is impossible to achieve 100% true detection rate, since false detections
between positively and negatively active states are ignored.

detector. At higher SNR (-6dB), MRF produces a relatively accurate result (Fig. 5-

4j). Not all of the scatter activation islands are removed through regularization, but

the activation map looks more similar to the ground truth. The activation map is

further improved when anatomical information is incorporated into the model.

Synthetic Data Sets with Three Activation States

To examine the performance of the GLM detector, the Gaussian-smoothing-based de-

tector, and the MRF-based detector with their extended anatomically guided versions

in a trinary activation configuration, we use the data sets generated in Section 4.5.2.

Fig. 5-3 is the average ROC statistics of the six detectors over ten data sets at two

different noise levels. Tables 5.1 and 5.2 show the corresponding average confusion

matrices when false positive rate is fixed at 0.05%. Similar as the rest of the experi-

ment in the synthetic data sets, we used the same GLM detector based on the 10-bin

FIR function. The 10-bin FIR GLM detector introduces difficulty of differentiating

the positive activations from the negative activations. We adopt the convention men-

tioned in Section 4.5.2: a positively active voxel is a voxel whose positive regression

coefficients has a higher sum of energy than sum of energy among its negative re-
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(a) No Smoothing (b) No Smoothing+Ana

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 9.03 89.73 1.24 Negative Active 29.16 66.43 4.41

Not Active 0.03 99.95 0.02 Not Active 0.03 99.95 0.02

Positive Active 0.88 89.51 9.61 Positive Active 4.13 66.34 29.54

(a) Gaussian (b) Gaussian+Ana

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 54.59 44.43 0.98 Negative Active 55.15 42.73 2.12

Not Active 0.02 99.95 0.03 Not Active 0.02 99.95 0.03

Positive Active 1.14 32.03 66.83 Positive Active 2.04 32.51 65.45

(a) MRF (b) MRF+Ana

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 15.46 82.74 1.80 Negative Active 56.34 36.69 6.69

Not Active 0.03 99.94 0.03 Not Active 0.03 99.94 0.03

Positive Active 1.01 79.44 19.55 Positive Active 6.18 32.04 61.78

Table 5.1: Detection performance of three selected detectors and their corresponding
anatomically guided extensions at −9 dB SNR.

gression coefficients. We reuse the definitions of the false positive and true positive

rates defined in the last chapter. False positive rate is defined as the percentage

of non-active voxels being classified as either positively or negatively active voxels;

true positive rate is defined as the percentage of the active voxels (including positively

and negatively active voxels) being correctly classified. Because of our definitions, the

true detection rate cannot reach 100% in the ROC curves, because misclassifications

between positive and negative activations are not counted.

Since we are interested in examining the detection improvement provided by in-

corporating the additional spatial structure into the detectors in this chapter, we

display the confusion matrices of the detectors and their corresponding anatomically

guided versions side-by-side.

Fig. 5-3, Table. 5.1, and Table. 5.2 illustrate that incorporating the anatomical

structure into the detectors improves the detection accuracy over all detectors except

the Gaussian-smoothing-based detector in the high noise setting. Comparing the de-
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(a) No Smoothing (b) No Smoothing+Ana

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 46.6 50.02 3.34 Negative Active 74.09 19.67 6.24

Not Active 0.03 99.95 0.02 Not Active 0.03 99.95 0.02

Positive Active 3.53 49.60 46.87 Positive Active 6.46 18.81 74.72

(c) Gaussian (d) Gaussian+Ana

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 57.45 42.35 0.20 Negative Active 74.56 24.21 1.24

Not Active 0.02 99.95 0.03 Not Active 0.02 99.95 0.03

Positive Active 0.14 28.23 71.63 Positive Active 1.04 13.97 84.99

(a) MRF (b) MRF+Ana

Ground Truth Detection Ground Truth Detection

Negative Active Not Active Positive Active Negative Active Not Active Positive Active

Negative Active 74.85 20.69 4.45 Negative Active 88.97 3.81 7.23

Not Active 0.02 99.95 0.02 Not Active 0.03 99.95 0.02

Positive Active 4.45 16.28 79.26 Positive Active 7.33 23.5 90.32

Table 5.2: Detection performance of three selected detectors and their corresponding
anatomically guided extensions at −6 dB SNR.

tection accuracy between negative and positive activation over all confusion matrices,

we observe that the Gaussian-smoothing-based detectors (with and without anatom-

ical information) show the highest favor for positive activation due to the fact that

there is at least twice as many positively active voxels as the negatively active voxels

in our synthetic data sets. Therefore, we should not spatially smooth the signals using

a Gaussian filter if we are interested in locating the negative activation areas. On

the other hand, Gaussian smoothing virtually considers non-activation as the middle

state between the positive activation and negative activation states. As a result, the

false detection between positively active and non-active voxels or between negatively

active and non-active voxels is high, but the false detection between positively active

and negatively active voxels is low.

In the high noise environment (SNR= −9dB), there is no significant improvement

introduced by the anatomical information in the Gaussian-smoothing-based detector.

Even though the anatomical structure enables different weights, it cannot prevent
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equal-weighted averaging of the signals of different activation types because both

positive and negative activation areas lie in the gray matter. In Section 5.2.1, we

concluded that the Gaussian-smoothing-based detectors (with and without anatom-

ical information) has a better performance compared with the MRF-based detectors

(with and without anatomical information) in the binary activation configuration

and at a low SNR level. However, the anatomically guided MRF-based detector pro-

vides similar detection accuracy compared with the anatomically guided Gaussian-

smoothing-based detector in the trinary activation configuration. It is again caused

by the Gaussian smoothing technique’s over-smoothing effect over different activation

types.

In the low noise setting (SNR=−6dB), anatomical information boosts at least 15%

in terms of true detection for the detectors. The anatomically guided MRF-based

detector achieves close to 90% detection accuracy for both negative and positive acti-

vations. Comparing Table 5.2(b) with Table 5.2(d), the anatomically guided GLM de-

tector and the anatomically guided Gaussian-smoothing-based detector show similar

detection accuracy for negative activation. It again shows the undesired performance

of the Gaussian-smoothing-based detector for detecting negative activations.

Similarly to the last section, we present one axial slice of the resulting activation

maps, generated by each detector, for visual inspection (Fig. 5-5). The top image

shows the phantom activation areas that were placed in the volume and used to gen-

erate the simulated fMRI scans. The bottom four rows show the same slice in the

reconstructed volume at two different noise levels. All the reconstructions were per-

formed at 0.05% false positive rate. We use yellow and blue to represent correctly

detected positively active voxels and correctly detected negatively active voxels, re-

spective. Red represents the voxels that are either falsely classified as active voxels,

including positive and negative activations (corresponding to the statistics in the first

and third columns of the second row in the tables), or falsely classified between posi-

tively and negatively active voxels (corresponding to the statistics in the third column

of the first row and the first column of the third row in the tables).

The basic GLM produces a fragmented activation map that contains a number
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of false detection islands at high SNR (Fig. 5-5h) and shows very little of the origi-

nal activation at low SNR (Fig. 5-5b). In contract to the results obtained in Section

5.2.1, the Gaussian-smoothing-based detector (Fig. 5-5c,j) cannot produce a reason-

able estimate of the ground truth at either SNR level because it washes out signals of

different activation types during averaging. The Gaussian-smoothing-based detector

works better for the activation areas whose shapes are spherical or square. Incorpo-

rating anatomical information cannot improve the Gaussian smoothing result much

at the high noise setting. At low SNR (-9dB), the MRF model fills in many of the

active pixels that were missed by the GLM detector, but it does not produce as good

result as Gaussian smoothing. At higher SNR (-6dB), MRF (Fig. 5-5j) produces a

relatively accurate result. It is even comparable to the result provided by the anatom-

ically guided Gaussian-smoothing-based detector. When the anatomical information

is incorporated into the MRF model, the activation map looks more similar to the

ground truth.

5.2.2 Real fMRI Experiments

In the real fMRI experiments, since the ground truth is unavailable, constructing

ROC analysis or confusion matrix analysis is not possible. Instead, we visually com-

pare the resulting activation maps. In addition, we compare different detectors by

evaluating their performance on reduced-length time courses in both binary and tri-

nary activation configurations. This approach effectively evaluates the ability of each

detector to reconstruct the true activation areas with less evidence on the strength

of the signal.

We used the same fMRI data sets described in Section 3.2 to examine the GLM

detectors augmented with different spatial priors. The fMRI scans were obtained

during an auditory “two-back” word block design experiment for studying working

memory [40]. The estimated SNR when averaging over all voxels in the brain was

-4.7dB (-2.3dB when averaging voxels in selected ROIs relevant to the task).

Fig. 5-6 and 5-7 depict the resulting activation maps for the same axial slice in

our fMRI data sets, corresponding to the binary and trinary activation assumptions,
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respectively. Both of them are thresholded SPMs, and voxels with 0.8% highest statis-

tics are labelled as active voxels. While we employed the 10-bin FIR GLM detector

in the experiments on the synthetic data sets, we used GLM with the two-gamma

hemodynamic response function in the real data sets. We chose this strong regres-

sion model for the real fMRI data to overcome many variations in the hemodynamic

response in the brain. The B1 matrix (Eq. (3.21) or (4.1)) is the convolution of the

experimental protocol and the two-gamma function. B1 is a column vector, and β1 is

a scalar in this case. Similarly to the experiment on the synthetic data sets, we used

the maximum log likelihood as the activation statistic zi. In the trinary activation

case, and we used the maximum log likelihood, augmented with the sign of β1, as the

activation statistic.

Fig. 5-6a and 5-7a show the reconstructed activation maps using GLM without any

spatial smoothing on the full-length fMRI signals (all 9 epochs). The ground truth for

this scan is unknown, but we can use these maps as visual references when evaluating

the performance of the detectors on the time course of reduced length. Fig. 5-6b-d and

5-7b-d are the activation maps obtained by applying the GLM detector, the Gaussian-

smoothing-based detector, and the MRF-based detector to the first 5 epochs of the

time course. Fig. 5-6e-g and 5-7e-g are the extended anatomically guided versions of

Fig. 5-6b-d and 5-7b-d, respectively.

The activation maps that are constructed by applying the GLM detector to the

first five epochs of the time course (Fig. 5-6b and 5-7b) are more fragmented due to

loss in SNR from reducing the length of the signal. Although Gaussian smoothing

removes most of the single voxel activation islands, its activation map (Fig. 5-6c and

5-7c) is an overestimate compared with Fig. 5-6a and 5-7a. Injecting anatomical

information slightly reduces the overestimate in the Gaussian smoothing. In the

trinary case, the Gaussian-smoothing-based detector (with and without anatomical

information) underestimates negative activation due to averaging signals of different

activation types and a relatively small amount of weak negative activation areas.

MRF regularization (Fig. 5-6e-f) yields reasonable reconstruction results that are

close to the activation map estimated from the full-length signal, but do not look
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overly smoothed. This highlights the potential benefit of using the Markov priors in

fMRI detection. Similarly to what we have observed in the experiments using the

synthetic data sets, the MRF-based detectors (Fig. 5-7e-f) show a better detection

accuracy in detecting the negative activation. The MRF model also benefits from

using anatomical information to remove spurious activations.

5.3 Summary

In Chapter 4, our experiments demonstrated that spatial regularization significantly

reduces fragmentation of the activation maps. The insight of this chapter is that we

can use anatomical information to bias the fMRI detectors. The Gaussian-smoothing-

based detector can be straightforwardly augmented with the anatomical prior by

rescaling the coefficients of the smoothing kernel. Moreover, we derived an algorithm

for the anatomically guided MRF-based detector. We used synthetic data to vali-

date the detectors’ performance by presenting the ROC analysis and the confusion

matrices analysis. We also evaluated them by studying their ability to recover ac-

tivation from significantly shorter time courses using real fMRI data. Both binary

and trinary activation configurations were employed in the evaluations. The anatom-

ically guided detectors enable us to shorten fMRI scan length by half while retaining

detection power comparable with full-length fMRI scans. We found that Gaussian-

smoothing-based detectors (with and without anatomical structure) are not suitable

for analysis of trinary activation states. Among all the anatomically guided detectors,

the anatomically guided MRF-detector showed the best performance.
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(a) Ground Truth

(b) No Smoothing (c) Gaussian (d) MRF

(e) No Smoothing + Ana (f) Gaussian + Ana (g) MRF + Ana

SNR = -9dB

(h) No Smoothing (i) Gaussian (j) MRF

(k) No Smoothing + Ana (l) Gaussian + Ana (m) MRF + Ana

SNR = -6dB

Figure 5-4: One slice from estimated activation maps for the same ground truth at
0.05% false positive rate. True detections are shown in yellow; false positive voxels
are shown in red. 80



(a) Ground Truth

(b) No Smoothing (c) Gaussian (d) MRF

(e) No Smoothing + Ana (f) Gaussian + Ana (g) MRF + Ana

SNR = -9 dB

(h) No Smoothing (i) Gaussian (j) MRF

(k) No Smoothing + Ana (l) Gaussian + Ana (m) MRF + Ana

SNR = -6 dB

Figure 5-5: One slice from estimated activation maps for the same ground truth at
0.05% false positive rate. True positive and negative detections are shown in yellow
and blue; false detections are shown in red.
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(a) No smoothing (long)

(b) No Smoothing (c) Gaussian (d) MRF

(e) No Smoothing + Ana (f) Gaussian + Ana (g) MRF + Ana

Figure 5-6: Real fMRI study. One slice in the estimated activation map. (a) No
spatial smoothing, using the entire time course. (b)-(f) Estimation based on the first
five epochs of the time course using different spatial smoothing methods.
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(a) No smoothing (long)

(b) No Smoothing (c) Gaussian (d) MRF

(e) No Smoothing + Ana (f) Gaussian + Ana (g) MRF + Ana

Figure 5-7: Real fMRI study. One slice in the estimated activation map. (a) No
spatial smoothing, using the entire time course. (b)-(f) Estimation based on the first
five epochs of the time course using different spatial smoothing methods. Positive and
negative detections are shown in yellow and blue, respectively.
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Chapter 6

Discussion and Conclusions

This thesis discusses fundamental fMRI analysis techniques, compares different spatial

regularization methods, and introduces a novel approach for spatial regularization:

incorporating anatomical structure into the regularization process.

In Chapter 3, we discussed the implicit assumptions of the selected voxel-by-voxel

detectors: T-test, GLM, and the MI detector. We performed empirical evaluations

to verify the trade-offs between the statistical power gained by stronger modelling

assumptions and the ability to detect activations that violate these assumptions.

In general, incorporating a specific form of HRF into GLM improves its detection

power, but this approach misses the areas whose responses do not fit the pre-specified

shape of the response function. Using the FIR functions or the Fourier functions to

model HRF can reduce this effect. With special assumptions, we also demonstrated

that T-test can be derived from the GLM framework. On the other hand, the non-

parametric MI-based detector is useful in exploratory studies where the nature of

the dependencies between the protocol and the activation is either not known or is

suspected to be nonlinear.

Our empirical study of the voxel-by-voxel detectors points to a promising direction

in an fMRI research area: incorporating spatial regularization into the voxel-by-voxel

detectors. As described in Chapter 4, spatial regularization takes advantage of the

spatial coherency of activation. We compared the conventional Gaussian filter with

the more sophisticated MRF spatial model. We demonstrated that, in the synthetic
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and real data sets, with both binary and trinary activation configurations, GLM-

based activation can be further strengthened by incorporating the MRF model. To

efficiently solve the MRF problem, we explored the Mean Field approximation, a

variation inference algorithm. It provides reasonably accurate approximations to the

exact solution in the binary configuration setting, while taking substantially less time

to evaluate.

We further refined the spatial regularization process by incorporating anatomical

information in Chapter 5. It is straightforward to incorporate anatomical information

into the Gaussian filter and the MRF prior. We noticed that the Gaussian-smoothing-

based detectors (with and without anatomical information) are not suitable for anal-

ysis of fMRI data if we are interested in both positively active and negatively active

regions. The anatomically guided MRF-based detector only slightly increases the

computation time, while offering significant improvement in detection accuracy.

One of the problems that should be investigated in the future is the partial vo-

luming effects. Images that provide anatomical information have higher resolutions

than fMRI scans. In this thesis, we downsampled anatomical scans to match the res-

olutions of the functional scans. Future studies can improve on our method by using

high-resolution anatomical scans to better classify the activation in the functional

voxels that are on the boundary of the gray matter, leading to a “super-resolution”

detector. Another problem is the registration issue between functional and anatomi-

cal images, which causes the anatomically guided MRF-based detector not to perform

as well in the real data sets as it does in the synthetic data sets.

We validated the detectors by performing ROC analysis or confusion matrix anal-

ysis using phantom data, and we also validated them by studying their ability to

recover activation from significantly shorter time courses using real data. In the high

noise settings, the Gaussian-smoothing-based detector outperformed other detectors;

as the SNR in the images increased, the Markov priors offered a substantial improve-

ment in detection accuracy. Using MRF smoothing prior enabled us to shorten fMRI

scan length by half while retaining detection power comparable with full-length fMRI

scans. We expect a similar effect to occur with respect to spatial resolution when
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we extend the method to utilize the anatomical information at the original scan res-

olution. As the quality of the scanning equipment improves, sophisticated spatial

models, such as MRFs, will become even more important in recovering the details of

activation regions.

We hope that researchers in the field will find our empirical results helpful in

understanding the fundamental differences among the detectors and in selecting ap-

propriate detection techniques for future studies. We also hope that this research will

lead to more sophisticated spatial models for fMRI activation detection.
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Appendix A

Detailed Derivations

A.1 The Independence of the Sample Mean and

Sample Variance

Theorem A.1: Suppose that the random variables, X1, ..., XN are i.i.d., and each

has a normal distribution with mean µ and variance σ2. Then, its sample mean,

µ̂ = 1
N

∑N
i=1 Xi, and sample variance, σ̂2 = 1

N−1

∑N
i=1(Xi − µ̂)2, are independent

random variables. Furthermore, µ̂ has a normal distribution with mean µ and variance

σ2/N , and (N − 1) σ̂2

σ2 has a χ2-distribution with N − 1 degrees of freedom.

Proof: We standardize Xi by letting X ′
i = Xi−µ

σ
for i = 1, 2, ..., N . The random

variables, X ′
1, ..., X

′
N are i.i.d., and each has a standard normal distribution, N (0, 1).

X ′
i’s sample mean and sample variance are µ̂′ = 1

σ
(µ̂− µ) and σ̂′

2
= 1

N−1

∑N
i=1(X

′
i −

µ̂′)2, respectively.

To prove Theorem A.1, we first prove µ̂′ and σ̂′
2

are independent variables. Then,

we will prove that µ̂′ has a zero-mean normal distribution and that σ̂′
2

has a χ2-

distribution with N − 1 degrees of freedom.

It is straightforward to see that

µ̂ =
1

N

N∑
i=1

Xi ∼ N (µ, σ2/N). (A.1)
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As a result,

µ̂′ =
1

N

N∑
i=1

X ′
i =

1

σ
(µ̂− µ) ∼ N (0, 1/N). (A.2)

We introduce an N×N orthonormal matrix, A, with the first row, ~u = [ 1√
N

, · · · , 1√
N

].

We can obtain the rest of the rows by the Gram-Schmidt process while maintaining

A’s orthogonality. Since A is orthonormal, AT A = I and det(A) = 1.

We define ~X ′ = [X ′
1, ..., X

′
N ] and ~Y = [Y1, ..., YN ]. Then, we let

~Y = A ~X ′. (A.3)

Multiplication of ~X ′ by an orthonormal matrix, A, corresponds to a rotation of ~X ′ in

an N-dimensional space possibly followed by changing the signs of some coordinates.

Since the components in ~X ′ are i.i.d. standard normal distributed, the resulting

random variables Y1, ..., Yn are also i.i.d. standard normal distributed. We would like

to show that
∑N

i=1 X ′2
i =

∑N
i=1 Y 2

i .

N∑
i=1

X ′2
i = ~X ′T ~X ′ = ~X ′T ( ~AT ~A) ~X ′ = ~Y T ~Y =

n∑
i=1

Y 2
i (A.4)

Y1, the first element in ~Y , can be expressed as the sample mean of X ′:

Y1 = ~u ~X ′ =
n∑

i=1

1√
N

X ′
i =
√

N µ̂′. (A.5)

Combining Eq. (A.4) and Eq. (A.5), we get

n∑
i=2

Y 2
i =

N∑
i=1

Y 2
i − Y 2

1 =
N∑

i=1

X ′2
i −Nµ̂′

2
=

N∑
i=1

(X ′
i − µ̂′)2. (A.6)

Since random variables Y1, ..., YN are independent, the two random variables, Y1 and
∑N

i=2 Y 2
i , are independent which leads to the independent relationship between µ̂′ and

∑N
i=1(X

′
i− µ̂′)2 = (N −1)σ̂′

2
. That means µ̂′ and σ̂′

2
are independent. Moreover, the

N − 1 random variables Y2, ..., YN are i.i.d., and each of them has a standard normal
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distribution. Hence,
∑N

i=2 Y 2
i has a χ2-distribution with N − 1 degrees of freedom.

Therefore, (N −1)σ̂′
2

=
∑N

i=1(X
′
i− µ̂′)2 also has a χ2-distribution with N −1 degrees

of freedom.

Next, we are going to show the independent relationship between µ̂ and σ̂2 based

on the independency proven above. From Eq. (A.2), we get µ̂ = µ + σµ̂′. On the

other hand,

σ̂′
2

=
1

N − 1

N∑
i=1

(X ′
i − µ̂′)2 (A.7)

=
1

N − 1

N∑
i=1

(X ′2
i − µ̂′2) (A.8)

=
1

(N − 1)σ2

N∑
i=1

((Xi − µ)2 − (µ̂− µ)2) (A.9)

=
1

(N − 1)σ2

N∑
i=1

(X2
i − 2Nµµ̂ + 2Nµµ̂− µ̂2) (A.10)

=
1

(N − 1)σ2

N∑
i=1

(X2
i − µ̂2) (A.11)

=
σ̂2

σ2
. (A.12)

Hence, σ̂2 can be expressed as σ̂2 = σ2σ̂′
2
. (N − 1)σ̂′

2 ∼ χ2
N−1 leads to (N − 1) σ̂2

σ2 ∼
χ2

N−1. Since µ̂′ and σ̂′
2
are independent, random variables, µ̂ = µ+σµ̂′ and σ̂2 = σ2σ̂′

2
,

are independent as well.

An interesting notice to the above proof is that even though the definition of the

sample variance is a function of the sample mean, they are independent when the

random variables have i.i.d. normal distributions.

A.2 T-Distribution

The T-distribution is also known as the Student’s distribution. This section proves

that the ratio of sample mean and sample variance of an i.i.d. normal distribution

follows a T-distribution.
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Definition: Consider two independent random variables W and Z, such that

W has a χ2 distribution with n degrees of freedom and Z has a standard normal

distribution. Suppose that a random variable T is defined by the following equation:

T =
Z√
W/n

. (A.13)

Then, the distribution of T is called that the T-distribution with n degrees of freedom.

In general, if a random variable T has a T-distribution with n degrees of freedom

(n > 1), then it can be shown that E(|T |k) <∞ for k < n and that E(|T |k) =∞ for

k ≥ n. In other words, the first n− 1 moments of T exist, but no moments of higher

order exist. Therefore, the moment generating function for a T-distribution does not

exist.

In the Appendix A.1, we introduced random samples, X1, ..., XN , from a normal

distribution with mean µ and variance σ2. Again, µ̂ denotes the sample mean, µ̂ =

1
N

∑N
i=1 Xi; σ2 denotes the sample variance, σ̂2 = 1

N−1

∑N
i=1(Xi − µ̂).

If we define Z = µ̂−µ√
σ2/N

and W = (N − 1)σ̂2/σ2, it follows the proof from the

previous section that W and Z are independent, W has a χ2-distribution with N − 1

degrees of freedom, and Z has standard normal distribution. We let

T =
Z√

W
N−1

=
µ̂− µ√
σ̂2/N

. (A.14)

According to the definition, T has a T-distribution with N − 1 degrees of freedom.

An important aspect of Eq. (A.14) is that neither the value T nor the distribution of

T depends on σ2.

We can get the following conclusions. Let X1, ..., XN be random samples from

a normal distribution having mean µ and variance σ2. Let µ̂ = 1
N

∑N
i=1 Xi and

σ̂2 = 1
N−1

∑N
i=1(Xi − µ̂). Then, the distribution of random variable, µ̂−µ√

σ̂2/N
, is a

T-distribution with N − 1 degrees of freedom.
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A.3 Confidence Intervals

Confidence intervals provide an alternative to using an estimator θ̂ when we wish to

estimate an unknown parameter θ. We can find an interval (a, b) that we think has

high probability of containing θ. The length of such an interval gives us an idea of

how closely we can estimate θ.

If we know θ̂ has a distribution pθ̂(θ) and we select a confidence level, γ, the

confidence interval can be formulated as the following:

P (a < θ̂ < b) =

∫ b

a

pθ̂(θ)dθ = γ. (A.15)

For a given γ, we can find a and b from θ̂’s distribution table. Interval (a, b) is called

the confidence interval for θ̂ with confidence coefficient γ. It is common to make the

statement that the unknown value θ̂ lies in the interval (a, b) with confidence γ.

Example: F-distribution

As described in Eq. (3.28),

Fi =
(C~̂β1i

)T (Cov(C~̂β1i
))−1(C~̂β1i

)

Nβ1
.

Under H0, Fi is F-distributed, Fi|H0 ∼ FNβ1
,NT−Nβ

. NT is the number of samples in

a time course. Nβ and Nβ1 are the number of regressors in ~βi and ~β1i
, respectively.

A certain confidence coefficient γ = γ∗ is selected; however, the choice is entirely

arbitrary. We can obtain (a, b) from the F-distribution table. In practice, a is fixed

at zero for F-distribution. If Fi ∈ (b,∞), we reject the null hypothesis with 100γ∗%

confidence.

A.4 Paired T-test is a special case of GLM

In this section, we are going to show that Paired T-test (T-test) is a special case

of GLM. That means, under certain assumptions, we can derive the T-test for-

mula from the GLM framework. A subject undergoes fMRI while alternating be-

tween task and rest periods. In most block design experiments, the protocols are in
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[{rest} {task} {rest} ... {rest}] format. The following derivation is independent of

the setting of an experimental protocol.

Let {yt : t ∈ {rest}} and {yt : t ∈ {task}}. Since both T-test and GLM are voxel-

by-voxel detectors, and we are interested in their relationship in detecting the signal

of a single voxel, we drop the script, i, in this section to avoid complicate notation.

We denote ~yrest and ~ytask as the samples taken under the rest and task conditions,

respectively. To simplify the later derivation, we first sort the signal samples based

on their corresponding experimental conditions. ~y denotes the sorted signal samples,

~y = [~ytask ~yrest]. To show that T-test is a special case of GLM, we need the following

assumptions:

1. We consider the brain as an LTI system, whose impulse response under either

task or rest condition is an impulse function. The magnitude of these two

impulse functions may be different.

2. Noise is white under either task or rest condition.

We set two hypotheses while deriving GLM through the maximum likelihood

ratio approach in Chapter. We rewrite these hypotheses according to the above

assumptions as the following:

H0: ~y = B2β2 + ~ε (or β1 = 0)

H1: ~y = B1β1 + B2β2 + ~ε (or β1 6= 0)

where, ~ε ∼ N (~0, σ2I). According to the first assumption, B1 = [1 · · · 1 0 · · · 0]T ,

B2 = [0 · · · 0 1 · · · 1]T , and β1 and β2 are scalars. There are Ntask 1’s following by

Nrest 0’s in B1 and Nrest 1’s following by Ntask 0’s in B2, where Ntask and Nrest are

the number of samples taken in the task and rest conditions, respectively.

Let η1 = β1+β2

2
and η2 = β1−β2

2
. Combining η1 and η2 into a vector, ~η = [η1 η2], we

can express the relation between ~η and ~β as

~η = 1
2


1 1

1 −1


 ~β and ~β =


1 1

1 −1


 ~η.
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We can also rewrite the design matrix as the following:

B′ = B


1 1

1 −1


 = [B1 B2]


1 1

1 −1


 =


1 · · · 1 1 · · · 1

1 · · · 1 −1 · · · −1




T

(A.16)

and

B′
2 =

(
1 · · · 1

)T

(A.17)

where, the first column of B′ are NT 1’s and its second column is Ntask 1’s followed

by Nrest 0’s. B′
2 is a vector of NT 1’s. We can rewrite the two hypotheses as the

following:

H0: ~y = B′
2η1 + ~ε (or η2 = 0)

H1: ~y = B′
1η2 + B′

2η1 + ~ε (or η2 6= 0)

where, ~ε ∼ N (~0, σ2I). From Eq. (3.34), we get

F =
~yT (B′(B′T B′)−1B′T −B′

2(B
′T
2 B′

2)
−1B′T

2 )~y/(2− 1)

~yT (I −B′(B′T B′)−1B′T )~y/(NT − 2)
. (A.18)

Under H0, F ∼ F1,NT−2. We can further substitute and expand F to show that F

equals the squared T-test formula.

F =
~yT (B′(B′T B′)−1B′T −B′

2(B
′T
2 B′

2)
−1B′T

2 )~y/(2− 1)

~yT (I −B′(B′T B′)−1B′T )~y/(NT − 2)

=
y2

t Ntask + y2
restNrest −NT y2

(~yT
task~ytask − y2

taskNtask + ~yT
rest~yrest − y2

restNrest)/(NT − 2)

=
y2

taskNtask + y2
restNrest − (1/NT )(Ntaskytask + Nrestyrest)

2

(||ytask − ytask
~1||2 + ||yrest − yrest

~1||2)/(NT − 2)

=
y2

taskNtask(1−Ntask/NT ) + y2
restNrest(1−Nrest/NT )− 2NtaskNrestytaskyrest/NT

S2

=
(ytask − yrest)

2

S2(1/Ntask + 1/Nrest)
(A.19)

where, ytask and yrestare the sample means taken in the task and rest condition; y

is the sample mean taken in the entire experiment, including task and rest periods.

Comparing Eq. (A.19) with Eq. (3.2), we get F = T 2
i . It is possible to compute Ti
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from F if we include the calculation of sign(ytask − yrest)
1. To summarize, T-test can

be derived as a special case of GLM.

1sign(x) = 1 if x ≥ 0; sign(x) = −1 if x < 0.
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