

Martin Reuter

Laplace-Spectra for Shape Recognition Shape Analysis of Medical Data

Dr. Martin Reuter

Department of Mechanical Engineering Massachusetts Institute of Technology

Martin Reuter

Comparing and Identifying Shape

Martin Reuter

Question: What is "Shape" and what is "similar"?

- Is shape just the outer shell of an object (B-Rep)?
- What if the object contains cavities?

- Shape should be invariant under translation and rotation (congruence)!
- How about scaling invariance (sometimes)?

Comparing and Identifying Shape

Martin Reuter

 \uparrow

Comparing and Identifying Shape

Martin Reuter

Homotopy invariance?

http://en.wikipedia.org/wiki/Topology

Different Representations and Parameters

Martin Reuter

Not only do spacial parameters differ, but:

 surfaces and solids can be given in many *different* representations (e.g. parametrized surfaces, 3d polygonal models, implicitly defined surfaces ...).

Goal

To find a method for shape identification and comparison that is independent of the given representation of the object.

2.) Comparison of the signatures, distance computation to measure similarity

Disadvantages of current methods

Martin Reuter

Disadvantages of current methods

- Simplification too strong (too many objects with identical signatures)
- Missing invariance, complex pre-processing
- Complicated comparison of signatures (e.g. graph based signatures)
- Only special representations (Voxels, Triangulations)
- Depending on supplementary information / context

New Signature: Shape-DNA

Martin Reuter

- Invariant under translation, rotation and (where required) scaling
- No registration / normalization necessary
- Surfaces & solids (even with cavities), arbitrary genus
- Independent of representation
- Isometry invariant
- Simple distance computation of the signatures
- No user interaction

Sound of a drum

Martin Reuter

Sound is influenced by the material and the shape

 A surface can be understood as an oscillating membrane (fixed at the boundary)

We use the *n*-dim vector of the smallest *n* eigenvalues (λ₁,..., λ_n) of the Laplace operator Δ as the signature:

Definition of the Laplace-Spectrum

Martin Reuter

For a real-valued function *f* on a Riemannian manifold *M*

Definition

Helmholtz Equation (Laplacian Eigenvalue Problem):

$$\Delta f = -\lambda f$$

Solution: Eigenfunctions *f_i* with corresponding family of eigenvalues (**Spectrum**):

$$\mathbf{0} \leq \lambda_{\mathbf{1}} \leq \lambda_{\mathbf{2}} \leq \dots \uparrow +\infty$$

Here Laplace-Beltrami Operator: $\Delta f := div(grad f)$

Laplace-Spectrum

Martin Reuter

Laplace-Beltrami Spectrum

 Above definition holds for 2D-surfaces as well as for 3D-solids (independent of representation)

Dirichlet Boundary Condition

Function is fixed $f \equiv 0$ on the boundary of M

Neumann Boundary Condition

Derivative in normal direction is fixed $\frac{\partial f}{\partial n} \equiv 0$ on the boundary of *M*

Computation of the Spectrum

Martin Reuter

1. Variational formulation of the Helmholtz Equation:

$$\iint \varphi \Delta f \, d\sigma = -\lambda \iint \varphi f \, d\sigma$$

2. Discretization with the finite element method (up to cubic form functions F_m for triangles and voxels and quadratic for tetrahedra)

$$f=\sum_{m=1}^n u_m F_m$$

3. Solution of the resulting general eigenvalue problem $Au = \lambda Bu$ (sparse and sym.: Lanczos from ARPACK).

- Spectrum is independent of object's spacial position.
- If *M* is scaled by *s*, signature is scaled by s^{-2} .

Continuous Dependency on Deformation

GWW Drums

Martin Reuter

The spectrum does not completely determine the isometry class. Isospectral but not isometric (Gordon, Webb, Wolpert - 1992) drums:

rare

 concave in 2D

only pairs

Unwanted Holes - Neumann Condition

- Dirichlet spectrum strongly depends on boundary
- Unwanted holes (e.g. missing triangles) have large influence
- Change in topology changes spectrum discontinuously

Unwanted Holes - Neumann Condition

Martin Reuter

Neumann spectrum does not change as drastically:

	Sq Dir	SqH Dir	Sq Neu	SqH Neu
λ_1	19.739	24.730	00.000	00.000
λ_2	49.348	49.530	09.870	09.831
λ_3	49.348	61.051	09.870	09.841
λ_4	78.957	87.482	19.739	19.710
λ_5	98.696	99.390	39.478	39.336

Sq: Square, SqH: Square with hole,

Dir: Dirichlet, Neu: Neumann boundary condition

Early Sensibility - Neumann Condition

0

Early Sensibility - Neumann Condition

Early Sensibility - Neumann Condition

Neumann case

Geometric and Topological Information

Martin Reuter

Further geometric and topological information is contained in the Spectrum (Heat-Trace Expansion):

- Riemannian volume
- Riemannian volume of the boundary
- Euler characteristic for closed 2D manifolds
- Number of holes for planar domains

It is possible to extract this data numerically from the beginning sequence of the spectrum (Reuter 2006 - first 500 eigenvalues).

Weyl's Formular

Normalization

Martin Reuter

Two classes of spectra of spheres and ellipsoids with noise blue : noisy spheres , red : noisy ellipsoids

unnormalized

area normalized

- Shape analysis results depend on chosen normalization
- Unnormalized: Mainly differences in area/volume

Normalization

Zoom-ins on the two spectra classes:

Area/volume normalization shows if additional shape differences exist.

Influence of Discretization

Eigenmode 19 for Dirichlet boundary conditions for different mesh refinements. Thin structures may be overlooked for coarse discretizations (left).

Influence of Noise

- Essential to have identical noise levels (increased noise → increased surface area)
- Violating this assumption may yield detection of noise level differences instead of shape differences (if shapes are similar or noise is huge).

Normalization and Distance Computation

Martin Reuter

- 1. Computation of the first *n* eigenvalues (Shape-DNA)
- 2. Normalization (optional)
 - a) Surface area normalized
 - b) Volume normalized
- 3. Distance computation of the Shape-DNA (n-dim vector)
 - a) Euclidean distance -
 - b) Another p-norm
 - c) Hausdorff distance
 - d) Correlation ...

l'liiT

Martin Reuter

Identification in DB, Copyright protection, Quality assessment

Different representations \Rightarrow

- challenging to identify a protected object
- challenging to retrieve a specific object from DB

III Similarity Detection

Martin Reuter

Objects of comparison:

Back B1

Back B1'

Back B2

Hood H1

Hood H2

MDS Plot 2D - surface patches

MDS Plot 3D - surface patches

MDS Plot 2D - Medial Bar Deformation

III Triangulation of deformed spheres

III Triangulation of deformed spheres

MDS Plot 2D - deformed spheres

Global Shape Analysis of Medical Data

Martin Reuter

Global Shape Analysis on caudate nucleus Populations (Brain MRI acquired on a 1.5-T General Electric MR scanner):

SPD

32 female subjects diagnosed with Schizotypal Personality Disorder (SPD)

NC

29 female normal control (NC) subjects

(Harvard Medical - Psychiatry NeuroImaging Laboratory)

Rendering of the Caudate Nucleus

Martin Reuter

Coronal view.

Involved in memory function, emotion processing, and learning.

The caudate nucleus was delineated manually by an expert.

III Statistical Analysis

Martin Reuter

Permutation tests to compare group features (200,000 permutations):

- Two-sided, nonparametric scalar permutation test for volume and surface area
- 2 Two-sided, nonparametric multivariate permutation test based on maximum T-statistic for shapeDNA (normalized eigenvalues)
- Individual permutation test on shapeDNA components to analyze individual significance

III Statistical Analysis

Martin Reuter

Statistically significant volume and surface area reductions of SPD vs. normal control population

Smoothed results prefix 's', unsmoothed results prefix 'us'.

Black horizontal line indicates the 5% significance level.

 \rightarrow Smoothing leads to information loss.

IIII Statistical Analysis 3D

Martin Reuter

For 3D analysis we worked with

- both Dirichlet and Neumann spectra
- on original voxel domain and dual voxel graph (to introduce more inner nodes).

Pixel domain (left) and its dual (right)

Statistical Analysis 3D - Dirichlet

- Left (regular): No statistical significance due to too low resolution
- Right (dual): Statistical significance when high eigenvalues are involved.

Conclusion

Martin Reuter

- Volumetric spectra are applicable for 3D shape analysis
- Neumann spectrum has advantages especially for low resolutions
- Higher Eigenvalues yield significant results, indicating differences in smaller features
- Compare shape based on feature size (multiresolution)

