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Abstract

In this paper, we describe a first step towards a collaborative extension of the well-known 3D-Slicer; this platform is nowadays
used as a standalone tool for both surgical planning and medical intervention. We show how this tool can be easily modified to make
it collaborative so that it may constitute an integrated environment for expertise exchange as well as a useful tool for academic

purposes.
© 2005 Elsevier Inc. All rights reserved.

Keywords: CSCW; Telemedicine; Slicer

1. Introduction

Computer supported collaborative work (CSCW)
studies how people collaborate with each other and
the role that technology can play to help this collabora-
tion succeed. Since its origin in the 1980s, computer net-
works have evolved to the point that, nowadays, CSCW
applications can be developed in many more research
areas than ever before. These advances in communica-
tion technologies have also allowed the implementation
of more complex CSCW tools, so today one can find a
great amount of applications based on this idea. In par-
ticular, medical informatics researchers can benefit from
research findings and methodologies from the field of
CSCW, in order to improve the abilities to build and de-
ploy successful medical information systems based on
collaboration [1].
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The fact is, however, that although a wide range of
medical CSCW applications can be found, most of
them have been developed for very particular purposes
and, as a consequence, they have been built from
scratch. On the other hand, there are applications
available for medical imaging and analysis that have
been adequately tested by physicians and are routinely
used in hospitals for both clinical and research pur-
poses. Nevertheless, as of today, and to the best of
our knowledge, these applications lack support for
collaborative work.

This paper will show how one of these mentioned
applications, the 3D-Slicer [2], can be extended to be-
come collaborative so as to put together the advantages
of a tool that is daily used by physicians and those that
CSCW technologies can provide. Our extended 3D-Slic-
er, which we call “Group-Slicer,” is still at an early stage
of development but already provides collaboration facil-
ities and a reasonable real-time operation to prospective
users, as well as all the functionality that 3D-Slicer has.
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The paper is structured as follows: first, in Section 2,
we describe the medical CSCW applications that we are
aware of; as previously indicated, they seem to be devel-
oped to satisfy an identified need. On the other hand,
clinically tested widespread image analysis applications
have not been reported as having a collaborative mod-
ule; this is what motivates us to build Group-Slicer,
the technical details of which are discussed in Section
3. Section 4 is dedicated to results; first a sample execu-
tion is described; then, a quantitative analysis of traffic
parameters using different protocols both in a local
and a wide area network is carried out. This analysis
draws direct conclusions about the real-time capability
of the platform described. Section 5 concludes the paper.

2. An overview of existing collaborative medical platforms

In the recent past, several collaborative computer
applications in the medical field have been reported;
they all aim at creating a shared space in which physi-
cians can interact as naturally as possible, with the ulti-
mate purpose of reaching the best decision in every
particular case. The first of these tools that we are aware
of was reported in 1994, in the so-called Bermed Project
[3] developed at the German Heart Institute at Berlin.
This project describes an ATM-based collaborative
environment for distributed patient data exchange. It
also includes an audio and video channel, telepointers,
and security issues.

Other applications are [4-6]. In [4], the authors de-
scribe an experimental implementation of a CSCW sys-
tem built upon a PC/Windows platform, which is an
example of a low-cost system suitable for adoption in
a wide range of medical teleconsultation applications.
The medical collaboration tool developed, “Teleworks,”
allows cooperative work on patient cases based on pa-
tient data folders consisting of selected diagnostic
images, annotation text or patient history. The applica-
tion takes care of transferring images in an encrypted
form, to ensure confidentiality.

A telemedicine system is reported in [5]; this system is
built on an asynchronous transfer mode (ATM) multi-
media hardware/software platform comprising the fol-
lowing set of telemedicine services: synchronous
cooperative work, high-quality video conference, multi-
media mail, medical image digitization, processing, stor-
ing and printing, and local and remote transparent
database access.

A collaborative extension to a platform dedicated to
signal visualization and processing is presented in [6]. It
allows geographically distant users to work in real time
on electroencephalographic—EEG—signals. This appli-
cation includes interesting functionalities, but is devoted
only to (1D) signal analysis. It does not provide support
for image visualization.

The results of the collaboration sustained between
medical and technical teams in the development of a
telemedicine platform for burn patients are presented
in [7], which constitute an improvement in healthcare
services for burn patients in emergency situations. With
this platform, an in-the-field medical team can collabo-
rate with an expert in burns, using information in per-
sonal data files, examination, JPEG compressed
images, treatments, and messages. The platform is writ-
ten in Visual Basic and runs only on Microsoft Win-
dows. Regarding communications, the authors have
developed an ad hoc protocol which allows the applica-
tion to transfer images over a network. It is, however,
specifically designed for burn patients.

Another teleconsultation system is reported in [8],
which was specifically designed with real-time bidirec-
tional remote control technology to meet critical tele-
consultation application requirements with high-
resolution and large volume medical images in a limited
bandwidth network environment. With this type of con-
sultation, both parties will be able to study the same im-
age, manipulating synchronously on both local and
remote sites including remote cursor, window/level,
zoom, cine made, overlay, and measurement. To inte-
grate the remote control communication with the medi-
cal image processing component, a medical imaging
software has been created from the ground up, with
communication facilities built-in. Although this method
can result in a good performance since the communica-
tion protocol and the software architecture can be opti-
mized for each other, this is a more complex option than
adding communication functionality to existing medical
imaging software.

There have also been developments of telemedicine
systems based on the multiagent paradigm. Since tele-
medicine is grounded on communication and resource
sharing, agents are suitable for its analysis and implemen-
tation. The most important one is perhaps the GUARD-
IAN system [9], where support is provided for
collaboration among specialists to share data and knowl-
edge. Another prototypical telemedicine application
based upon the multiagent paradigm is reported in [10].

Also, telemedicine systems compatible with existing
mobile telecommunication networks have been reported
[11]. The system uses mobile telephones to transmit
medical signals from sensors to a remote computer,
where a doctor can remotely monitor a patient who is
free to move around for sports medicine and for emer-
gency situations.

An interesting (to our purposes) collaborative envi-
ronment is reported in [12]; this platform is specialized
in echocardiographic images. The author points out
the need of a 3D model of the heart in order to be used
as a common artefact, i.e., an object that allows all the
physicians on-line to find their way in the set of 2D
ultrasound slices; hence, the common artefact is used
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here to fill the gap between the raw original echographic
data and the heart in 3D.

A collaborative environment which deals with 3D
data for segmentation, model creation, and visualization
is reported in [13]. It is a graphical tool for collaborative
image analysis and visualization of models created out
of slices of volume data, and it allows a number of users
to simultaneously and coordinately analyze medical
images, create graphical models, navigate through them,
and superimpose raw data onto the models. The appli-
cation is intended to help physicians interpret data in
the case that ambiguous situations may appear, by
means of collaboration with other colleagues.

As of today, the need of 3D models in medical imag-
ing is out of discussion; they not only serve to create a
common ground among physicians, but they do provide
an enormous amount of information both for diagnosis,
planning, and intervention. Efforts in creating 3D
graphical tools for advanced visualization and data
manipulation which behave reliably even inside the
operating room are numerous. Some of them are 3D-
Slicer [2] from SPL [14], ANALYZE [15], MEDx [16],
and MNI [17], just to mention a few. These applications
incorporate powerful tools for segmentation, registra-
tion, and quantitative data analysis.

The majority of the applications described above have
been created from the ground up and most of them are
made for specific purposes and may not handle 3D mod-
els. Even though some attempts have been made to create
collaborative environments that can deal with 3D data for
segmentation, model creation, and visualization [13], it is
clear that creating new tools from scratch to make them
collaborative constitutes a non-worthtaking effort, since
clinically tested tools are out there (some of them men-
tioned in the previous paragraph) and they could be ex-
tended—with a moderated programming effort—to
work collaboratively. This is the approach we have cho-
sen in this paper; specifically, we have taken the first step
towards a collaborative extension of 3D-Slicer.

3D-Slicer is an open-source application for medical
data processing. Its basic capabilities include visualiza-
tion, registration, segmentation, and quantification of
such data [18]. More importantly, 3D-Slicer has been
tested by physicians at Brigham and Women’s Hospital
in real situations, it is routinely used for clinical practice,
and can be considered as a standard de facto on its field.
One of its main uses is to build 3D graphical models off-
line, so that these models are available in the operating
room for the surgery process. In order for these models
to be built, subtle details need to be segmented with hu-
man interaction. Many of these details need a second
opinion based on previous experience. This is when col-
laboration plays a crucial role. In addition, once in the
operating room the 3D model of the patient may need
adaptation to the actual conditions. This is done through
involved registration algorithms [19]; an external opinion

is of great interest to evaluate the accuracy of these regis-
tration algorithms for the particular patient undergoing
surgery. This is another issue concerning collaboration.
Due to the specificity of all these procedures, it is clear that
using the same tools, with no changes, and make them col-
laborative, is of paramount importance.

3. Design issues
3.1. Communications platform

In a previous work called diSNei [13], we developed a
collaborative environment capable of real-time interac-
tion over a network. This environment used a toolkit,
called Groupkit[20], as a platform to support communica-
tions and session management. There were a number of
reasons for which Groupkit was preferable with respect
to other middleware solutions (see [21] for further infor-
mation) but mainly, diSNei was implemented using the
Tel/Tk language, and Groupkit did exactly what was
needed in Tcl/TKk, so it suited the authors’ needs perfectly.

The problem was how to port the work and ideas
from diSNei to 3D-Slicer. The 3D-Slicer is based (as diS-
Nei was) on Vtk [22], a graphical library which provides
a high-level interface to OpenGL and a pipeline mecha-
nism to connect graphical filters. This library is imple-
mented in C++, but provides a Tcl wrapper to
instantiate and execute its methods. The rest of 3D-Slic-
er, user interface and event handling, is Tcl/Tk.

At this point, a straightforward choice was to use
Groupkit for Slicer as well; however, the development
of such a toolkit had stopped in 1999 and recent versions
of 3D-Slicer, in constant growth, no longer worked with
it. Some choices were considered to work around this sit-
uation, and eventually a decision was made in terms of
developing a collaborative platform to support our par-
ticular needs without any other external dependencies.
This platform (see Appendix A) basically does what
Groupkit used to do (serve as a collaborative framework
to Tcl/Tk applications), but focuses more on lower-level
aspects of communications than Groupkit. This, in turn,
allows us for a better control of the collaboration as well
as to provide a high feeling of interactivity while still being
as easy to use as Groupkit was. As a matter of fact, our
collaborative platform provides an application program-
ming interface (API) to Tcl, but has on the other hand
been developed in C++, the same approach as Vtk uses.

3.2. Network architecture

The API' is based on the client/server approach. This
decision was made for the simplicity these systems

' The functionality that will be described here is reflected in the
functions listed in Appendix A.



434 F. Simmross-Wattenberg et al. | Journal of Biomedical Informatics 38 (2005) 431-442

provide over peer to peer networks, as well as for the
need to maintain some data in a centralized repository.
This scheme allows us to have an authority (the server)
decide on potentially conflicting situations. Fig. 1 illus-
trates how virtual and real communications are carried
out with this paradigm.

The server deals with IP addresses of clients, provides
authentication mechanisms (see Section 3.3), and takes
care of delivering messages to their destinations. Clients
do not need to know about other machines but the ser-
ver; they just know the users who have logged into the
session and ask the server to send messages to one or
to all of them.

To assist Tcl applications communicate with the ser-
ver, a client library has been developed; this library pro-
vides interface functions that can be called directly from
Tcl, thus hiding all the details of communications but
the essential: users and messages. Only at session initial-
ization clients must know about the server’s IP address
and port.

Overall, our collaborative platform consists of a ser-
ver process that manages communications among clients
and a client library, which acts as a bridge between the

user application (3D-Slicer in this case) and the server.
As it has been designed independently from Slicer, the
platform can potentially be used to extend any other
Tcl/Tk application to be collaborative.

Pertaining to network connections, all communica-
tions are done at socket level, but are conveniently
encapsulated in C++ classes which provide an object-
oriented sockets layer, as shown in Fig. 2. This way, a
network connection can be thought of as an object
which can be created, used, and destroyed almost the
same way as a C+-+ stream (see Appendix B for an illus-
trative example). With this approach, we can transpar-
ently add optimizations (such as buffering) and error
handling to the socket layer without altering higher lev-
els of the platform; for instance, this layer allows us to
easily switch between connection- and non-connection-
oriented sockets (or even between Internet and Unix
sockets if desired) with minimum changes to the source
code. Indeed, we have working versions of our API
which work over TCP and UDP, or through a SSH
tunnel.

Bandwidth utilization is kept to a minimum,
because large data transmissions are avoided while

Server
Real E
Communication ﬁl‘ ]
/ . \
Client 1 Client 2 Client 3 Client n

BN

Virtual
Communication|

o)
-

Fig. 1. Network architecture of the API. Clients virtually communicate with each other but real communication flows through the server.
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Client Library
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Fig. 2. Block diagram showing the client and server parts of our collaborative platform.
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collaborating. Instead of sending rendered graphics over
the network, which would certainly downgrade interac-
tivity, events and user actions are captured and sent as
messages to other clients which, in turn, react to the re-
ceived events as if they had occurred on the local ma-
chine. See Section 4.2 for further details on this issue.

While initializing the session, a listening port is con-
figured for use by both the server and each client (ports
do not need to coincide) and they are thereafter used for
the whole session. This serves the purpose of improving
security (see Section 3.3) and it also makes it easier to
configure a firewall if that is desired. Simply opening
the configured port(s) for listening and enabling out-
bound connections is sufficient for the platform to
work.

3.3. Authentication and user management

Users start collaborating by logging into a session. A
user name and a password must be provided to the ser-
ver, which is responsible for allowing or rejecting the
user into the session. Usernames and passwords are
stored in a XML file at the server machine, so as to re-
move dependencies with external database systems. Fig.
3 shows an example of users file. Mandatory fields are
just ‘login’ and ‘password’ for each user, but any other
information, such as the user full name (as shown in
the example) can be stored in this file. If this stage is
cleared, the user is assigned an identifier and is consid-
ered as registered in the session. This strategy is com-
monly used by web servers in maintaining private
sessions for their users.

Obviously, this information must be known only
by a unique authority that manages permissions to
enter a collaboration session, hence the need for a
centralized server. A peer to peer collaboration system
would have needed, at least, any sort of shared stor-
age which would have turned into a client/server sys-
tem again.

<?7xml version="1.0" encoding="UTF-8" 7>
<CKusers>
<user>
<login>crix</login>
<passwd>mysecret</passwd>
<name>Cristina Perez</name>
</user>
<user>
<login>noemi</login>
<passwd>anypass</passwd>
<name>Noemi Garcia</name>
</user>
</CKusers>

Fig. 3. A sample users file showing two users, namely, crix and noemi,
along with their respective login names, passwords, and full names.

During the authentication process, clients store the
IP address and the port where the authentication re-
sponse came from. Similarly, the server keeps the origi-
nal IP addresses of the clients as well as their assigned
session identifiers. This is done as a step towards secu-
rity: in any subsequent communication between the
server and any client, the listening side (be it the server
or the client) checks where network packets come
from, and they are discarded if they do not match
the stored IP address and session identifier (and port
in its case). This has the disadvantage that a single ma-
chine can host one user at a time but, due to the nature
of 3D-Slicer’s user interface, it is unlikely that two or
more users are willing to collaborate from the same
machine.

Finally, we have not paid attention to encryption
procedures; if this is an issue, communications may be
tunneled through an encrypted protocol, such as SSH,
which we can handle easily and with a moderately low
increment in network load (see Table 1).

3.4. Implementation details

We wanted the platform to work in an easy way: the
user in charge performs an action, and the results of the
action have echoes both on the local computer and on
the remote computer.” To achieve this, the straightfor-
ward approach is to duplicate the code lines that imple-
ment each specific action in order to implement the
same action on the remote computer. By doing this,
however, there would be a need of severe modifications
in many files in the source tree. Fig. 4 shows the direc-
tory structure of the current public-domain freeware
version of 3D-Slicer; most of the files located within
folders with the Tcl- prefix of 3D-Slicer should be mod-
ified if this approach was taken, and thus, it would be
impossible to extend this work to future revisions of
3D-Slicer because of the need to keep so many files up
to date.

So one of the leading objectives of this collaborative
extension to 3D-Slicer is that the original application
should be minimally changed. Another decision made
in the development of this extension was to keep the
application independent from the added collaborative
facilities. Accordingly, the extension has its own file
structure, which can be plugged into the existing
directory tree of 3D-Slicer, as shown in Fig. 4. The col-
laborative module is located in the new folder named
Tcl-cscw, which contains all the functionality for com-
munication, and the files with the necessary procedures
to make 3D-Slicer functions collaborative.

2 Qur current version deals with only two users. However, this
behavior can be easily changed to allow an arbitrary number of
computers to collaborate.
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Table 1

Measured values for various underlying protocols and networks, for 30 s of continuous movement on the Slicer’s viewer

Total packets Avg. packet size (bytes) Bytes/s Total bytes Round-trip delay (ps)
X50 X95
LAN, UDP 657 87.909 1941.514 57,756 590 753
LAN, TCP 3,455 64.355 7395.798 222,346 725 1136.9
LAN, SSH 2,325 102.135 8015.868 237,464 751 1825.6
WAN, SSH 817 92.840 2570.146 75,850 262,244 265,800
LAN, VNC 18,548 1139.009 747302.014 21,126,340 n/a n/a

Values for VNC are included solely as a reference, as it uses other ways to communicate.

| Modules | | Scripts | Base | | Lib | | Doc | | Servers
| Builds | Wrapping ‘ | Tel | ‘ Cxx ‘ Tests |

| Bin

| Doc

| Tel-main

Tel-shared | |Tcl—modules ‘ |Tcl—cscw | |Gui

Fig. 4. Directory structure of 3D-Slicer. Highlighted boxes are those altered by our application. Note that folder Tc/-cscw is new (i.e., it is not

included in the public-domain version of 3D-Slicer).

Instead of duplicating the code to perform actions on
the remote computer, calls to functions have been writ-
ten just below the code line that implements this same
function locally. This is the main modification of the ori-
ginal code. The procedures for these remote functions
are located inside the folder Tc/-cscw, so the original files
of 3D-Slicer are only slightly modified with a call to an-
other function. In these procedures, it will be checked
whether there is a collaborative work or not, and in
the case there is, all the actions made locally will also
be executed remotely. An example of how the platform
has been carried out is shown in Fig. 5.

As a result of this approach, the way 3D-Slicer works
remains unchanged, and only some extra code has been
added to the original one to integrate the collaborative
module. The main advantage of this decision is the sim-
plicity in the development of the extension and, more-
over, physicians who use 3D-Slicer directly know how
to use Group-Slicer; they do not have to learn how to
use another application because it stays exactly the
same.

With regard to the data used by the physicians, the
application is designed bearing in mind that prospective
collaborators have direct access to the same files; so our
effort has been focused on authentication issues, as well
as on communication issues and functionality.

Collaboration consists of having on screen the same
information as the other collaborators. In order for ac-
tions to be coordinated, only one user (which has been
termed the one in charge above) in the collaboration
has access to the datasets and the GUI, while the others

are only allowed to see the results of the actions of
that user. These results do not have an appreciable
delay, because only some lines of code are sent to the
remote computer and the rendering of the scene is done
in parallel at every machine. So, although real-time
capabilities cannot be guaranteed, we can state that a
sense of real-time operation is provided to the users.’
An additional chat facility has also been included so that
users can communicate by means of text messages at any
time.

Any user has the possibility to ask for permission to
get control of the application; we call it “asking for the
token.” When this happens, the user currently in posses-
sion of the token sees a flashing window on the screen
and can either choose to keep the token or to release
it. If the latter happens, the token goes to the user that
asked for it, who is thereafter in charge.

As for the GUT itself (see Fig. 6), the original 3D-Slic-
er GUI has remained unchanged, and with this collabo-
rative module 3D-Slicer can be used either
collaboratively or individually. To add the collaborative
extension, only one more window is needed. When users
want to work collaboratively, they simply have to log in;
if the log-in process is successful, the buttons needed for
collaborative work will be added in this additional
window.

3 Section 4.2 shows quantitative values of this statement. A
guarantee, however, cannot be given since communications depend
on the network load at any time.
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set f $Ed(EdChangeLabel,frame) .fApply
eval {button $f.bApply -text "Apply"
-command "EdChangeLabelApply"}

$Gui (wBA) {-width 8}

eval {label $f.lApply -text "Also apply by clicking on a label."}

B
o

# Changelabel->Apply frame
# _____

set f $Ed(EdChangeLabel,frame) .fApply
eval {button $f.bApply -text "Apply"
-command "EdChangeLabelApply;EdChangeLabelApplyRemote"}

$Gui (WBA) {-width 8}

eval {label $f.lApply -text "Also apply by clicking on a label."}

Fig. 5. (A) Original code of 3D-Slicer which carries out an “EdChangeLabelApply” action. (B) The same code, modified to carry out the action

remotely as well.

— 3D Slicer 2.0a2—CD- Viewer
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Fig. 6. GUI of 3D-Slicer. The window on the bottom left corner of the screen manages the token exchange procedures. On the right, a magnified

view of this window.

4. Results
4.1. A sample execution

Fig. 6 shows the GUI of Group-Slicer; readers famil-
iar with 3D-Slicer may soon notice that the GUI is the
same of 3D-Slicer but for the small window in the lower
left corner of the figure. This is the control window of
the collaboration. In this figure we represent the control

window seen by the user in possession of the token (the
one whose “turn” is to control). At any time this user
may release the token (see that button ‘“‘release turn”
is active). Other users will have this button inactive,
while the button “request turn” will be active. In this fig-
ure only two users are collaborating. The user with the
token may know that user Noemi is asking for the token
because, in that case, the message window “Noemi re-
quests turn” would flash. In addition, collaboration
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Fig. 7. (A) A mouse click on the computer on the right. The user starts dragging a slider to move the cutting plane. (B) Effect of the drag action:
displays always remain coherent and the transition between both instants is smooth on both computers.

may finish at any time by clicking on the button “Stop
Working” and the chat window will pop by just pressing
“Talk to.”

Fig. 7 shows two snapshots of a sample execution. In
particular, as for Fig. 7A the user on the right has just
clicked at one of the sliders that select which slices are
represented in the 3D model. Note that no one is using
the computer on the left. Fig. 7B shows a second snap-
shot immediately after the user has dragged the afore-
mentioned slider to some other point in the scale.
Both computers update their user interface smoothly
so that they are always coherent. Obviously, these snap-
shots do not show the transition between Figs. 7A and B
but, as stated, it feels as smooth on the remote computer
(left) as on the local one (right).

4.2. Measurements

It is commonly accepted in medical environments
that collaboration generally improves diagnostics. How-
ever, it is not an easy task to measure the goodness of a
collaborative application, since it heavily depends on
subjective feelings of each user. In any case, it is clear
that user satisfaction (in terms of action-response delay)
affects the eventual success of a collaborative applica-
tion. This is why we have focused on measuring quanti-
tative traffic magnitudes as an indirect indicator of
prospective success.

The specific magnitudes are the following: number
of transmitted packets, average packet size, transmit-
ted bytes per second, total number of transmitted by-
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tes, and round-trip delay, the latter measured as the
time between a query of the client and the response
from the server reaching the client. For this kind of
collaborative application, in which responsiveness
and user interaction is a must, we propose these mag-
nitudes to be measured at a worst-case working status
(i.e., when network demands are maximum); so we
have defined a 30-s interval in which one of the users
is continuously rotating a graphical model in one of
the clients. Measurements are taken within such an
interval. As for the delay, we have observed a non-
Gaussian distribution; therefore we report 50 and 95
percentiles.

Table 1 summarizes these values in four different
cases. The first three (labeled with LAN) were measured
on a 100 Mbps local area network (the two clients and
the server were physically located in our lab in Vallado-
lid, Spain) whereas the fourth one (labeled with WAN)
shows a case in which the two clients were located in
Valladolid and the server was located at Brigham and
Women’s Hospital Harvard Medical School (USA).
All measurements, except for round-trip delay, were
done with Ethereal [23].

As a reference, the same values were measured
(whenever possible) using the well-known VNC appli-
cation [24], which lets one or more users see a re-
mote screen on their local desktops; this is not an
actual collaborative application, but it may be used
as such. We used the xf4vnc variant [25] because it
includes OpenGL support, which is necessary to run
Slicer.

The numbers shown in Table 1 correspond to the
traffic exchanged between one client and the server
for a period of 30s of continuous movement of a
3D graphical model. At a glance, it is clear that
UDP provides the best figures for interactivity. How-
ever, due to the nature of this protocol, it should
only be used when packet losses are very unlikely
to occur, such as on a dedicated line or a local area
network; as a matter of fact, the figures for UDP
indicate that collaboration is perfectly possible even
through a 56k modem line (convert bytes/s to bits/s
by multiplying by 8 in the table). On the other hand,
TCP guarantees the delivery of all network traffic
and, though its figures are worse than UDP (they
are a bit tight for a modem line) this can hardly af-
fect the user if the network is able to handle the ex-
tra amount of traffic (keep in mind that round-trip
values are in microseconds). Note that the cause for
the lower average packet size is TCP handshaking,
which exchanges very short packets at every connec-
tion establishment. This also explains why the num-
ber of transmitted packets is so high compared to
UDP.

The SSH protocol (which in turn works over TCP)
can be used to tunnel network connections so as to

pass through firewalls without the intervention of
the administrator. Although our platform uses just
one port for each client machine (plus one more for
the server), it is not always possible or desirable to
open up these ports, so we included the possibility
to use SSH as a transport method. Table 1 shows
that there is some overhead compared to plain TCP,
mostly due to the encryption that SSH provides, but
it remains perfectly usable if the network’s bandwidth
is enough to handle it. In this case, there are fewer
transmitted packets (albeit larger) because SSH uses
just one previously established connection, so there
are not continuous handshakings. Also note the fig-
ures for SSH through a WAN (Spain—-USA): there
are fewer transmitted packets because we are measur-
ing for the same period of 30 s and the roundtrips are
several orders of magnitude higher than in a LAN.
This, of course, results in a somewhat poorer sense
of interactivity when compared to collaborating in a
LAN (where, figures show, round-trip delays are to-
tally unnoticeable for a human being) but the applica-
tion remains usable nevertheless.

Finally, we compared our platform to VNC because
it has proved very useful to work on remote comput-
ers, and it is sometimes used as a way to collaborate.
VNC uses a different approach to show the contents
of the screen on remote computers, which results in
very large figures on Table 1. VNC is ideal for some
tasks, but certainly not when large portions of the
screen change very quickly in time, which is the case
of Slicer.

5. Conclusions

In this paper, we have described a simple proce-
dure to build a collaborative extension of the well-
known 3D-Slicer graphical tool. This extension is
built upon the current public-domain version of the
Slicer and actions are replicated in the remote com-
puters by just sending the commands over the net-
work, a design criterion which poses low bandwidth
requirements. In addition, we have taken an ap-
proach that allows us to easily extend 3D-Slicer while
modifying a minimum number of files in the original
distribution.

Communications are taken care by means of an API
we have also created. Quantitative measurements both
on a LAN and a WAN indicate that the application al-
lows for interactivity between users, a fact that is man-
datory for collaboration.

Even though the application is still in its infancy
and an effort is needed to validate it in terms of
usability, we believe the application could be of great
value in different areas of both clinical practice and
academia.
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Appendix A. Application programming interface

We have built our own API to support Group-Slicer
since Groupkit, a Tcl-based collaborative toolkit on
which we built [13], has not been updated for quite a
long time, so it would not work with the version of
Tcl/Tk currently used by 3D-Slicer.* The API has been
written in C/C++ for its network programming flexibil-
ity and power. For easier utilization of the sockets layer,
the API uses our own Socket extension for C++, which
makes them behave mostly as a standard buffered C++
stream (see Appendix B).

This appendix shows the main function calls of the
API that we used when extending 3D-Slicer. Note that
these few functions suffice to provide collaboration
while keeping changes to Slicer to a minimum.

A.1. API function calls

The communication API was designed so that high-
level primitives are as easy to use as possible, while still
maintaining the efficiency that C/C++ can provide. Cli-
ent function calls are invoked from the Tcl script which
uses the API. Before starting to send and receive mes-
sages over the network, one must call the ‘ck::init’ func-
tion to initialize the library, and then register to the
server via the ‘ck::reg’ command.

A.1.1. ck::init
This function initializes the communications with the
server. It must be called before any other function.

SYNTAX:
[client_port]]

ck:init  <server_host> [server_port

4 The University of Calgary stopped Groupkit development in 1999.
In March 2003, a new version of Groupkit was released independently,
which can be downloaded from http://www.groupkit.org. At that time,
our API was very much accomplished and, moreover, no new versions
of Groupkit have appeared since then, to the best of our knowledge.

A.1.2. ck::register

This function registers the user in the current session.
A valid login and password must be provided. This
function must be called before messages can be sent or
received, but after calling ck::init.

SYNTAX: ck::register <login> <password>

A.1.3. ck::unregister

This function unregisters the user from the current
session. To start communicating again, a call to ‘ck::reg-
ister’ must be made.

SYNTAX: ck::unregister

A.1.4. ck::users

This is meant to be a multi-purpose function which
returns miscellaneous information about other users.
As of today, only one subcommand is implemented,
which returns a list containing the logins of the currently
registered users.

SYNTAX: ck::users list
A.1.5. ck::to
SYNTAX: ck::to <destination> <Tcl command> ...

This function is used to send commands to be exe-
cuted remotely. This command is extensively used in
the application and, in particular, in the example shown
in Fig. 5.

Appendix B. C++ extension for socket programming

As stated before, our API utilizes our own sockets
extensions to take advantage of object-oriented pro-
gramming. Mainly, this means that one can think
of a socket as an object similar to C++ Input/Out-
put streams: A ‘“‘send” or “receive”’ operation be-
comes a simple use of the operators << or >>.
This greatly simplifies the use of inter-process com-
munications in C++, as the underlying complexities
(be it the network or the local filesystem) are re-
moved. In addition, all communications are automa-
tically buffered on input, so as to avoid worrying
about the efficiency of making lots of system calls
to retrieve information.

B.1. A simple example

For the sake of comparison, we show an example of a
chargen client, coded with and without our Socket
Extensions; on the left, a traditional TCP chargen client.
On the right, our Socket Extension.
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#include<netdb.h>
#include<unistd.h>
#include<iostream>
#include<sys/socket.h>

main() {
struct hostent* remoteEnt;
struct in_addr remotelp;
if ((remoteEnt=: :gethostbyname ("myhost"))==0) {

std::cerr<<"Socket error: "<<hstrerror(h_errno)<<’\n’;

exit(1);
}
remotelp.s_addr=+((uint32_t*)remoteEnt->h_addr_list[0]);

int s;

if ((s=socket (AF_INET,SOCK_STREAM,0))==-1) {
perror("Socket error");
exit(1);

}

struct sockaddr_in remoteAddr;
remoteAddr.sin_family=AF_INET;
remoteAddr.sin_port=htons(19);
remoteAddr.sin_addr.s_addr=remotelp.s_addr;

#include<iostream>
#include<sock.h>

main() {
try {
inetStreamCli c("myhost",19);

char a;
for(int i=0;i<1000000;i++) {
a=c.get();
std::cout<<a;
}
}
catch(sockException e) {
std::cerr<<"Socket error: "<<e.what()
exit(1);

if (connect (s, (struct sockaddr*)&remoteAddr,sizeof (remoteAddr))==-1) {

perror ("Socket error");
exit(1);
}

char a;
for(int i=0;i<1000000;i++) {
if (read(s,&a,1)==-1) {
perror("Socket error");
exit(1);
}

std::cout<<a;

There is a clear gain of simplicity but, in addition, this
variant is much more efficient due to the internal receive
buffer, which greatly reduces the number of system calls
made. Our tests show a mean execution time of 5.9189 s
for the traditional version (0.0959 std. deviation, 102
samples) and 2.0667 s for the extended version (0.1032
std. deviation, 102 samples). While this can obviously
be achieved with a more complex traditional program,
we want to emphasize that the extended version is much
simpler while its performance is not affected at all.
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