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•MRI guided prostate interventions
•Ultrasound guided liver ablation
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• Over 1 Million prostate biopsies

• 230,000 new cases (annually in the U.S. alone)

• Will double by 2025

Motivation – Prostate Caner

The MRI promise:

• Excellent sensitivity in detecting 
prostatic tissue abnormalities

• Ability of morphological, 
functional and molecular 
imaging

• May allow for ‘targeted biopsy”
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Our Approach Our Approach –– Robotic Assistant in Robotic Assistant in 
Conventional MRI ScannerConventional MRI Scanner

• A. Krieger, R. Susil, C. Menard, J. Coleman, G. Fichtinger, E. Atalar,  L. Whitcomb. Design of A Novel 
MRI Compatible Manipulator for Image Guided Prostate Interventions. IEEE Transactions on 
Biomedical Engineering, February 2005. 

Mount

Positioning Stage

Driving 
Shafts

Endorectal Coil

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Our Approach Our Approach –– Robotic Assistant in Robotic Assistant in 
Conventional MRI ScannerConventional MRI Scanner

37 patients treated
• Ménard et al. An Interventional MRI Technique for the Molecular Characterization of Intra-Prostatic 

Dynamic Contrast Enhancement. Molecular Imaging, January-March 2005, 4(1): 63-66
• Susil et al., Transrectal Prostate Biopsy and Fiducial Marker Placement in a Standard 1.5T MRI 

Scanner, J Urol. 2006 Jan;175(1):113-20.
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MR images during a clinical procedure:
Left: A target (red dot) is selected on an axial TSE T2-weighted image.
Middle: The needle tip void is visualized in an axial TSE Proton Density image. The desired target 
matches the actual position of the needle. 

Biopsy Example

Needle Void

MR images during a clinical procedure:
Left: A target (red dot) is selected on an axial TSE T2-weighted image.
Middle: The needle tip void is visualized in an axial TSE Proton Density image. The desired target 
matches the actual position of the needle. 
Right: The needle void is visualized on a sagittal TSE Proton Density image, where the estimated 
needle path (red and purple dots) matches the actual path. 

MR images during a clinical procedure:MR images during a clinical procedure:
Left: A target (red dot) is selected on an axial TSE T2-weighted image.
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Occasional Imaging ArtifactsOccasional Imaging Artifacts

Targeting accuracy is still excellent
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Needle Guide with 
Tracking Coil 1 and 2

Tracking Coil 3

PROS
• High accuracy (0.2 mm and 0.3 degrees)
• High speed (20 Hz)
• Direct real-time tracking of the surgical tool (needle)

RealReal--time Tracking w/ Active Microtime Tracking w/ Active Micro--coilscoils
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CONS
• Custom tracking pulse sequence and data interface
• Occupies 3 channels (limits number of simultaneous imaging coils)
• Custom electronics is prone to failure (4 cases aborted)

RealReal--time Tracking w/ Active Microtime Tracking w/ Active Micro--coilscoils

Needle Guide with 
Tracking Coil 1 and 2

Tracking Coil 3
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New ObjectivesNew Objectives

• Independence from scanner
• Cheaply replicable 
• No engineering support 
• No custom electronics
• No pre-calibration
• Reduced imaging artifacts
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New Kinematics, Mechanics, and Mount

Rotation 
knob

Steerable needle 
channel

Needle angle 
knob

Hinge

Prostate
Rotating rectal sheath 
w/ imaging coil

1cm scale

Mount
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6-DOF Hybrid Tracking
Homing: passive fiducials for absolute location of each robot joint
Incremental Motion: real-time incremental encoding of each joint

Four Passive 
Marker Tubes 
(Beekley Inc.) 
for Initial 
Registration

Two Fiber Optical 
Encoders

A Krieger, I Iordachita, G Metzger, P Guion, E Atalar, G Fichtinger, LL Whitcomb, Accuracy of Hybrid 
Tracking for a Novel MR-Guided Transrectal Prostate Interventional Device, 6th Interventional MRI 
Symposium, Leipzig, pp 143-145, 2006 
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6-DOF Hybrid Tracking –
Cheap Optical Joint Encoders (Rotation)

• Banner fiber optic sensors (outside 
the scan room)

• 0.25 mm plastic fiber in opposing style
• 2 channel quadrature setup
• Resolution of 0.125 mm.
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66--DOF Hybrid Tracking DOF Hybrid Tracking ––
Cheap Optical Joint Encoders (Translation)Cheap Optical Joint Encoders (Translation)

Negligible imaging artifact at 50mm from isocenter (at 1.5T)
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Hybrid Tracking Error w/ New Robot

A Krieger, I Iordachita, G Metzger, P Guion, E Atalar, G Fichtinger, LL Whitcomb, Accuracy of Hybrid 
Tracking for a Novel MR-Guided Transrectal Prostate Interventional Device, 6th Interventional MRI 
Symposium, Leipzig, pp 143-145, 2006 

Active Hybrid 

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Summary of Recent Progress

• New robot & tracking scheme developed
• Errors compare favorably to existing methods
• Uses standard MRI pulse sequences
• Does not occupy any receiver channels 
• Full MR compatibility
• Ease of deployment on different scanners
• FDA & IRB approvals obtained for trials 
• Clinical trials at NIH in November, 2006
• System shipped to Princess Margaret Hospital
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• 1M /year liver  cancers 
worldwide

• The most frequent hepatic 
malignancy

• Surgical resection is the first 
choice

• Mixed treatments: un-
resectable liver tumors 
ablated under ultrasound
guidance in the same open 
surgery

 

Thermal Ablation of Liver TumorsThermal Ablation of Liver Tumors
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Hopkins dual arm testbed

Boctor et al. ICRA 2004

Testbed for calibration, control, and interventions
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US Machine

RCM-PAKY 5-DOF 
Needle Driver Robot

C-arm

3D Slicer Surgical
Workstation

Biopsy
Needle

InIn--Vivo Pig Experiment (2005)Vivo Pig Experiment (2005)

Boctor et al. CARS 2005
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B-mode image Gross-pathology

Ablation under US Guidance is BlindAblation under US Guidance is Blind
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Before compression: Particles with uniform spacing
After compression:    Two groups of particle spacing
Differentiate axial displacement to yield axial strain (per continuum mechanics)

Small spacing  (green) Æ soft tissues moved more Æ high strain
Large spacing  (blue  ) Æ hard tissues move less    Æ low strain

Changes of Stiffness Changes of Stiffness –– Strain ImagingStrain Imaging
(Pioneered by Ophir, (Pioneered by Ophir, BamberBamber, Varghese, etc.), Varghese, etc.)
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Limits of Conventional Strain ImagingLimits of Conventional Strain Imaging

• Strain image can only approximate the ablated lesion
• Dynamic changes of tissue (gassing, charring, etc.) Æ aggressive 

changes in attenuation, shadowing, etc.
• Noisy US signal Æ Decorrelation noise Æ bad Displacement image
• Displacement to Strain least square differentiator amplifies the noise
• Hard to estimate Young’s modulus from strain alone (stress is not 

uniform under the probe)
• 2D only
• Tends to be inconsistent even under extreme care
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ElasticityElasticity--based Segmentationbased Segmentation

B-mode image Displacement imageCorrelation image

Displ. 
estimate

Boctor et al. MICCAI 2005
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ElasticityElasticity--based Segmentationbased Segmentation

Geometric meshElasticity map

FEM

Model displacement

B-mode image Displacement imageCorrelation image

Displ. 
estimate

Boundary 
conditions

Kuc
t
u

=∇•∇−
∂
∂

2

2

ρ Navier’s equation
Boctor et al. MICCAI 2005
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ElasticityElasticity--based Segmentationbased Segmentation

Geometric meshElasticity map

FEM

Model displacement

B-mode image Displacement imageCorrelation image

Displ. 
estimate

Boundary 
conditions

Shape 
Optimization 

loop
Weighting maps

Final 
displacement Segmented image

Final mesh
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Boctor et al. MICCAI 2005
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Segmentation ExampleSegmentation Example

True 
Displacement

Model 
Displacement Pathology Strain 

Image

Boctor et al. MICCAI 2005
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• Convergence error is within a few pixels
• K is the ratio of Young’s modulus of cooked and normal liver
• 20 (green curve) is the correct value (literature & our own measurement)
• Robust to large errors in estimating K (between about 10 & 40)

Convergence ResultsConvergence Results

Boctor et al. MICCAI 2005



6

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Overlapping Tumors & BurnsOverlapping Tumors & Burns

Large Tumor 
with Small 

Ablation Zone

Irregular Shaped 
Lesions

FEM model

FEM

Final mesh Segmented image
Final 

displacement
Boctor et al. MICCAI 2005
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Initial 
guess

Final 
Segmentation

Solid 3D FEM modelSeries of 2D 
FEM models

3D Segmentation3D Segmentation

Boctor et al. MICCAI 2005
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■ Each pixel is formed by the back scattered 
echoes from an approximately ellipsoid called 
the resolution cell.
■ Such a summation of backscatters results in 
a granular image.
■ Although of random appearance, speckle 
pattern is identical if the same object is 
scanned under the same focusing, frequency 
and direction.
■ If each resolution cell has  a number of 
scatterers more than 10 which are placed 
uniformly, a fully developed speckle is formed 
by definition.

Ultrasound Speckle DetectionUltrasound Speckle Detection

A resolution cell

Ultrasound beam
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where , a patch with large number of pixels can be classified.
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Rivaz et al. IEEE US Symposium, Vancouver, 2006
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Ultrasound Speckle DetectionUltrasound Speckle Detection

Data A is obtained in simulation by summing μ
vectors (no. of scatterers) of length √(2/ μ), i.e. 

random walk, and a vector of length k (coherency)
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Ultrasound CalibrationUltrasound Calibration

• Prager RW, Rohling RN, Gee AH, Berman L. Rapid Calibration for 3-D Freehand Ultrasound, US in Med. Biol., 24(6):855-869, 1998
• Mercier L, Lango T, Lindseth F, Collins DL. A review of calibration techniques for free-hand 3-D ultrasound systems. Ultrasound Med Biol, 2005;31(4):449-471.
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Collect US images Calculate 
calibration 

matrix

Calculate
reconstruction 

error STD
done

Machine 
and/or 
digitize 

phantom

Linear pipeline Æ residual error
• Needs large number of images
• Slow non-linear optimization /

Conventional WorkflowConventional Workflow
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Collect US images Calculate 
calibration 

matrix

Calculate
reconstruction 

error STD
done

Optimize 
pre-collected 

US data

Bootstrapping loop

Machine 
and/or 
digitize 

phantom

Bootstrapped CalibrationBootstrapped Calibration

Boctor et al. MMVR, 2006
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How to 
estimate A?Real-time evaluation

3 US images enough ☺
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Patient Specific InPatient Specific In--Vivo SelfVivo Self--calibrationcalibration

Decision 
maker

Acquisition 
Module

US input 
signal

Tracker 
input

SSD 
tracker

Motion 
Analyzer

Indexed 
tracking 

info. 

AX=XB 
Solver

A’s data B’s Data 

Indexed 
images 

Convergence under different 
image tracking steps

Calibration achieved with 10-20 
steps, 0.3-0.6 sec scanning 

time, and 1.5 mm probe travel
Action

Boctor et al. MICCAI 2005
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Thank youThank you !!


