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Abstract. This paper presents a novel segmentation approach featuring shape
constraints of multiple structures. A framework is developed combining statis-
tical shape modeling with a maximum a posteriori segmentation problem. The
shape is characterized by signed distance maps and its modes of variations are
generated through principle component analysis. To solve the maximum a poste-
riori segmentation problem a robust Expectation Maximization implementation is
used. The Expectation Maximization segmenter generates a label map, calculates
image intensity inhomogeneities, and considers shape constraints for each struc-
ture of interest. Our approach enables high quality segmentations of structures
with weak image boundaries which is demonstrated by automatically segmenting
32 brain MRIs into right and left thalami.

1 Introduction

For many age or disease related brain studies large quantities of Magnetic Reason-
ing Images (MRI) have to be accurately segmented into anatomical regions. Achieving
high quality brain MRI segmentation is quite challenging for automatic methods so
researchers often have to rely on labor intensive, manual delineation. The task is chal-
lenging because some structures have very similar intensity characteristics, such as sub-
structures in the cortical gray matter, while others have only weakly visible boundaries
(e.g. thalamus). Recent methods using enhanced anatomical knowledge have greatly
improved the quality of automatically generated results.

We briefly summarize methods that incorporate shape constraints into the segmen-
tation process. A promising approach [1–3] is based on level set functions. It character-
izes shape based signed distance maps in combination with the Principle Component
Analysis (PCA) [4] . Generally, PCA finds the largest modes of variation among the
signed distance maps. Besides level sets, deformable model methods have used many
different shape representations, such as spherical harmonics [5], point based models
[4], skeleton or medial representations [6], and finite element models [7].

The novel approach presented in this paper is most closely related to work by Tsai
and Leventon [1, 2]. While PCA based segmentation methods are very robust they are



also constraint in the degrees of freedom of the shape variations allowed. We therefore
couple the PCA based shape modeling with a maximum a posteriori estimation prob-
lem which will be solved through an Expectation Maximization (EM) implementation
developed by Pohl et al. [8]. This allows the system to accommodate shapes that dif-
fer some what from those modeled by the PCA. Additionally, the method can segment
multiple objects and estimate intensity inhomogeneities in the image.

2 Method

This section discusses the integration of shape constraints into an EM segmentation
algorithm. First, the shape variations across subjects are captured through PCA [9].
Afterwards, the shape constraints are added to the parameter space of an EM-based
segmentation algorithm [8].

2.1 Shape Representation

Various shape representations have been explored in medical imaging. For our work,
we chose signed distance maps due to their robustness. The structure’s shape variations
are captured by PCA. To apply PCA to the training data we first align all training sets

Fig. 1.Example of a left thalamus and corresponding segmentation, related signed distance map,
and structure’s mean where the voxel’s brightness corresponds to the value in the distance map.

using the affine registration method developed by Warfield [10]. Then, each data set

i is transferred into structure specific signed distance mapsD(i)
a , wherea represents

the structure of interest (see also Figure 1). In these distance maps positive values are
assigned to voxels within the boundary of the object, while negative values indicate

voxels outside the object. By taking the average over all these distance mapsD(i)
a we

define the mean distance mapDa := 1
n ∑i D(i)

a and the mean corrected signed distance

mapsD̃(i)
a := D(i)

a −Da. The input for PCA is the vector̃D(i) := (D̃(i)T

1 , · · · ,D̃(i)T

N )T

defined by the mean corrected signed distance maps of the N structures of interests.
Therefore, PCA is applied to all structures at once. This analysis defines the shape
constraints of the entire image which is represented by the eigenvector or modes of

variation matrix U, eigenvalue matrixΛ, andD := (DT
1 , · · · ,DT

N)T (see also Figure 2).
To reduce the computational complexity for the EM implementation, U andΛ will only
be defined by the first K eigenvectors and eigenvalues, where K represents 99 % of the
eigenvalues’ energy.



The shapes in a specific brain image will be captured by the expansion coefficients
of the eigenvector representation which we call shape parametersS = (S1, · · · ,SK). S
relates to the distance maps byDS = D +U · S . We will refer to the shape parameter
generated distance map of a specific structurea asDS ,a = Da +Ua · S , whereUa are
just the entries in U that refer to structurea.

Fig. 2. These are the results of PCA applied to a training set of manually segmented thalami.
As clearly visible from the images the first mode of variation, i.e. the deformation along the
eigenvector with the largest eigenvalue, defines the size of the structure .

The probability distribution over the shape parametersp(S) is now defined by the
Gaussian distribution

p(S) =
1√

(2π)K |Λ| exp

(
−1

2
STΛ−1S

)

where K is the dimension of eigenvalue matrixΛ.

2.2 Estimating Intensity Inhomogeneities and Shape

The algorithm proposed in this chapter is based on an EM-based segmentation algo-
rithm by Pohl et al. [8] which uses probability atlases to define the spatial distribution
of structures . Expanding this approach, we will not only approximate the maximum a
posteriori estimate (MAP) of the image intensity inhomogeneitiesB but also the MAP
estimate of the shape parametersS . In this framework the MAP estimates of the param-
eter space, i.e.B andS , depend on the partition of the image in anatomical regionsT
(the hidden data), the log intensities of the input imageI (the observed data), and previ-
ous estimations of the inhomogeneitiesB ′ as well as the shape parameterS ′. Therefore,
our approach tries to solve the following problem:

(B ′′,S ′′) = argmaxB,S Q(B,S |B ′,S ′) = argmaxB,S ET |I ,B ′,S ′(logp(B,S |T ,I ))

= argmaxB,S ET |I ,B ′,S ′(logp(I |T ,S ,B)+ logp(S |T ,B)+ logp(B|T ))

= argmaxB,S ET |I ,B ′,S ′(logp(I |T ,B)+ logp(S |T ,B)+ logp(B|T ))

(1)

whereET |I ,B ′,S ′(logp(B,S |T ,I )) := ∑T p(T |I ,B ′,S ′) · logp(B,S |T ,I ) and we as-
sume independence ofS in p(I |T ,S ,B). If we further assume independence between
B andS , andB andT than the maximization problem can be simplified to :1

B ′′ =argmaxB ET |I ,B ′,S ′(logp(I |T ,B))+ logp(B) (2)

S ′′ =argmaxS ET |I ,B ′,S ′(logp(S |T )) (3)

1 p(S |T ,B) = p(S ,T ,B)
p(T ,B) = p(S ,T )p(B)

p(T )p(B) = p(S |T ) andp(B|T ) = p(B).



To solve these two equations the EM algorithm iterates between the Expectation Step
(E-Step) and the Maximization Step (M-Step). The E-Step first updatesB ′ andS ′ with
B ′′ andS ′′. Then it calculates the expected value of the two functions based onB ′ and
S ′. The M-Step approximates separately the MAP estimatesB ′′ andS ′′ based on the
results of the E-Step. For a general overview of EM we refer the reader to [11].

In the remainder of this section we will first discuss the two MAP estimation prob-
lems separately and then integrate these two MAP estimation problems into the EM
framework.

Estimating the Intensity Inhomogeneities
To find the MAP estimate ofB we assume statistical independence of the voxel loca-

tion x for B andI . Therefore, Equation (2) simplifies to:

0 =
∂

∂Bx

(
ET |I ,B ′,S ′ (logp(Ix|Bx,Tx))

)
+

∂
∂Bx

p(B)

p(B)
(4)

The conditional intensity distribution is modeled by a Gaussian distribution:

p(Ix|Tx = ea,Bx)
2

:=
1√

(2·π)n|σa|
e−

1
2 (Ix−Bx−µa)T ·σ−1

a ·(Ix−Bx−µa)

where n is the number of input channels, and(µa,σa) define the intensity distribution
of structurea. ’

x=’ refers to footnote x for further explanation. Let’s define

Ax(a) :=
∂

∂Bx
p(Ix|Tx = ea,Bx) = σ−1

a · (Ix−Bx−µa)

and the weightsWx(a) := ET |I ,B ′,S ′(Tx(a)) so that Equation (4) turns into

0 =
∂

∂Bx

(
ET |I ,B ′,S ′ (logp(Ix|Tx,Bx))

)
+

∂
∂Bx

p(B)

p(B)

= ET |I ,B ′,S ′(Tx) · ∂
∂Bx

logp(Ix|Tx,Bx)+
∂

∂Bx
p(B)

p(B)
= W T

x ·Ax +
∂

∂Bx
p(B)

p(B)
As Wells shows [12] the above problem can be approximated by a low pass filter H
applied to the weighted residual̄R: B ≈HR̄. Now, we will explicitly define the weights
Wx(a) := ET |I ,B ′,S ′(Tx(a)):

Wx(a) := ET |I ,B ′,S ′(Tx(a))
3
= ETx|Ix,B ′x,S ′(Tx(a))

= 0· p(Tx(a) = 0|Ix,B ′
x,S ′)+1 · p(Tx(a) = 1|Ix,B ′

x,S ′)

= p(Tx(a) = 1|Ix,B ′
x,S ′)

4
=

p(Ix|Tx(a) = 1,B ′
x) · p(Tx(a) = 1|S ′)

p(Ix|B ′
x,S ′)

(5)

We will model p(Tx(a) = 1|S) as a measure of agreement among the shapeS an the
label mapT . This is achieved by transforming the distance mapsDS produced byS
into binary maps throughH :

HS (x,a) :=

{
1 , if DS ,a(x)≥ 0

0 , if DS ,a(x) < 0

whereHS (x,a) is the Heaviside function for structurea. p(T |S) penalizes any dis-
agreement betweenTx andHS (x) = (HS (x,1), · · · ,HS (x,N)T :

2 ea has a 1 at positiona and 0 otherwise
3 Bayes’ rule:∑T (i,a j ) p(T (1,a1), · · · ,T (n,am)|I ,B ′) ·Tx(a) = p(Tx(a) = 1|I ,B ′)
4 Based on previous independence assumption



p(T |S) :=
1
Z

e−
1
2 ∑x d(Tx,HS (x))+log( f (Tx))

where d is a correlation metric betweenTx andHS (x). Hered(v1,v2) := (v1−v2)T(v1−v2),
which means d is zero whenv1 andv2 agree, and 1 or greater when they disagree.f (Tx)
represents a prior probability onTx defined by a probability atlas [8]. We therefore can
ignore f in the normalizing function Z with m being the number of voxels in the image

Z := ∑T ‘ e∑x− 1
2d(T ′

x ,HS (x)) = ∏x ∑Txe
− 1

2d(Tx,HS (x))

5
= ∏x(1+(N−1) ·e−1) = (1+(N−1) ·e−1)m

If p(Tx|S) := (1+(N−1) ·e−1)−1 ·e− 1
2d(Tx,HS (x))·f (Tx) defines the local conditional

probability than

p(T |S) := (1+(N−1) ·e−1)−m ·e∑x− 1
2d(Tx,HS (x))+log( f (Tx)) = ∏xp(Tx|S)

Estimating the Shape ParametersS
As mentioned in Section 2.1 statistical independence among the coefficients ofS =

(S1, · · · ,SN)T is assumed. Therefore, Equation (3) is solved for each component ofS :

0 =
∂

∂Si
ET |I ,B ′,S ′(logp(S |T )) =

∂
∂Si

ET |I ,B ′,S ′(logp(T |S)+ logp(S))

=
(

∑x
∂

∂Si
(ETx|Ix,B ′x,S ′(logp(Tx|S)))

)
+ log

∂
∂Si

p(S)

= ∑xETx|Ix,B ′x,S ′(Tx)T ∂
∂Si

logp(Tx|S)−Λ−1
i Si

(6)

where ∂
∂Si

logp(Tx|S)

=
∂

∂Si
− 1

2
(Tx−HS (x))2 =

∂HS (x)
∂Si

· (Tx−HS (x))
6
=

(
δ(DS (x))TUi(x)

) · (Tx−HS (x))

is zero unlessTx(a) 6= HS (a) for a structurea and voxelx is located at the border of
the shape ofa. Thus, if Ω is the set of voxels at the boundaries ofHS Equation (6)
simplifies to :

0
7
=

(
∑x∈Ω ETx|Ix,B ′x,S ′(Tx)T · (δ0(DS (x))TUi(x)

) · (Tx−HS (x))
) − Λ−1

i Si

=
(
∑x∈Ω W T

x ·
(
δ0(DS (x))T Ui(x)

) · (Tx−HS (x))
) − Λ−1

i Si

⇒ Si = Λi ·∑x∈Ω
(
δ0(DS (x))T Ui(x)

) ·W T
x (Tx−HS (x))

From the above equation the updated shape parameterSi is defined by the weighted
sum of its eigenvector values located at borders and scaled by theith eigenvalue. In other
words, the eigenvector valuesUi(x) defines the ’direction of change’ for parameterSi

and theW T
x (Tx−HS (x)) control the ’speed of change’.

5 ∑Tx
e−

1
2 d(Tx,HS (x)) = |HS (x)|2e−

1
2 (|HS (x)|2−1) + (N− |HS (x)|2)e− 1

2 (|HS (x)|2+1). If we assume

each voxel is part of only one shape then|HS (x)|= 1 and∑Tx
e−

1
2 d(Tx,HS (x)) = 1+(N−1)e−1

6 ∂HS (x,a)
∂Si

= δ(DS ,a(x)) · ∂DS ,a(x)
∂Si

= δ(DS ,a(x)) ·Ua,i(x) whereδ is the Dirac’s delta function and
the Eigenvector matrixUa was defined in Section 2.1

7 where δ0 is the null function with δ0(0) = 1, δ0(x) = 0 for x 6= 0, and
δ0(X) := (δ0(X(1)), · · · ,δ0(X(n)))T for a vector X



2.3 The Shape Constraint EM Algorithm

The EM Algorithm is now defined by the E-Step who generates the structure posterior
probabilitiesW , calledweights, based on the constraints imposed by shape, intensity,
image inhomogeneities, and location (see Equation (5))

Wx(a) =
p(Ix|Tx(a)=1,B ′

x)p(Tx(a)=1|S ′)
p(Ix|B ′

x,S ′)
=

p(Ix|Tx(a) = 1,B ′
x)p(Tx(a) = 1|S ′)

∑a′ p(Ix|Tx(a)=1,B ′
x)p(Tx(a) = 1|S ′)

The M-Step calculates the image inhomogeneitiesB and shape parametersS based
on the newly updated weightsW . B = H · R̄ is approximated by a simple low pass filter
H and the weighted residuum̄Rx = ∑a Wx(a)σ−1

a (Ix−µa) (see also [12]).
The shape parametersS = (S1, · · · ,SN)T are updated in the M-Step by:

Si = Λi ·∑x∈Ω
(
δ0(DS (x))T Ui(x)

) ·W T
x (Tx−HS (x))

The EM algorithm iterates between E- and M-Step until the cost function
Q((B,S ),(B ’,S ’)) of Equation (1) converges to a local maximum, which is guaranteed
by the EM framework if the iteration sequence has an upper bound [11].

3 Validation

We validate our approach by segmenting 32 test cases into white matter, grey matter,
cortical spinal fluid, and the left and right thalamus. The study uses segmentations from
one expert which are restricted to the right and left thalamus, which this study regards as
gold standard. To introduce no bias into the segmentation approach we only generated
shape atlases for those two structures (see also Section 2.1). The shape atlases are pro-
duced for each test case by applying PCA to the remaining 31 cases. From the analysis
we use the first five modes of variations, which corresponds to 99% of the eigenval-
ues’ energy. Furthermore, we manually calibrate the EM segmentations by comparing
one automatic segmentation result to an expert’s segmentation. Especially for structures
like the thalamus, where borders are not clearly visible, large variations of the experts’
opinion about structure’s boundary exist. Therefore, this manual calibration is essential
so that automatically generated results meet the experts’ expectations.

To measure the robustness of the method (EM-Shape) we compare the automatic
with the expert segmentations using the volume overlap measure Dice [13]. We then
compare the experts segmentations to the results of two different EM implementa-
tions. The first algorithm (EM-Rigid) uses rigid alignment of atlas information and
no shape constraints. The second implementation (EM-NonRigid) also does not incor-
porate shape constraints but uses non-rigid registration for the initial alignment and
models neighborhood relationships through Markov Random Field approximation [8].

Generally, EM-Shape outperformed the other two method (see also Table 1). It had
the highest mean average value of agreement, the lowest variance, the highest mini-
mum Dice measure over all cases, and the highest maximum dice measure. Of the three
methods, EM-Shape relies the least on the initial registration of the atlas to the patient.
The new shape constraints allow a better adjustment of the EM parameters to the spe-
cific brain images during the segmentation process. It can capture subtle difference in



DICE Measure over 32 cases

Method Mean Variance Minimum Maximum

EM-Rigid 0.755 0.0221 0.449 0.883

EM-NonRigid 0.715 0.0149 0.34 0.883

EM-Shape 0.82 0.0117 0.625 0.909

Table 1.Summary over 32 cases of the Dice comparison between the results of EM implementa-
tions and expert segmentations. The minimum and maximum list the worst and best Dice measure
over all cases. As clearly by the numbers the new approach of this paper, EM-Shape, outper-
formed the other two methods

Manual / SPGR EM-Rigid EM-NonRigid EM-Shape

Fig. 3. Segmentation results from different EM implementation. As clearly visible in the 2D im-
ages the shape constraint approach (EM-Shape) is closest to the expert’s segmentation indicated
by the black lines. EM-Shape was also the only method who properly captured the hypothalamus
(see 3D models), while EM-NonRigid is too smooth and EM-Rigid underestimated the structure.

the shape as the hypothalamus which is underrepresented in both EM-Rigid and EM-
NonRigid (see 3D images in Figure 3).

The EM-NonRigid heavily relies on the initial non-rigid registration. Even though it
produced excellent results for the superior temporal gyrus [14], it performed worse on
the thalamus, because the initial alignment process cannot detect the thalamus’ weakly
visible boundaries. It produces very smooth segmentations due to the Mean Field ap-
proximation which models neighborhood dependencies within an image. On the down-
side, it also smoothed over subtle differences within small gyri and the thalamus, which
are better captured by EM-Shape and EM-Rigid.

4 Discussion

A novel shape constraint segmentation approach has been presented. Embedded in an
EM segmentation framework, the algorithm deals with multiple brain structures as well
as estimates the intensity inhomogeneities. It generates high quality segmentations of
structures with weakly visible boundaries. The approach is not restricted to the modes
of variations presented in the shape model but models patient specific abnormalities.
Furthermore, we have documented its robustness by segmenting 30 different cases and
comparing them to other EM-like methods as well as manual segmentations.



In the future we would like to include more complex conditional probabilities that
better model the dependencies between label maps and the shape of the object. We also
would like to couple pose and labeling of the objects because their solution depend on
each other.
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