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PURPOSE OF THIS PROJECT

▸ Can we develop a binary classifier using thumbnail images from 
the area immediately around existing cancer lesions using MRI 
data? 

▸ How to decide the effect of different data preparation strategies  

▸ This project was an introduction to Deep Learning for the authors

cancer positive cancer negative
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CHOOSE THE LEARNING INFRASTRUCTURE

▸ Chose NVIDIA DIGITS 

▸ Seemed easiest way to start training with minimal 
coding required to manage data and construct the 
learning network 

▸ DIGITS offered several CNNs pre-constructed, which 
seemed a good match for our classification problem
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ADD TRAINING DATA
▸ DIGITS lets users initialize training databases and then 

build learning models through training on a loaded 
database

Select image 
dimension and 
color scheme

Assign training 
and test data
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SELECT THE INITIAL CNN MODEL
▸ LeNet was chosen because of its simplicity, yet also the existence of 

convolution layers followed by fully-connected layers. Our input images are 
of similar size, so convolution design should be effective at feature detection. 

▸ Convolution layers can train on lesion patterns followed by fully-connected 
layers combining trained detection cases
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TRAIN LEARNING MODEL 

▸ Use the DIGITS 
Model Training 
interface 

▸ Chose default/
automatic for 
other training 
factors 

▸ Training 
operation uses 
the Caffe 
framework

Select the number of epochs

Left batch 
size to 
Caffe
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FIRST TRAINING TRY

▸ LeNet network trained 
with insufficient/
biased training data 
(64 positive cases, 
1000 negative cases, 
30 epochs) 

▸ Good match for 
negative cases (null 
classifier effect), but 
poor classification on 
positive cases (34% 
detection
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DATA AUGMENTATION

▸ We used ImageMagick to quickly create augmented cases 
for the TRUE cases and address training imbalance

convert -flip 
convert -flop 
convert -rotate 90 
convert -rotate 180 
convert -rotate 270 
convert -blur 
convert -auto-gamma

We need to be careful 
here to not induce bias 
during augmentation…
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TRAINING AFTER DATA AUGMENTATION

▸ LeNet trained for 300 
epochs on more balanced 
training set (~900 true 
images, ~1000 negative 
images) 

▸ Results were improved to 
83% true identification 

▸ Reviewing the training 
curve from DIGITS, it looks 
like overtraining occurred, 
so 300 steps (5 hours of 
training) was too much overfit seems to be 

happening here 
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3D ALEXNET CNN CLASSIFICATION
▸ Augmented 2D data performs better 

than 2D original data alone. However 
the source data is available in 3D,  
(transaxial, sagittal,coronal) providing 
additional signal for training 

▸ Original 3D only (without 
augmentation) produced superior 
results (72.7% positive detection rate) 
over original 2D, but not as good as 
augmented 2D.  We theorize that 
augmented 3D would yield the best 
results   

▸ Training chart at right seems to indicate 
that  additional epochs of training 
should further improve performance.  
Layer depth of AlexNet seems to 
require additional data or higher 
learning rate.
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DISCUSSION
▸ 83% positive detection rate (from augmented 2D) seems already accurate 

enough to be useful for some high-throughput screening applications 

▸ Data augmentation was crucial in this application and should be further 
refined to further improve classification 

▸ LeNet training was performed in 2D only.  3D imagery and proper data 
augmentation should yield even better results, as 3D AlexNet without 
augmentation was better than 2D LeNet without augmentation. 

▸ We theorize that 3D convolution on the 3D data or presenting the three 
axes fused together to a 2D convolution would further improve results

axial sagital coronal
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DISCUSSION

▸ Only ROI imagery was presented to the learning networks.  
Future work may investigate training simultaneously with 
different levels of imagery detail 

▸ Deep Learning techniques enabled fast, high-quality 
classifier development when compared with traditional 
computer vision approaches for this dataset 

▸ DIGITS ease of use and AWS Marketplace images allowed 
us to get right to training with minimal effort on data 
handling and system configuration


