# DEEP LEARNING FOR CANCER LESION DETECTION

**SLICER 2017 PROJECT WEEK** 

YANLING LIU, PH.D. FREDERICK NATIONAL LAB FOR CANCER RESEARCH

CURTIS R. LISLE, PH.D, KNOWLEDGEVIS, LLC





# **PURPOSE OF THIS PROJECT**

Can we develop a binary classifier using thumbnail images from the area immediately around existing cancer lesions using MRI data?



cancer positive



cancer negative

- How to decide the effect of different data preparation strategies
- This project was an introduction to Deep Learning for the authors

## **CHOOSE THE LEARNING INFRASTRUCTURE**

- Chose NVIDIA DIGITS
  - Seemed easiest way to start training with minimal coding required to manage data and construct the learning network
  - DIGITS offered several CNNs pre-constructed, which seemed a good match for our classification problem

# ADD TRAINING DATA

 DIGITS lets users initialize training databases and then build learning models through training on a loaded database

|                 |                               |             | lugo on | comoun       | Datao                                                          |                                    |                             |                 |  |
|-----------------|-------------------------------|-------------|---------|--------------|----------------------------------------------------------------|------------------------------------|-----------------------------|-----------------|--|
|                 | Image                         | Гуре 😡      |         |              | Use Image Folder                                               | Use Text Files                     |                             |                 |  |
| Select image    | Color                         | Color \$    |         |              | Training Images O                                              |                                    |                             |                 |  |
| dimonsion and   | Image size (Width x Height) O |             |         |              | folder or URL                                                  |                                    |                             |                 |  |
| aimension and   | 256                           | 256 🗉 🗙 256 |         |              | Minimum samples per class O                                    |                                    | Maximum samples per class O |                 |  |
| color scheme 🗕  | Resize                        | Transforma  | tion O  |              | 2                                                              |                                    |                             |                 |  |
|                 | Squas                         | Squash      |         |              | % for validation O                                             | % for validation O                 |                             | % for testing O |  |
|                 | See e                         | xample      |         |              | 25                                                             |                                    | 0                           |                 |  |
|                 |                               |             |         |              |                                                                |                                    |                             |                 |  |
| Assign training |                               |             |         |              | <ul> <li>Separate validat</li> <li>Separate test in</li> </ul> | tion images folder<br>nages folder |                             |                 |  |
| and tast data   |                               |             |         |              |                                                                |                                    |                             |                 |  |
| and lest data   |                               |             |         | DB backard   |                                                                |                                    |                             |                 |  |
|                 |                               |             |         | LMDB         |                                                                |                                    |                             |                 |  |
|                 |                               |             |         | lanes Freed  | <b>0</b>                                                       |                                    | •                           |                 |  |
|                 |                               |             |         | PNG (lossles | ing 🗸                                                          |                                    |                             |                 |  |
|                 |                               |             |         | Dataset Nam  | -                                                              |                                    |                             |                 |  |
|                 |                               |             |         | Dataset Name | e                                                              |                                    |                             |                 |  |
|                 |                               |             |         | _            |                                                                |                                    |                             |                 |  |
|                 |                               |             |         | Create       |                                                                |                                    |                             |                 |  |
|                 |                               |             |         |              |                                                                |                                    |                             |                 |  |

### **SELECT THE INITIAL CNN MODEL**

- LeNet was chosen because of its simplicity, yet also the existence of convolution layers followed by fully-connected layers. Our input images are of similar size, so convolution design should be effective at feature detection.
- Convolution layers can train on lesion patterns followed by fully-connected layers combining trained detection cases



LeCun et al. 1989-1998: Handwritten Digit Recognition

### **SLICER PROJECT WEEK 2017**

### TRAIN LEARNING MODEL

Select the number of epochs

multiples allowed

\$

multiples allowed

- Use the DIGITS **Model Training** interface
- Chose default/ automatic for other training factors
- Training operation uses the Caffe framework

| Select Dataset                 | Solver Options                 |                                   |  |  |  |
|--------------------------------|--------------------------------|-----------------------------------|--|--|--|
| cancerROI-v3<br>cancerROI-v2   | Training epochs 🛛              |                                   |  |  |  |
| cancerROI-v1<br>mnist-tutorial | 30                             |                                   |  |  |  |
|                                | Snapshot interval (in epochs   | 90                                |  |  |  |
|                                | 1                              |                                   |  |  |  |
|                                | Validation interval (in epochs | Validation interval (in epochs) O |  |  |  |
| Python Layers O                | 1                              |                                   |  |  |  |
| Server-side file 😡             | Random seed O                  |                                   |  |  |  |
|                                | [none]                         |                                   |  |  |  |
| Use client-side file           | Batch size O                   | multi                             |  |  |  |
|                                | [network defaults]             |                                   |  |  |  |
|                                | Batch Accumulation O           |                                   |  |  |  |
|                                | Solver type 😡                  |                                   |  |  |  |
| Left batch                     | Stochastic gradient descent    | Stochastic gradient descent (SGD) |  |  |  |
| size to                        | Base Learning Rate O           | multi                             |  |  |  |
| Coffo                          | 0.01                           |                                   |  |  |  |

#### **Data Transformations**

Crop Size O

none

#### Subtract Mean O

Image

### **SLICER PROJECT WEEK 2017**

### **FIRST TRAINING TRY**

- LeNet network trained with insufficient/ biased training data (64 positive cases, 1000 negative cases, 30 epochs)
- Good match for negative cases (null classifier effect), but poor classification on positive cases (34% detection



### DATA AUGMENTATION

We used ImageMagick to quickly create augmented cases for the TRUE cases and address training imbalance



convert -flip convert -flop convert -rotate 90 convert -rotate 180 convert -rotate 270 convert -blur convert -auto-gamma

We need to be careful here to not induce bias during augmentation...



### SLICER PROJECT WEEK 2017

### TRAINING AFTER DATA AUGMENTATION

- LeNet trained for 300

   epochs on more balanced
   training set (~900 true
   images, ~1000 negative
   images)
- Results were improved to 83% true identification
- Reviewing the training curve from DIGITS, it looks like overtraining occurred, so 300 steps (5 hours of training) was too much



overfit seems to be happening here

### **3D ALEXNET CNN CLASSIFICATION**

- Augmented 2D data performs better than 2D original data alone. However the source data is available in 3D, (transaxial, sagittal,coronal) providing additional signal for training
- Original 3D only (without augmentation) produced superior results (72.7% positive detection rate) over original 2D, but not as good as augmented 2D. We theorize that augmented 3D would yield the best results
- Training chart at right seems to indicate that additional epochs of training should further improve performance.
   Layer depth of AlexNet seems to require additional data or higher learning rate.



### DISCUSSION

- 83% positive detection rate (from augmented 2D) seems already accurate enough to be useful for some high-throughput screening applications
- Data augmentation was crucial in this application and should be further refined to further improve classification
- LeNet training was performed in 2D only. 3D imagery and proper data augmentation should yield even better results, as 3D AlexNet without augmentation was better than 2D LeNet without augmentation.
- We theorize that 3D convolution on the 3D data or presenting the three axes fused together to a 2D convolution would further improve results



axial sagital coronal

### DISCUSSION

- Only ROI imagery was presented to the learning networks.
   Future work may investigate training simultaneously with different levels of imagery detail
- Deep Learning techniques enabled fast, high-quality classifier development when compared with traditional computer vision approaches for this dataset
- DIGITS ease of use and AWS Marketplace images allowed us to get right to training with minimal effort on data handling and system configuration