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PURPOSE OF THIS PROJECT

» Can we develop a binary classifier using thumbnail images from
the area immediately around existing cancer lesions using MRI

data?
li

cancer positive cancer negative

» How to decide the effect of different data preparation strategies

» This project was an introduction to Deep Learning for the authors
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CHOOSE THE LEARNING INFRASTRUCTURE
» Chose NVIDIA DIGITS

» Seemed easiest way to start training with minimal

coding required to manage data and construct the
learning network

» DIGITS offered several CNNs pre-constructed, which
seemed a good match for our classification problem



New Image Classification Dataset
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LeCun et al. 1989-1998: Handwritten Digit Recognition




New Image Classification Model

Select Dataset @ Solver Options Data Transformations
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1 image
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Python Layers © 1
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Use client-side file
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network defaulls
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Caffe oo

Show advanced learning rate options
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DATA AUGMENTATION

» We used ImageMagick to quickly create augmented cases
for the TRUE cases and address training imbalance

convert -flip

convert -flop

convert -rotate 90
convert -rotate 180
convert -rotate 270
convert -blur

convert -auto-gamma

We need to be careful
here to not induce bias
during augmentation...
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DISCUSSION

» 83% positive detection rate (from augmented 2D) seems already accurate
enough to be useful for some high-throughput screening applications

» Data augmentation was crucial in this application and should be further
refined to further improve classification

» LeNet training was performed in 2D only. 3D imagery and proper data
augmentation should yield even better results, as 3D AlexNet without
augmentation was better than 2D LeNet without augmentation.

» We theorize that 3D convolution on the 3D data or presenting the three
axes fused together to a 2D convolution would further improve results

axial sagital coronal
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DISCUSSION

» Only ROl imagery was presented to the learning networks.
Future work may investigate training simultaneously with
different levels of imagery detail

» Deep Learning techniques enabled fast, high-quality
classifier development when compared with traditional
computer vision approaches for this dataset

» DIGITS ease of use and AWS Marketplace images allowed
us to get right to training with minimal effort on data
handling and system configuration



