

3D Slicer for clinical use, for radiotherapy research, and for research work

Andras Lasso Laboratory for Percutaneous Surgery School of Computing Queen's University, Kingston, ON Canada

3D Slicer for clinical use

software application for MRI-guided prostate interventions

- 2 -

Laboratory for Percutaneous Surgery (The Perk Lab) – Copyright © Queen's University, 2011

MRI-guided prostate biopsy

Multiple supported devices

- Transrectal robot-assisted (TRR) ——
- Transperineal template (TPT) –
- Transperineal robot-assisted (TPR)

Multiple clinical sites

- NIH-NCI (Bethesda, MD): TRR
- JHH (Baltimore, MD): TRR
- BWH (Boston, MA): TPT, TPR
- PMH (Toronto, ON): image sharing only

- 4 -

Calibration

Laboratory for Percutaneous Surgery (The Perk Lab) – Copyright © Queen's University, 2011

- 5 -

Planning

- Register/show available images
- Mark point targets

Laboratory for Percutaneous Surgery (The Perk Lab) – Copyright © Queen's University, 2011

Targeting

- Simplified display on procedure-room monitor
- Robot, scanner control

- 7 -

Verification

- Verify patient, robot, and needle position
- Using automatic image registration

3D Slicer clinical use – summary

- Successful examples: same software, multiple devices, multiple sites
- Use existing features in 3D Slicer
- Customization
 - Software development: algorithms and graphical user interface
 - Quality assurance process: documentation, testing, change control, releases, issue tracking

- 9 -

3D Slicer for radiation therapy research

- 10 -

Laboratory for Percutaneous Surgery (The Perk Lab) – Copyright ${
m f C}$ Queen's University, 2011

Active projects

Adaptive radiotherapy for head and neck cancer

(http://www.na-mic.org/pages/DBP:Head and Neck Cancer)

- Funded by NA-MIC, 2010-2013
- PI: Greg Sharp (MGH, Boston, MA)
- 4 researchers, software engineers
- SparKit: toolkit and platform for radiotherapy

(https://www.assembla.com/spaces/sparkit/)

- Funded by Cancer Care Ontario, 2011-2016
- PI: G. Fichtinger (Queen's University, Kingston, ON)
 Co-investigator: Terry Peters (Robarts Institute, London, ON)
 Project leader: Andras Lasso (Queen's University, Kingston, ON)
- 6-8 software engineers and infrastructure
 NA-MIC collaborations in preparation

(http://www.na-mic.org/Wiki/index.php/ Events:Computational_Methods_for_Radiation_Oncology)

SparKit: Software Platform and Adaptive Radiotherapy Kit

- Software Platform (SP): shared, reusable, and customizable basic software components for radiotherapy
- Adaptive Radiotherapy Kit (ARKit): Specific toolkit for adaptive radiation therapy and associated image-guided interventions Goals:
- Validate clinical hypotheses in clinical trials
- Ready-to-use image analysis and visualization capabilities
 => avoid re-development
- Quickly deployable systems
 => minimize system engineering effort

Based on 3D Slicer and the NA-MIC kit

Laboratory for Percutaneous Surgery (The Perk Lab) – Copyright © Queen's University, 2011

SparKit infrastructure

Project scope (tentative)

- DICOM-RT support in 3D Slicer: import/export structure sets and dose maps
- Visualization: dose volume histogram, isodose lines
- Better support for temporally changing data (2D+t, 3D+t)
- 3D Slicer performance optimization
- Image and protocol data sharing infrastructure
- ... still collecting inputs from the community

Current SparKit activities

- Set up team & infrastructure
 - www.assembla.com/spaces/sparkit
 - Software engineers hiring
- Identify needs
 - Survey, meetings
- Set up collaborations

3D Slicer for your own problem

Programming 3D Slicer

Laboratory for Percutaneous Surgery (The Perk Lab) – Copyright © Queen's University, 2010

- 17 - Qu

Main concepts

- All information is stored in MRML (Medical Reality Modeling Language) nodes
 - Node types: images, models, transforms, fiducial lists, etc.
 - Observer pattern: MRML nodes notify their observers of any state changes
- Extension/customization via plugin *modules*
 - Define new nodes, observe existing MRML nodes
 - ITK, VTK, Teem, Curl, OpenIGTLink, QT already available

- 18 -

Programming 3D Slicer

- Scripted module: Python or TCL scripts
 - simple, no compilation needed
 - Imited access to Slicer internals
- Command-line module: .exe file (with specific command-line parameters)
 - simple, executable without Slicer
 - no access to Slicer internals, Slicer compilation needed
- Loadable (interactive) module: .dll (with specific Slicer API interface)
 - full access to Slicer internals
 - Slicer compilation needed, requires Slicer core knowledge

- 19 -

Getting started

- Download: http://www.slicer.org/pages/Special:SlicerDownloads
- Latest stable version (recommended)
 - Type of download: Stable Releases
 - File to download: latest date
 (*Slicer3-3.6.2-2010-11-03*)
- Documentation, examples, step-by-step tutorials, etc: <u>http://www.slicer.org/</u>
- 3D Slicer training courses, developer meetings: <u>http://www.na-mic.org/Wiki/index.php/Events</u>
- Slicer4 (faster, nicer, ...) is expected to be released for RSNA 2011

- 20 -

Thank you.

Andras Lasso <u>lasso@cs.queensu.ca</u> Laboratory for Percutaneous Surgery School of Computing Queen's University, Kingston, ON <u>http://perk.cs.queensu.ca</u>

http://www.assembla.com/spaces/sparkit

Laboratory for Percutaneous Surgery (The Perk Lab) – Copyright © Queen's University, 2011