

NA-MIC National Alliance for Medical Image Computing http://na-mic.org

Slicer3 Tutorial

Atlas Registration & Label Merging

Dominik Meier, Ron Kikinis February 2010

Overview

1.	Introduction	takes how long to do?	
2.	Prerequisites		
3.	Modules Used		
4.	Loading Example Dataset	1 min	Note: if wish to skip parts
5.	Viewing Input Data	3 min	of the tutorial, you will
6.	Build Thalamus Mask Images	10 min	by individual steps in the
7.	Build Thalamus Surface Models	3 min	Example Data Folder. You may load these
8.	Register Surfaces	3 min	individually via the "File/ Add Data…" menu.
9.	Apply Transform	5 min	
10.	Mask & Clip	5 min	The SlicerScene file that
11.	Merge Labels & Save	5 min	will only load the initial volume data.

Introduction / Scenario

- We have two anatomic atlases, obtained from two separate individuals by expert radiologist tracing. We refer to them as A0 ("old atlas") and A1 ("new atlas")
- The "old atlas" A0 contains labels for 25 thalamic nuclei and substructures that are not present in the "new atlas" A1.
- We want to transfer these labels from A0 -> A1, i.e. obtain a best possible estimate about the thalamic nuclei in A1 based on the information in A0
- To this end we co-register the two atlases such that the thalamus of both align as good as possible. Then we merge the two label maps.
- Because the two atlases hail from different individuals, no perfect alignment can be expected.
- Because we're interested only in the thalamus, we seek optimal alignment there and do not care much about the rest of the brain.

Modules Used

- To accomplish this task we will use the following modules:
 - Editor (thresholding)
 - Editor (change island)
 - Python Surface ICP Registration
 - Mask Image
 - Cast Image
 - Label merge
 - Color
 - Models

Prerequisites

- Slicer version 3.5 or later
- Example Dataset: download and extract the dataset for this tutorial: Slicer_AtlasMerge.zip. It should contain:
 - ManualRegTutorial.ppt
 - ManualRegTutorial.pdf
 - AtlasMergeTutorial_SlicerScene.mrml
 - A0_gray.nrrd, A1_gray.nrrd
 - A0_label.nrrd, A1_label.nrrd

Power Point File with this tutorial PDF with this tutorial Slicer Scene File to load grayscale images of both atlases labelmap images of both atlases

- Tutorials to complete first (helpful but not required):
 - Slicer3Minute Tutorial
 - Loading and Viewing Data
 - http://www.slicer.org/slicerWiki/index.php/Slicer3.4:Training

1. Loading Example Dataset

To get the Example Dataset loaded into Slicer:

- 1. File Menu: File: Load Scene...
 - Select the Slicer Scene file that comes with the downloaded example dataset, called: AtlasMerge_SlicerScene.mrml
 - This will load all the necessary images
- 2. Select Layout: From the icon bar, click on the -Layout menu and select "Conventional Layout".
- 3. Since Views: Click on the Ring Icon in any of the slice views to link all the views together. This will save you the work of making selections for each slice window separately.
- 4. E Choose Foreground: A0_gray
- 5. Choose Background: A1_gray
- 6. Choose Labelmap: A1_labels

File Edit Load Scene. Import Scene Add Data...

Add Volum

Close Scen

Add Transform Save Ctrl-A

Ctrl-S Ctrl-V

A1_gray

e 🕫

僌

<u>م</u>

A1 labels

Adjust Slice Views

To get an idea of the initial data and misalignment, perform the following to see both datasets in one image:

- Adjust the labelmap opacity to see
 both the grayscale image and the labelmap.Set the slider to about 0.7
- Set Visibility Slider to halfway between foreground and background. This allows you to see both atlases. You can see the initial misalignment.

Axial

A1_labels

í,

ଚ

Build Thalamus Mask

- 1. For registration we need a model of the entire thalamus. Hence we must first merge the labels of all the nuclei
- Turn off all display other than A0_labels,
 i.e. select "None" for fore- & background.
- The current colormap shows all nuclei
 labels as green. To see the individual
 structures, we select a new colormap: Go to the Volumes Module.
- 4. As "Active Volume" select "A0_labels"
- 5. Under "Lookup Table", select "Labels From File" and "SPL-BrainAtlas-ColorFile.txt"

Build Thalamus Mask (2)

- 6. Via the right mouse button, zoom in. You should see the individual nuclei. If you hover the mouse over each, the label and number are displayed under "Lb:
- 7. All thalamic structures have labels from 500-525. We use this to merge them into a single mask volume.

National Alliance for Medical Image Computing http://na-mic.org

Build Thalamus Mask (3)

- 8 Go to the "Volumes" module. From the "Active Volume" menu, select "A0_labels". Then scroll down to the "Info" tab and uncheck the box called "Label Map". Label Map:
- 9. Go to the "Editor" module
- 10. Under "Master Volume", select "A0_labels". Then click Apply on the dialog that appears.
- Under "Select Labelmap to Edit", select the newly created "A0_lables-label" and then select "Rename". Rename the new volume to "A0_thalamus"
- 12. From the icon panel, select the "Threshold Icon"

Build Thalamus Mask (4)

In the numeric fields, type the range: 500 and 525. You will see the selected structure "blink" in blue

13. Click on "Apply" to create the new volume

Build Mask for New Atlas

- Now we repeat the process to build the mask volume for the new atlas A1. A1 only has 2 labels for the left and right thalamus, respectively: 49 and 10. Because they are non-sequential we first change one.
- 2. In the Editor, for "Label Map to Edit", select "A1_label"
- 3. Select the "Change Island Icon"
 - 4. Change the label field to 49
 - 5. In the axial view, left click in the yellow area representing the left thalamus. Upon the click, the area should become the same turquoise color as the right thalamus.

-

Build Mask for New Atlas (2)

- Now we repeat the thresholding to extract only label 49.
 - For "Create Label Map From", select "A1_label". For "Select Label Map to Edit", select new "A1_label-label", and choose "Rename". Rename to "A1_thalamus"
 - 2. Set the label field back to 1.
 - 3. Select the "thresholding" icon, and for the range enter 49 in both fields.
 - 4. Hit Apply
- 2. We now have label volumes for the thalamus in both atlases.
- 3. Next we build models for both.

Build Thalamus Models

- 1. Go to the "Model Maker" Module (under Surface Models).
- 2. For "Input Volume", select "A0_thalamus"
- For "Models", select "Create New Model Hierarchy", then select "Rename" and enter "A0_ThalamusModel"
- 4. In the "Labels" field, enter 1.
- 5. Set the "Smooth" iterations field to 50
- Leave the "Decimate" field at the default of 0.25
- 7. Turn off "Split Normals" checkbox
- 8. Click "Apply"
- 9. After a few seconds of processing, you should see a model appear in the 3D view.

Modules:	Model Maker 🔤
	Modules: Model Maker - I I
	3DSlicer
	Parameter set Model Maker –
	Status Completed
	▲ IO
	Input Volume A0_tmus 🖃 🚔
	Models A0I -
	▼ Create Multiple
	Model Maker Parameters
	Labels 1
	Start Label -1 🚔
	End Label -1 🗘
	Joint Smoothing
	Smooth 50
	Filter Type 🔳 Sinc 🔲 Laplacian
	Split Normals
	Save Intermediate Models

Build Thalamus Models (2)

- 10. Before we build the second model, we apply some morphological cleanup to the second labelmap: Go to "Filtering / Denoising / MedianFilter" module. Select "A1_thalamus" as both input and output, leave defaults and click apply. The jagged edges at the surface will disappear.
- 11. We now Repeat the steps 1-9 on the previous slide for the second atlas, i.e. create "A1_ThalamusModel" from the "A1_thalamus" volume.
- 12. You should now have 2 models for each atlas, as seen on the right.

Register Thalamus Model Surfaces

- 1. Go to the "Python Surface ICP Registration" module
- 2. Select "Affine" and "RMS" and "Start by matching centroids"
- 3. For "maximum number of iterations" and "landmarks", set 200 each.
- 4. Input Surface: A0_ThalamusModel Target Surface: A1_ThalamusModel
- Output transform: "Create New Linear Transform", then select "Rename" and rename to "Xform_A0affine_ICP"
- 6. Click "Apply".

Modules: Python Surface ICP Registration -
 Python Surface ICP Registration
Parameter set Python Surface ICP Registration 😑 🚔
Status Idle
 Surface ICP Registration Parameters
Landmark transform mode 🔲 RigidBody 🔲 Similarity 🔳 Affine
Mean distance mode 🔳 RMS 🔲 AbsoluteValue
Maximum number of iterations 200
Maximum number of landmarks 200
Start by matching centroids 🗹
Check mean distance 📃
Maximum mean distance 0.01 🖨
▲ IO
Initial transform Ne 🖃 🛋
Input Surface 🗛 🗐 🚍
Target Surface 🗛 🔒 🚍
Output Surface Ne 🖃 🚍
Output transform XP 🖃 🛋
Default Cancel Apply

Register Thalamus Model Surfaces (2)

- 7. Go to the "Data" module
 - 8. Select the node "A0_ThalamusModel" and drag it on top of the "Xform_A0affine_ICP" node
 - 9. Click in the 3D view to force a redraw. You should now see the two models on top of each other.

- 10. Go to the "Models" volume.
- 11. Select "A0_ThalamusMode" from the menu, click on the "Set Color" button and change color to yellow.
- 12. Set the opacity slider to 0.9
- 13. Select "A1_ThalamusModel" and set the opacity to 0.7

Model Display ————		x
Select Model or Hierarchy:	A0_Thalamu	sModel
Selected		
Visibility		
Scalar Visibility 📃 Set Activ	/e Scalar:	
Scalar Color Map Select:	Labels	
Clipping		
Slice Intersections Visible		
Backface Culling		
Opacity		0.9
Set Color		

Apply Registration to Labelmap

- 1. Go to the "Resample Scalar/Vector/DWI Volume" module
- Input Volume : "A0_labels" Reference Volume : "A1_labels" Output Volume : "Create New Volume", rename to "A0_labels_aff"
- 3. Transform Node: "Xform_A0Affine_ICP"
- 4. Interpolation Type: "nn"
- 5. Click "Apply".
- 6. Repeat for the "A0_Thalamus" volume, i.e. create a new "A0_Thalamus_aff"
- 7. Go to the "Volumes" module, select the newly created "A0_labels_aff" and "A0_thalamus_aff", then check the "Labelmap" box.

* Resample Scala	r/Vector/DWI Volume	
Parameter set	Resample Scalartor/DWI Volume 😑 🚍	
	Status I	
 Input/Output 		
	Input Volume A0Is =	
Reference Volume (To Set Output Parameters) 🗛 🔤		
	Output Volume A0_Iaff 😑	
 Resampling Pa 	rameters	
 Transform Para 	meters	
	Transform Node 🛛 🖉 🛁	
 Manual Transform (Only Used If No Transform Node Set) 		
 Rigid/Affine Parameters 		
 Interpolation Ty 	/pe	
	Interpolation 🔲 linear 🔳 nn 🔲 ws 🔲 b	
 Windowed Sinc Interpolate Function Parameters 		
 BSpline Interpo 	late Function Parameters	
 Output Parame 	ters	

Modules: esa

esample Scalar/Vector/DWI Volume=

Mask New Labelmap

From the new labelmap we want to keep only the thalamic structures:

- 1. Go to "Mask Image" module
- Input Volume: "A0_labels_aff" Mask Volume: "A0_thalamus_aff" Masked Volume: "A0_labels aff" (Note we overwrite the volume with the masked one, if you get an error at this step you need to repeat the previous resampling step)

🕈 Mask Image		
	Parameter set 🛛 Mask Image 😑 🚔	
	Status Idle	
 Input And Output 		
	Input Volume A0_Iaff =	
	Mask Volume 🗛 🛓 🚽	
	Masked Volume 🗛 🗐 🚍 🚔	
▲ Settings		
	Label value 1	
	Replace value 0	
Default	Cancel Apply	

3. Click "Apply".

Mask New Labelmap (2)

- 4. Finally we mask again with the thalamus of the new (target) atlas. This is to prevent replacing labels other than the thalamus in places where the registered volume extends beyond the target. In other words we clip off anything "sticking out" beyond the boundaries of the A1 thalamus:
- 5. Go to the "Mask Image" module
- Input Volume: "A0_labels_aff" Mask Volume: "A1_thalamus_aff" Masked Volume: "Create New Volu "A0_labels aff_clip"
- 7. Click "Apply".

🕈 Mask Image		
	Parameter set 🛛 Mask Image 😑 🚔	
	Status Idle	
Input And Output		
	Input Volume 🗛 🗛 🚽	
Mask Volume A0_taff =		
	Masked Volume 🗛 🗐 🚽	
▲ Settings		
	Label value 1	
	Replace value 0	
Default	Cancel Apply	

Type Cast Atlas Labelmap

Some labelmaps can have different datatypes, which can cause problems when merging. To ensure both volumes to be merged have the same datatype we check the info in the "Volumes" module. To change we use the "Cast Volume" module":

- 1. Go to the "Cast Image" module
- 2. Input Volume: "A1_label" Output Volume: "A1_label" Output Type: "short"
- 3. Click Apply

Modules:	Cast Image	-
≜ Cast Image		
	Parameter set Ca	ast Image 😑 🚔
		Status Idle
^ IO		
	Input Volun	ne A1Is 🖃 🛋
	Output Volun	ne A1Is 🖃 🛋
▲ Filter Settings		
Output Type: 🔲 Char	🔲 UnsignedCh <mark>ar 🔳 Sho</mark>	d UnsignedShor
🔲 Int	UnsignedInt	a Unsigned ong
🔲 Float	Double Volum	ne.
Default	Cancel	Apply

Merge Labelmaps

Last step is to transfer the Thalamic Nuclei labels into the A1 labelmap.

- 1. Go to the "Image Label Combine" module
- Input Label Map A: "A0_label_aff_clip"
 Input Label Map B: "A1_labels"
 Output Label Map: "Create New Volume", rename to "A1_labels_merged"
- 3. Check box: First label overwrites second.
- 4. Click Apply
- 5. Go To "Volumes" module, select the new"A1_labels_merged" and check the "Labelmap" box.

Modules:	Image Label Combine 🛛 😑		
📍 Image Label Combi	Image Label Combine		
P	arameter set Image Label Combine 😑 💂		
	Status Idle		
^ IO			
	Input Label Map A A0_Iaff 😑 🚔		
	Input Label Map B 🗛 🗐 🚔		
Output Label Map A1_Irged 🖃 🌲			
▲ Label Combination Options			
	First Label Overwrites Second 🗹		
Default	Cancel Apply		

Save

- 1. Select "Save" from the File Menu.
- Check all boxes except the original input images "A0_gray", "A0_labels" etc.
- 3. Create a new output directory, and select it via the "Change Destination For All Selected" button.
- 4. click "Save Selected".

Change Destination for All Selected: 🤖

View Result

- 1. Go to the "Volumes" module, select "A1_label_merged". Under "Display", select a new colormap: "Labels from File / SPL-BrainAtlas-ColorFile.txt"
- 2. In the slice view, select "A1_gray" for for background, "A1_labels_merged" for labelmap.
- 3. Set the labelmap opacity to ~ 0.7

SPL-BrainAtlas-ColorFile.txt

Lookup Table:

- Try the Manual Registration Tutorial or one of the tutorials from the Registration Case Library.
 - <u>http://www.slicer.org/slicerWiki/index.php/Slicer3.4:Training</u>
 - <u>http://na-mic.org/Wiki/index.php/</u>
 <u>Projects:RegistrationDocumentation:UseCaseInventory</u>
 - <u>http://www.slicer.org/slicerWiki/index.php/</u>
 <u>Slicer3:Registration#Registration_in_3D_Slicer|Main</u>
- Feedback: anything amiss? If you have suggestions on how we can improve this and other documentation, please let us know: visit:
 - <u>http://na-mic.org/Wiki/index.php/Projects:RegistrationDocumentation</u>

Acknowledgements

National Alliance for Medical Image Computing NIH U54EB005149

Neuroimage Analysis Center NIH P41RR013218 -12S1 (ARRA Suppl)