

NA-MIC National Alliance for Medical Image Computing http://na-mic.org

Cortical Thickness Analysis with Slicer

Martin Styner

UNC - Departments of Computer Science and Psychiatry NIRAL, UNC IDDRC

Guido Gerig, Ipek Oguz, Josh Cates, Clement Vachet, Cedric Mathieu, Marc Niethammer

Motivation Neuroimaging

- Brain imaging in healthy & pathology
- Morphometry, Connectivity
 ⇔ Pathology
- Schizophrenia
- Autism, Fragile-X
- MPS, Krabbe
- Normal Development
- High risk offspring
- Fitness & Aging

- Cortical thickness examples
- Existing methods for cortical thickness
- NAMIC methods & modules
- Future work

Normal Brain

March Madness Brain

Neurodevelopmental Trajectories of the Human Cerebral Cortex

Philip Shaw,¹ Noor J. Kabani,³ Jason P. Lerch,⁴ Kristen Eckstrand,¹ Rhoshel Lenroot,¹ Nitin Gogtay,¹ Deanna Greenstein,¹ Liv Clasen,¹ Alan Evans,⁴ Judith L. Rapoport,¹ Jay N. Giedd,¹ and Steve P. Wise²

¹Child Psychiatry Branch and ²Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, ³Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada M4N 3N1, and ⁴Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4

nature Intellectual ability and cortical development in children and adolescents

P. Shaw¹, D. Greenstein¹, J. Lerch², L. Clasen¹, R. Lenroot¹, N. Gogtay¹, A. Evans², J. Rapoport¹ & J. Giedd¹

doi:10.1093/brain/awn025

Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity

H. Diana Rosas,^{1,2,3} David H. Salat,^{2,3} Stephanie Y. Lee,^{1,2,3} Alexandra K. Zaleta,^{1,2,3} Vasanth Pappu,^{1,2,3} Bruce Fischl,^{3,4} Doug Greve,^{3,4} Nathanael Hevelone⁵ and Steven M. Hersch¹

Cortical thinning

Correlation with cortical thinning

- Cortical thickness ≠ Graymatter density
 M Chung, TMI 2007, negatively correl.
- Major methods
 - BrainVoyager, Goebel
 - Commercialized, Brain Innovation
 - CLASP, Evans et al (MNI)
 - FreeSurfer, Fischl et al (MGH)

- CRUISE, Tosun et al (JHU,UCLA,UCSF)

Image preprocessing & Cortical surface extraction

CLASP Correspondence

- Nonlinear registration on 2D sphere surfaces
- Spherical surface registration with sulcal depth map

- Similar preprocessing
 Different order of steps
- WM from segmentation and topology correction
- GM surface from evolution along T1 intensity gradient

FreeSurfer Correspondence

Sulcal depth

Surface registration to atlas

CRUISE Cortical Reconstruction Using Implicit Surface Evolution

Laplacian based Cortical Thickness

Koenderink Shape Measures

- Cortical topology
 - Spherical topology needed?
 - During or After WM/GM segmentation
- Thickness measurement
 - Closest point, skeleton based, deformation based and laplacian solution based
- Cortical correspondence
 - Many based on sulcal depth based
 - But template? Population based?
 Parametrization? Uni vs Bi-hemispheric?

- 2 separate module pipelines
- 1. Regional/image based CT analysis:
 - Template based registration, simple but stable, good for regional analysis
- 2. Local/surface based CT analysis
 - Spherical topology, but tolerance against violations
 - Group-wise correspondence
 - Extensible generic framework that easily incorporates landmarks, connectivity, vessels, functional
 - Full framework in open source, NAMIC Kit

Slicer external module (loadable via extension manager)

ARCTIC (Automatic Regional Cortical ThICkness)

Input: raw data (T1-w, T2-w, PD-w images)

Three steps in the pipeline:

- 1. Tissue segmentation
- 2. Regional atlas deformable registration
- **3. Cortical Thickness**

Step 1: Tissue segmentation

 Probabilistic atlas-based automatic tissue segmentation via an Expectation-Maximization scheme

 Tool: itkEMS or ABC (Automatic Brain Classification on NITRC, UNC & UUtah)

National Alliance for Medical Image Computing <u>http://na-mic.org</u>

Step 2. Regional atlas deformable registration

• **2.1** <u>Skull stripping</u> using previously computed tissue segmentation label image

Tool: SegPostProcess (UNC Slicer3 external module)

•2.2 T1-weighted <u>atlas deformable registration</u> using a B-spline pipeline registration

Tool: RegisterImages or BrainsFit (Slicer3 modules)

•2.3 Applying transformation to the parcellation map

Tool: ResampleVolume2 (Slicer3 module)

Step 3. Cortical Thickness

- Sparse asymmetric local cortical thickness
- Uses distance map based local maxima to correct for CSF/GM errors (akin to skeleton based CT)
- Tool: CortThick (UNC Slicer3 module)

Note: All the tools used in the pipeline are Slicer3 modules, some of them being UNC external modules All can be run as command line and thus are scriptable

ARCTIC vs. Freesurfer:

FreeSurfer's tutorial dataset consisting of 40 healthy subjects, ranging in age from 18 to 93, Pearson correlation of the mean lobar CT's

- As is: Good correlation for parietal lobe, other lobes r < 0.7
- When using Freesurfer's WM/GM segmentation: all lobes r > 0.75
- Also using Fressurfer's parcellation: all lobes r > 0.85

Longitudinal autism study of 86 subject aged 2-4 years.

- FreeSurfer low success: <40% without, <70% manual intervention
- ARCTIC: 98% success rate

Group-wise Automatic Mesh-Based Analysis of Cortical Thickness (GAMBIT) Similar processing to other local

(GAMBIT) milar processing to other local approaches

Inflation, Sulcal Depth and Particle Initialization

Sulcal Depthmap WM surface Inflated surface

Group-wise Correspondence

- Template free
- Correspondence over all surfaces
- Minimum Description
 Length
 - Davies et al
 - Parametric framework
- Entropy: Oguz & Cates
 UNC & Utah

Particle Approach (Cates)

- Point-based sampling of the surface
 - Same number of particles per shape
 - Very different from all other parametric approaches
- Particles are ordered
 - Ordering implies correspondence

 Simultaneously maximize both the geometric accuracy and the statistical simplicity of the model

$$Q = H(Z) - \sum_{k} H(P^{k})$$

k: shape id
P: particle locations
Z: ensemble distribution

$$Ensemble entropy (small = simple)$$

$$Surface entropy (large = accurate)$$

- High surface entropy
 - ⇔ uniform sampling of the surface⇔ high geometric accuracy

Low surface entropy

High surface entropy

 $Q = H(Z) - \sum_{k} H(P^{k})$ \downarrow Surface entropy

- Low ensemble entropy
 - high similarity of corresponding points
 statistically compact model

- Allowing correspondence to depend on more than just position $P = f(x_j^k)$
- Examples of "attributes" f(x)
 - Local curvature
 - Sulcal depth
 - DTI probabilistic connectivity
 - MRA distance to vessel

- Corresponding particles across surfaces should have similar attribute values f(x)
- Particles should be evenly distributed on each surface

Ensemble entropy with attributes

P = xP = f(x)Y is the matrix of the function Y is the matrix of particle values at the particle points locations minus the minus the means of those ensemble's sample mean functions at the points becomes $G(P) = \log \left| \frac{1}{M-1} Y^T Y \right|$ $G(P) = \log \left| \frac{1}{M-1} Y^T Y \right|$ $-\frac{\partial G}{\partial P} = J^T (Y^T Y + \alpha I)^{-1}$ $-\frac{\partial G}{\partial P} = Y(Y^T Y + \alpha I)^{-1}$

Dealing with Cortical Geometry

- Highly convoluted surface is a problem
- Solution: Inflate the brain
 - Convex move inwards, concave move outwards
 - Minimizes metric distortion

- 9 healthy subjects
- Correspondence metric: sulcal depth
- Reduction of sulcal depth variance

	Sulcal Depth	Cortical Thickness
Initial Data	0.227634	0.334858
XYZ-entropy	0.219627	0.341715
SulcalDepth-entropy	0.00346167	0.310751
FreeSurfer	0.075644	0.303376

- Color map: Local variance of cortical thickness
- Entropy method has high error only in small patch

- Add probabilistic connectivity to ROI's
 - Incorporating fiber structure from DWI
 - Projecting tractography results to the white matter surface
 - Multiple cortical connectivity maps
 - CC, caudate, brainstem...

- All BSD style open source
- Slicer external modules for all individual steps
- Slicer external "super" module
 - Generates and run BatchMake script that calls steps
 - Can be run local or on grid
- Brand-new, methods paper published
- Regional CT: First study papers in review

Discussion & Future Work

- Cortical thickness
 - Important for neuroimaging studies
 - Critical gray matter development
 - Many tools, get better and better
 - NAMIC cortical thickness
- Next steps
 - Full Framework, testing, tutorials
 - Lots of studies
 - Cortical thickness in rodents

