

Diffusion MRI Analysis

Sonia Pujol, Ph.D.

Surgical Planning Laboratory, Harvard Medical School Director of Training, National Alliance for Medical Image Computing

spujol@bwh.harvard.edu

Brain Anatomy

- White matter ~45% of the brain
- Myelinated nerve fibers
- (~ 10 µm axon diameter)

White Matter Exploration

Jules Joseph Dejerine (*Anatomie des centres nerveux* (Paris, 1890-1901): Atlas of Neuroanatomy based on myelin stained preparation

White Matter Exploration

First non-invasive window on the organization of brain white matter pathways *in-vivo*

Tutorial Outline

This tutorial is an introduction to the fundamentals of Diffusion MRI analysis, from the estimation of diffusion tensors to the interactive 3D visualization of fiber tracts.

Tutorial dataset

The tutorial dataset DiffusionMRI_tutorialData is a Diffusion Weighted MR scan of the brain acquired with 41 gradient directions and one baseline.

The dataset is available on the Slicer Training Compendium (www.slicer.org)

Tutorial software

The tutorial uses the 3DSlicer version 4.1 software available at www.slicer.org

Disclaimer

It is the responsibility of the user of 3DSlicer to comply with both the terms of the license and with the applicable laws, regulations and rules. Slicer is a tool for research, and is not FDA approved.

3DSlicer

3D Slicer is a multi-institution effort supported by the National Institutes of Health.

- An end-user application for image analysis
- An open-source environment for software development
- A software platform that is both easy to use for clinical researchers and easy to extend for programmers

Learning Objectives

Following this tutorial, you'll be able to

1) Estimate a tensor volume from a set of Diffusion Weighted Images

2) Understand the shape and size of the diffusion ellipsoid

3) Reconstruct DTI tracts from a pre-defined region of interest

4) Interactively visualize DTI tracts seeded from a fiducial

MR Diffusion Analysis Pipeline

Calculation

Acquisition

Diffusion MRI Analysis – Sonia Pujol, Ph.D. NA-MIC ARR 2012

Maps

Visualization

Part 1: From DWI images to Tensors

Understanding the DWI dataset

The Diffusion Weighted Imaging (DWI) dataset is composed of 1 volume acquired without diffusion-sensitizing gradient, and 41 volumes acquired with 41 different diffusion-sensitizing gradient directions.

Start the Slicer Software

Modules: 🔍 📷 Weld	come to Slicer	् 🔍 🟠 🖤 🚳 🐐 📈 🏑	🖳 🔁 💲 🗸	» 🖪 💀 Ro 🔒	. –
3DSlicer		■ - 1		S	
Welcome					
Load DICOM Data	Load Data				
Customize Slicer	Ownload Sample Data			A	
► About			R	A	
The Main Window					
► Loading and Saving	<u> </u>	Slicer is built up	on a modi	ular archited	ture. The Welcome
 Display 		to Slicer module	is display	ed by defau	lt at start-up
 Mouse & Keyboard 					
 Documentation & Tutorials 		Click on Welcon	ne to Slice	er, and on Al	I Modules to display
 Acknowledgment 	t	the 103 module	s of Slicer	in the Modu	ules menu
✓ Data Probe					
L F					
В					

None RAS: (125.0, -125.0, 1.0),

Start the Slicer software

000	Annotations
🌆 🃸 🦾 Modules: 🔍	BSpline Deformable Registration
	BSpline to deformation field
	📼 Cameras
3DSlicer	Cast Scalar Volume
	ChangeTracker
NAC 1	CheckerBoard Filter
Welcom	Colors
	Create a DICOM Series
	Crop Volume
DICOM LOad DICOM Dat	Curvature Anisotropic Diffusion
Customize Slicer	🟙 DICOM
	DICOM to NRRD Converter
 About 	DTIexport
The Main Window	DTlimport
	DWI Joint Rician LMMSE Filter
Loading and Saving	DWI Rician LMMSE Filter
	DWI Unbiased Non Local Means
 Display 	DWI to DTI Estimation
Mouse & Keyboard	DWI to Full Brain Tractography
	A Data
 Documentation & Tutorials 	DataProbe
Acknowledgment	Demon Registration (BRAINS)
Acknowledgment	Diffusion Veighted Volume Maak
	EMSegment Command-line
	EMSegmenter with Atlas
	EMSegmenter without Atlas
	Endoscopy
	Event Broker
	Execution Model Tour
	Expert Automated Registration
	Extract Skeleton
	Fiducial Registration
	Foreground masking (BRAINS)
 Data Probe 	Gaussian Blur Image Filter
	General Registration (BRAINS)
	Gradient Anisotropic Diffusion
L F	
B	
None RAS: (125.0, -125.0, 1.0	0

ion field ries ic Diffusion nverter MSE Filter Filter Local Means Filter n actography (BRAINS) alar Measurements Volume Masking and-line Atlas ut Atlas ur egistration (BRAINS) e Filter

Hello Python Hello Python Part C - Laplace Hello Python Part D - Sharpen Histogram Matching Image Label Combine Intensity Difference Change Detection (FAST) Label Map Smoothing Label Statistics Linear Registration MRI Bias Field Correction Mask Scalar Volume Median Image Filter Merge Models Mesh Contour Segmentation Model Maker Model To Label Map Models Module Template MultiVolumeExplorer MultiVolumeImporter Multiply Scalar Volumes N4ITK MRI Bias correction ☆ OpenIGTLinkIF Orient Scalar Volume Otsu Threshold Image Filter Otsu Threshold Segmentation PET Standard Uptake Value Computation Performance Tests Probe Volume With Model Reformat Resample DTI Volume Resample Image (BRAINS) Resample Scalar Volume Resample Scalar/Vector/DWI Volume **Rigid Registration** Robust Multiresolution Affine Registration Robust Statistics Segmenter Sample Data IN Scene Views Simple Region Growing Segmentation

Tractography Display Tractography Fiducial Seeding Tractography Label Map Seeding Transform MRML Files to New EMSegmenter Standard Transforms Vector Demon Registration (BRAINS) View Controllers Volume Rendering Volumes Voting Binary Hole Filling Image Filter WebGL Export Welcome to Slicer

Slicer displays the list of 103 modules in alphabetical order.

🗎 🎰 🚵 Modules: 🔍 📷 Wel	come to Slicer 😫 🗖 🌀	ම 🕼 🖗 🚇 🛣 🖉		\$ ▼
3DSlicer	8 8	- 11		S
VVEICOME Load DICOM Data Customize Slicer About The Main Window Loading and Saving	Load Data		R	Click on Load Data in the GUI panel of the Welcome menu.
 Display Mouse & Keyboard Documentation & Tutorials 				
 Acknowledgment 			S: 0.00 - Y	Y <mark>₩ □</mark> R:0.00 = G ₩ ■
▼ Data Probe				
L F B				
None RAS: (125.0, -125.0, 1.0),				

R the Modules: < Welcome to Slicer	O; ि ♥ ♥ ₦ ∧ ℤ * Щ @ t -	» Ro Ro	↓ •			
Welcome			The axial, sagittal and coronal images of the			
About The Main Window Loading and Saving Display		R	DWI dataset appears in the 2D viewers			
Mouse & Keyboard Documentation & Tutorials Acknowledgment						
	-R	S: -0.75 - Y	R075			

- Data Probe

L F B

Adjusting Window and Level

S

😤 🍵 Modules: < € Volumes 🔹 🔹	=, O, O, M © © € ∧ ⊠ " @ t - " ₪ 8	Bas Ba _k + -
• Help & Acknowledgement Active Volume dwi • Volume Information • Display * Scalar Display DWI Component: O Lookup Table: Grey Interpolate: * Window Level editor presets: W: 532 Auto W/L * L: 272 Threshold: Off 0.00 * Histogram		Select the module Volume from the modules menu. Adjust the window and display of the baseline image using the W/L slider
Data Probe		Y POE G ADE

L F B

» 🐻 🔈 🦣 🕇

👷 🔺 Modules: < ♥Volumes	\$	- , G	0	6	۹ (۵ 🕯	۸ I		* 🗐	0	t -
4		ØX	- 1								
3DSIIcer											
Help & Acknowledgement											
Active Volume dwi		•									
Volume Information											
- Display											
Scalar Display		_									
		_									
Lookup Table: Grey		+									
Window Level editor presets:		=									
W: 1478 🕄 Manual W/L 🔹 L: 529)	•									
-1000 Off 4044		•									
0.00 0.00 0.00)	-									
*Histooram		_									
			-R	—		_			-	_	_
					Z.	ъ			83		÷
					Ľ	2		۵	1		
- Data Proba						3			-		ED.
·Data FIDDE						5					

L F В The baseline image corresponds to the DWI Component #0.

R Select the DWI component #10, which corresponds to the 10th diffusion sensitizing gradient

В

~

R

🖾 🐼 🔹 🗕

Modules: 🔍	Volumes		÷ =	G,	Ð		ŵ	Ŵ		1
				Ø	•	1				
3DSlicer										
 Help & Acknowledgement 				ŀ						
Active Volume dwi				\$						
 Volume Information 										
▼ Display										
 Scalar Display 										
DWI Component:	10 📫									
Lookup Table: Grey				\$						
Interpolate:										
			E						/	
W: 665 🖨 Manual W/L		•	L: 256	-						
Threshold:	Off	0		\$						
0.00		935	5.00 🜲							
▶ Histogram				_			Ľ	2		
					3	R	*	(
					»	S,	₽.	Axia	1	÷
							1			
							1			
					ĭ.					
·							١.			
								1100		

F В

Left click on the pin button in the top left corner of the red viewer to display the slice menu.

» 👩 🛵 📥 🔶 🔻

Click on the 'links' icon . to link all three viewers, and click on the 'fit image to window icon'.

😫 dwi

Diffusion Tensor Estimation 📷 📸 Modules: 🔍 DWI to DTI Estimation

A

主 🚍 🤤 😳 | 🏠 🍘

Canc

@ 🗙 🗉 R 🛛

3DSlicer	
 Help & Acknowledger 	nent
▼ DWI to DTI Estimation	
Parameter set: DWI to D	TI Estimation
Status	
▼ 10	
Input DWI Volume	dwi
Diffusion Tensor Mask	None
Output DTI Volume	Select a DiffusionTensorVolume
Output Baseline Volume	Select a Volume
 Estimation Parameters 	3
Estimation Parameters	● LS ○ WLS
Shift Negative Eigenvalu	es

Default Data Probe

L F

В

Select the module **DWI to DTI Estimation** in the modules menu:

-select the Input DWI volume 'dwi'

-select Output DTI Volume 'Create New Diffusion Tensor Volume', and rename it 'dti'

-select Output Baseline Volume ' Create new Volume', and rename it 'baseline'

-select the Estimation Method 'WLS' (Weighted Least Squares) and click on Apply.

Diffusion Tensor Estimation

	3D Slicer 4.1.0-rc1-2012-03-15	
🗎 🚵 🚵 Modules: 🔍 DWI to DTI Estimation 🗦 💻	Q; Q>; {} {} {} {} {} {} {} {} {} {} {} {} {}	
		S: -0.75
A SPELLER	🖉 🔍 🖓 Axial 🗢 🎟 🔍 📭 🔭 🎕	
Justicer		÷
Help & Acknowledgement	Ø 💀 0.00 🖨 🧱 None	÷
	🚇 👋 [1.00 🛊 📓 dwi	÷
DWI to DTI Estimation		
Parameter set: DWI to DTI Estimation		
Status	Completed 100%	
▼ 10		
Input DWI Volume		
Diffusion Tensor Mask None		
Output DTI Volume dti		
Output Baseline Volume baseline		
 Estimation Parameters 		
Estimation Parameters OLS		
Shift Negative Eigenvalues	A VITE MELTING AND A	
Select the volume	dti in the line in	
red viewer	100000000000000000000000000000000000000	
	2.00 MOMBINE MINUTE	
Default	Apply	
▼ Data Probe		
1		
L F		
В		

Diffusion Tensor Estimation

Green: anterior-posterior

Blue: inferior-superior

L F B

Default	Cancel	Apply
✓ Data Probe		

Diffusion Tensor Data

The diffusion tensor \underline{D} in the voxel (I,J,K) is a 3x3 symmetric matrix.

Diffusion Tensor

- The diffusion tensor <u>D</u> in the voxel (I,J,K) can be visualized as an ellipsoid, with the eigenvectors indicating the directions of the principal axes, and the square root of the eigenvalues defining the ellipsoidal radii.
- Scalar maps can be derived from the rotationally invariant eigenvalues λ1, λ2, λ3 to characterize the size and shape of the diffusion tensor.

Diffusion Tensor Shape

 $\lambda 1 = \lambda 2 = \lambda 3$ $\lambda 1 >> \lambda 2, \lambda 3$ $\lambda 1^{\sim} \lambda 2 >> \lambda 3$

Isotropic media (CSF, gray matter) Anisotropic media (white matter)

Exploring the Diffusion Tensor Data

🚵 📸 Modules: 🔍 DWI to DTI Estimation 🖻 💻 🧿 🥥 🟠 🎲 🚳 🍓 📶 🧭 » 🛅 📠 👧 🔶 🔻 A 🕈 0 x 🗉

Browse through the dti volume using the slider, and try identify the corpus callosum

Default	Cancel Apply
✓ Data Probe	

L
F
В

Corpus Callosum

The corpus callosum is a broad thick bundle of dense myelinated fibers that connect the left and right hemisphere. It is the largest white matter structure in the brain

Image from Gray's Anatomy

Exploring the Diffusion Tensor Data

🚵 📸 🗽 Modules: 🔍 DWI to DTI Estimation 🖻 =, Q, Q, 🟠 📦 🚳 🝓 🗹 🧭 📘 🛛 🔹 🗧 » 🐻 🚲 📥 🔸 🔻 0 🗙 D 3DSlicer Help & Acknowledgement DWI to DTI Estimation Parameter set: DWI to DTI Estimation ŧ Status **Corpus Callosum** ▼ 10 dwi Input DWI Volume Diffusion Tensor Mask None ŧ Output DTI Volume dti \$ Output Baseline Volume baseline ¢ Estimation Parameters Estimation Parameters Shift Negative Eigenvalues Default Cancel Apply

▼ Data Probe

L F B

Characterizing the Size of the tensor: Trace

Trace(D) = $\lambda 1 + \lambda 2 + \lambda 3$

- Trace(D) is intrinsic to the tissue and is independent of fiber orientation, and diffusion sensitizing gradient directions
- Trace(D) is a clinically relevant parameter for monitoring stroke and neurological condition (degree of structural coherence in tissue)
- Trace(D) is useful to characterize the size of the diffusion ellipsoid
Characterizing the Size of the tensor: Trace

Trace

| 🏡 🊵 Modules: < Diffusion Tensor Scalar Measurements 🗧 🗖 🚱 🕥 | 🏠 鄻 🍩 🍇 📈 | 🔲 | 🐼 🔹 🔹 🔹 👘 🖓 🔶 ♦ 🖛

Apply

3DSlicer		
 Help & Acknowledge 	ement	
▼ Diffusion Tensor Sca	alar Measurements	
Parameter set: Diffusio	n Tensor Scalar Measurements	\$
Status	Complete	ed
	100	%
▼ 10		
Input DTI Volume	dti	\$
Output Scalar Volume	trace	\$
 Operation 		

The trace image appears in the red viewer

	 PlanarMeasure 	
	 SphericalMeasure 	
	 MinEigenvalue 	
	 MidEigenvalue 	
	 MaxEigenvalue 	
	 MaxEigenvalueProjectionX 	
	 MaxEigenvalueProjectionY 	
	 MaxEigenvalueProjectionZ 	
	 RAIMaxEigenvecX 	
Default		Cance
✓ Data Probe		
Red RAS: (16	.9, 30.4, -0.8) Axial Sp: 1.5	
L None ()		

F None () B trace (53, 44, 47) 0.001736

	Trace
000	3D Slicer 4.1.0-rc1-2012-03-15
🛯 🚋 🚵 🕍 Modules: 🔍 Diffusion Tensor Scalar Measurements 🗧	Q Q A @ @ 4 Z < □ 0 1 · · · · · · · · · · · · · · · · · ·
3DSlicer	• R • • • • • • • • • • • • • •
Help & Acknowledgement	■ ● 1.00 ÷ 📓 trace ◆
Diffusion Tensor Scalar Measurements Parameter set: Diffusion Tensor Scalar Measurements Status Completed	
100%	
▼ 10	
Input DTI Volume dti	
Output Scalar Volume trace	
 Operation 	
 Estimation Parameters Trace Determinant RelativeAnisotropy FractionalAnisotropy Mode LinearMeasure PlanarMeasure SphericalMeasure 	
Select the volume 't	race' in the
Background viewer,	and the volume 'dti'
Default in the Foreground v	iewer
Set the opacity of th	ne dti volume to 0.40
B	In the second

Trace

00	3D Slicer 4.1.0-rc1-2012-03-15
🛯 🚵 📸 Modules: 🔍 Diffusion Tensor Scala	1easurements 🗢 💻 🧿 🗿 🏠 🖤 🚳 🍓 📶 🥢 📔 🛛 🕢 🕴 🗮 🖉 + 🔹 » 🐻 🗛 👆 🕂
3DSlicer	๗ * 1.00 ↓ iii None
Help & Acknowledgement	Ø ♦ 0.40 → 📓 dti Ø ♦ 1.00 → 📓 trace
 Diffusion Tensor Scalar Measurements 	
arameter set: Diffusion Tensor Scalar Measuremer	
Status	Completed
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100%
· 10	
iput DTI Volume	
Dutput Scalar Volume trace	
ove the mouse c	rsor in the 2D
w and observe	he values of the

V trace in the corpus callosum and in the adjacent gray matter.

	 MaxEigenvalueProjectionX 	
	 MaxEigenvalueProjectionY 	
	 MaxEigenvalueProjectionZ 	
	 RAIMaxEigenvecX 	
Default		Cancel Apply
 Data Probe 		
Red RAS: (10.3,	23.7, 18.8) Axial Sp: 1.5	

L None () F dti (57, 48, 60) ColorOrientation 0 B trace (57, 48, 60) 0.002243

Default

Trace

			3D Slice	er 4.1.0	0-rc1-20	012-03-	15						
🗎 🚵 🚵 Modules: 🔍 Diffusion Tensor Scalar Measurements 🛊 💻 🤇			۹	0	` 🛣	6			9	-	»	Ro	
3DSlicer	• •	⇔ Ax ⊛ 1.00	xial	¢ No	m 🔊	. 0. 2	Γ. 🞕						
Help & Acknowledgement		⊛ 0.40 ⊛ 1.00		tra	ce								
Diffusion Tensor Scalar Measurements Parameter set: Diffusion Tensor Scalar Measurements Status								R		-1		1	The set
Note how the Trace													
values are fairly uniform													
in both white and gray													
matter, even if the													
tissues are different in													
structure.													
 MaxEigenvalueProjectionX MaxEigenvalueProjectionY MaxEigenvalueProjectionZ RAIMaxEigenvecX 													

Apply

Cancel

Default ▼ Data Probe

Red RAS: (10.3, 23.7, 18.8) Axial Sp: 1.5

L None () F dti (57, 48, 60) ColorOrientation 0 B trace (57, 48, 60) 0.002243 S: 18.75

\$ \$

Scalar Maps: Fractional Anisotropy

$$FA(D) = \frac{\sqrt{\left(\lambda_1 - \lambda_2\right)^2 + \left(\lambda_1 - \lambda_3\right)^2 + \left(\lambda_2 - \lambda_3\right)^2}}{\sqrt{2}\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

- FA(D) is intrinsic to the tissue and is independent of fiber orientation, and diffusion sensitizing gradient directions
- FA(D) is useful to characterize the shape (degree of 'out-of-roundness') of the diffusion ellipsoid'
- Low FA:

High FA:

Characterizing the Shape of the tensor: Fractional Anisotropy

🛛 🚓 🗚 Modules: < Diffusion Tensor Scalar Measurement	ts • =, O, O, 12 @ @ 4 A Z " III, IO " B A A, + •
Sostierer Help & Acknowledgement Diffusion Tensor Scalar Measurements Parameter set: Diffusion Tensor Scalar Measureme Status	
IO Input DTI Volume dti Output Scalar Volume fa	Set Input DTI Volume to 'dti'
Operation Estimation Parameters Trace Determinant RelativeAnisotropy FractionalAnisotropy	Select Output Scalar Volume 'Create new Volume' and rename it 'fa'
∘ Mode ∘ LinearMeasure ∘ PlanarMeasure	Select the Operation 'Fractional Anisotropy'
 SphericalMeasure MinEigenvalue MidEigenvalue MaxEigenvalue MaxFigenvalue 	Click on Apply to calculate the Fractional Anisotropy map of the tensor volume
Default Cancel Apply · Data Probe	
Red RAS: (69.3, 14.5, -0.8) Axial Sp: 1.5 L None() F None() Bdti (18, 54, 47)ColorOrientation 0	

Diffusion MRI Analysis – Sonia Pujol, Ph.D. NA-MIC ARR 2012

Fractional Anisotropy

🚵 📸 Modules: 🔍 Diffusion Tensor Scalar Measurements 🗧 🗖 🥥 🖓 🎲 🤍 🌰 🕍 🖉 / 🖉 👘 👘 👘 👘 🦓 👘

0 🗙

¢ Completed 100%

¢

\$

Cancel

Apply

Select the Background volume to 'fa' in the red viewer and explore the FA values in the corpus callosum and in adjacent gray matter areas.

Default

F B

Data Probe

MaxEigenvalueProjectionX
 MaxEigenvalueProjectionY
 MaxEigenvalueProjectionZ
 RAIMaxEigenvecX

Fractional Anisotropy

Fractional Anisotropy

A 🛧 🗕

6 0

Ø 🗙 🔭 1

1 🏠 🎯

Set the Foreground volume to 'None', and set the Background volume to 'dti' in the red viewer menu.

Modules: 🔍 Diffusion Tensor Scalar Measurements 😫 💳

Go back to conventional layout

Default

Data Probe

Diffusion MRI Analysis – Sonia Pujol, Ph.D. NA-MIC ARR 2012

Part 2: Visualizing the tensor data

R

Click on Auto W/L to adjust the Window and Level values of the display

In the **Glyphs on Slices Display panel**, set the Color by Scalar parameter to 'ColorOrientation', and check Slice Visibility 'Red' '

A

Click on the link icon in the red slice viewer to unlink the three viewers.

Click on the eye icon to display the glyphs superimposed on the FA image in the 3D Viewer

≑ 🎟 📎

🖩 dti

Diffusion MRI Analysis – Sonia Pujol, Ph.D. NA-MIC ARR 2012

different regions of the brain

diffusion ellipsoid in the

» 🐻 🗛 👧 🔶 🔻

Note the orientation of diffusion ellipsoid of the splenium of the corpus callosum (posterior part)

villaow Level ed	nor presets	ò.	
W: 1.00 Auto W	//L		• L: 0.50 ÷
Threshold:		Off	+
0.00			1.00
Histogram Glyphs on Slice	s Display		
Slice Visibility: R	led	Yellow	Green
Opacity:			1.00
Scalar ColorMap:	🔲 Rainbo)W	+
Color by Scalar:	ColorOrier	ntation	÷
Scalar Range:			255
Glyph Type:	Ellipsoids		+
Scale Factor:			45.00
Spacing:			5.00 :
- Data Probe			

» 🐻 🗛 👧 🔶 🔻

Change the Glyph Type to 'Lines', and move the mouse inside the 3D viewer to refresh the display.

Slicer displays the glyphs as lines that represent the principal direction of diffusion (main eigenvector)

		0.11	0	
I hreshold:		Off		÷
0.00			0.00) 🕂
*Histogram *Glyphs on Slice	es Displa	ay		
Slice Visibility: ∞F	led	Yellow	Green	
Opacity:			1.00	* *
Scalar ColorMap	🔲 Rai	nbow		+
Color by Scalar:	ColorC	rientation		+
Scalar Range:		0	25	55 🔅
Glyph Type:	Lines			+
Scale Factor:			45.0	0
Spacing:			5.00	* *
Glyph EigenVect	or: Majo	r		\$
- Data Probe				

Optic Chiasm

The optic chiasm corresponds to the part of the brain where the optic nerves cross.

Image from Gray's Anatomy

» 🐻 🚲 🚲 🔶 🕶

Go back to the conventional layout, unselect Slice Visibility 'red', and click on the eye icon in the red viewer to turn off the visibility of the red slice in the 3D viewer

▼ Data Probe

FB

Diffusion MRI Analysis – Sonia Pujol, Ph.D. NA-MIC ARR 2012

Part 3: From tensors to tracts

Diffusion MRI tractography

- Tractography can be defined as the virtual reconstruction of the trajectory of water molecules along white matter bundles.
- DTI tracts provide a mathematical representation of the underlying white matter anatomy.
- Each voxel contains hundreds of thousands of axon fibers: size of a voxel ~ 1-5 mm is <u>very different</u> from the diameter of an axon~0.1-10 μm
- \rightarrow A DTI tract is not equivalent to a real fiber.

Tractography Seeding: ROI definition

) ☆ ♥ ≌ ≜ ∧ ⊠ * Щ ┛
Bostieer Help & Acknowledgement Create and Select Label Maps Master Volume: None	Select the module
Master Volume: None Set Merge Volume: Set Per-Structure Volumes Edit Selected Label Map	'Yellow Slice Only

- Data Probe

L F B

Editor,

to

ROI Definition

👷 🛓 Modules: < ∠Editor	• = 3 3 3	¢ د	۵	<u>ن</u>	a 🔣 🔹
	@ # <mark>-</mark>	(_			
3DSlicer					
 Help & Acknowledgement 					
- Create and Select Label Maps					and it
Master Volume: fa	\$				35.
Merge Volume: None	Set			1	495
Per-Structure Volumes					100
· Edit Selected Label Map					77.

Set the Master Volume to 'fa' Click on Apply in the pop-up window to create an empty labelmap 'fa-label'

Create a merge label map for selected master volume fa. New volume will be fa-label. Select the color table node will be used for segmentation labels.

Cancel

- Data Probe Yellow RAS: (1.5, 3.4, 58.9) Sagittal Sp: 1.5 L None() F None() Bfa (63, 62, 86) 0.04563

ROI Drawing

🎕 A 🔣

👷 🛔 Mod	ules: < < Edito	or		÷ =, 0,	©_ ☆	۵
3DSlicer				6	• • •	_
• Help & A	Acknowledge	rient				
- Create a	and Select La	bel Maps				
Master Vo	olume: 🚛			÷		
Merge Vo *Per-Stri •Edit Sel •Eraco •Eraco •Beraco	olume fa-lal Intre Volume Led Label N I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	oel Aap	Set.	••		
Active To	ol:	Draw				
Label:	tissue	1	A			
⊮Paint Ov □Thresho	ver Id Paint					
		Apply				
?						

- Data Pr	obe
Yellow	RAS: (1.5, 26.2, 2.7) Sagittal Sp: 1.5
L fa-labe	I(63, 47, 49)background (0)
F None	0
B fa	(63, 47, 49) 0.08294

Use the draw tool to outline the contour of the corpus callosum in the sagittal slice, and press Enter. Repeat the same operation on 3 adjacent sagittal slices.

ROI Drawing

👷 🐁 Modules: ۹. ∠Editor	• = 0 0	🟠 🔍 😂 🛦 🖾 👋 🔲 🙋	» 🗟 🗛 🗛 🔶 🕶	
Help & Acknowledgement Greate and Select Label Maps Master Volume: fa Merge Volume: fa-label Per-Structure Volumes Edit Selected Label Map EGZ Edit Selected Label Map Denue	© ® •	Y		R 4.80
Active fool. Draw Label: tissue 1 Paint Over Threshold Paint Apply ?				
 Data Pr Yellow L fa-labe F None Bfa 	will be s nterest c losum ar	eeded fror defined in t ea.	n the he	

Streamline tractography

<u>Underlying Assumption</u>: the orientation of the fibers is collinear with the direction of the principal eigenvector

Labelmap Seeding: I/O

🔲 🐼 🕇 🗸

		ð 🗶
3DSlicer		
 Help & Acknowled 	gement	
Input Label Map	fa-label	▲
Output Fiber Bundle Write Fibers To Disk	corpusCallosum	\$
Output Directory	/Applications	
 Seed Placement C 	ptions	
Use Index Space Seed Spacing Bandom Grid		2.00
Linear Measure Start	Threshold	0.3 🗘
 Tractography See 	ding Parameters	
Minimum Path Lengt	h _	10.00
Maximum Length		800.00
Stopping Criteria	 LinearMeasure FractionalAnisotropy 	
Stopping Value		0.15 🖨
Stopping Track Curv	ature —	0.8
Integration Step Len	gth(mm) — @	0.5
 Label definition 		
Seeding label 1 Default		Cancel Apply
 Data Probe 		

F B Modules: 🔍 Tractography Label Map Seeding 😫 💻 🧿 🕘 🛛 🏠 🌒 🚳

Select the module **Tractography Label Map Seeding** Set the Input DTI Volume to 'dti' Set the Input Label Map to 'falabel'

» 🐻 🚲 📥 🔸 🔻

Set Output Fiber Bundle to 'Create New Fiber Bundle' and rename it 'corpusCallosum'

Labelmap Seeding: parameters

Modu	iles: 🔍 Tractography Label Map Se	eding 🗧 💻 🤤 😜
1		0 🗙
3DSlicer		
 Help & Acknowled 	igement	
Input Label Map	fa-label	
Output Fiber Bundle	corpusCallosum	
Write Fibers To Disk		
Output Directory	Applications	
File Prefix Name	line	
 Seed Placement C 	ptions	
Use Index Space Seed Spacing Random Grid		2.00 🜩
Linear Measure Start	Threshold	0.3
 Tractography See 	ding Parameters	
Minimum Path Lengt	h _	10.00
Maximum Length		800.00
Stopping Criteria	 LinearMeasure 	
	FractionalAnisotropy	
Stopping Value		0.15
Stopping Track Curv	ature -	0.8
Integration Step Len	ath(mm)	0.5
▼ Label definition		
Sooding label 1		
Default		
✓ Data Probe		

F B

Select the Seed Placement Options to 'Use Index Space'. Select Stopping Criteria 'Fractional Anisotropy' Select the default tractography Seeding parameters: -Minimum length: 10 mm -Maximum length: 800 mm -Stopping value: 0.15 -Stopping track curvature: 0.8 -Integration step length: 0.5 mm Click on Apply

NA-MIC ARR 2012

Labelmap Seeding: Tracts

🔝 🚵 🐜 Modules: < Tractography Label Map Seeding 🗧 🔾 🔾	
3DSIIcer	
Help & Acknowledgement	N/S
Input DTI Volume dti	Select the layout
Input Label Map fa-label	
Output Fiber Bundle corpusCallosum	'Conventional Widescreen'
Write Fibers To Disk	
Output Directory	
File Prefix Name	
Seed Placement Options	
Use Index Space ✓ Seed Spacing 200 ▲	
Random Grid	
Linear Measure Start Threshold 0.3 +	
Tractography Seeding Parameters	
Minimum Path Length	
Maximum Length	
Stopping Criteria O Linear Measure	
 FractionalAnisotropy 	Charles and a start of the start of the
Stopping Value	
Stopping Track Curvature	
Integration Step Length(mm) =	
a the state of the state of the theory	
e tracts generated in the	
nus callosum area annear	

in the 3D viewer.

Labelmap Seeding: Tracts

🔝 📸 Modules: < Tractography Label Map Seeding 🗧 🔵 🕥 । 🏠 📦	🎱 🎕 🖾 ८ 🖳 🗗 🕇 ▾ 🔹 🕷 👦 🛝 🔶 ▼	C: 0.75
3DSlicer		ALVA.
Help & Acknowledgement Input DTI Volume dti Input Label Map fa-label Output Fiber Bundle corpusCallosum Write Fibers To Disk Output Directory	Select the module Tractography Display	
File Prefix Name line Seed Placement Options 		R: 14.25
Use Index Space Seed Spacing Random Grid Linear Measure Start Threshold 0.3	Received Provide Provi	PRP 1
 Tractography Seeding Parameters Minimum Path Length Incon ↓ Incon ↓		
FractionalAnisotropy Stopping Value 0.15 Stopping Track Curvature 0.8 Integration Step Length(mm) 0.5		A: 0.75
Label definition Default Cancel Apply Data Probe		

F B

Tractography Results

Slicer displays the glyphs (ellipsoids) along the tracts.

- L F
- В

Tractography Results

» 🔚 🐜 📥 🔶

🛛 🖉 🚹 🕯

 Help & Acknowled 	dgement	
Help Acknowled	gement	
This work was supp the Slicer Communi	orted by NA-MIC, NAC, BIRN, NCIGT, a ty. See http://www.slicer.org for details.	nd
FiberBundle: corpus	Callosum	\$
 ★ Line △ Tube △ Slice Ir ★ Glyph 	ntersection	
Percentage of Fiber	s Shown — 100%	÷
 Fiber Bundle Sele 	ction	
ROI for Fiber Select	ion None	\$
Isable ROI	 Positive ROI Negative ROI 	
Create Bundle From	n ROI None	\$
Update Bundle Fro	m ROI 🗆 Confirm update	
- Advanced Display	/	
Line Tube Gly	ph	_
· Visibility Opac	ity: 1.00	÷
Color By:		
Scalar Colormap)	
FullRaint	÷ woo	
Of Tensor Pro	perty FractionalAnisotropy +	
Of Fiber Clust	er Group ID	
Solid color	■ #000000	j
Glyph Type	Ellipsoids	ŧ
Glyph Eigenvector	Middle	¢
Scale factor	50	-
Spacing	20	÷

Data Prob

FB

: = 🔇 🔘

R

Note that both the glyphs and the tracts are color according to FA values:
-low anisotropy (gray matter) → red
-high anisotropy (white matter) → blue

Tractography Results

» 🔚 🐜 📥 🔶

| 🏠 🌒 🚳 🛦 📶 👒 📑 🔹 💲 🕶

R

		0 R
3DSlicer		
Help & Acknowler	daement	
his work was supp ne Slicer Communi	ported by NA-MIC, NAC, BIRN, N ity. See http://www.slicer.org for	CIGT, and details.
perBundle: corpus	Callosum	\$
 Line Tube ⇔ Slice Ir Glyph 	ntersection	
ercentage of Fiber	s Shown	- 100% 🗘
Fiber Bundle Sele	ction	
ROI for Fiber Select	tion None	\$
Disable ROI	 Positive ROI Negative 	ve ROI
Create Bundle Fror	m ROI None	\$
Update Bundle Fro	m ROI Confirm update	
Advanced Display	Y	
Line Tube Gly	ph	
· Visibility Opac	ity:	1.00 🛊
Color By:		
Scalar Colormap)	
FullRaink	woo	+
Of Tensor Pro	perty FractionalAnisotropy	•
Of Fiber Clust	er Group ID	
	■ #000000	
Solid color		
 Solid color Glyph Type 	Ellipsoids	•
 Solid color Glyph Type Glyph Eigenvector 	Ellipsoids	+
Solid color Glyph Type Glyph Eigenvector Scale factor	Ellipsoids Middle	¢ ¢ = 50 •

Click on Advanced Display, select the panel Glyph and select Tensor Property 'Color Orientation'

F
Tractography Results

» 🔚 🐜 📥 🔶

gement ement vted by NA-MIC, NAC, BIRN, NCIGT, y. See http://www.slicer.org for details	and
gement prenent vrted by NA-MIC, NAC, BIRN, NCIGT, y. See http://www.slicer.org for details	and
gement prenent orted by NA-MIC, NAC, BIRN, NCIGT, y. See http://www.slicer.org for details	and
ement orted by NA-MIC, NAC, BIRN, NCIGT, y. See <u>http://www.slicer.org</u> for details	and
orted by NA-MIC, NAC, BIRN, NCIGT, y. See http://www.slicer.org for details	and
Callosum	¢
ersection	
Shown 100)% 🗘
tion	
on None	\$
O Positive ROI O Negative ROI	
ROI None	\$
n ROI 🗆 Confirm update	
bh	
y:0 1.0	0 🗘
ow	•
ColorOrientation	•
er Group ID	
■ #000000	
Ellipsoids	¢
Middle	¢
50	-
	Tree 1
	structure ersection Shown 100 tion on None Positive ROI Negative ROI ROI None ROI Confirm update h r: 1.0 w erty ColorOrientation r Group ID Ellipsoids Middle 50

🔊 🏠 🕶

🕤 🟠 🗑 🚳 🐁 🚮

The ellipsoids are now displayed in color by orientation mode. Zoom in the 3D viewer to get a closer view of the

corpus callosum

Tractography Results

Tractography Results

Select the module
Annotations

0 x - 1

🚵 🚵 Modules: 🔍 🗹 Annotations

3DSlicer

1	vis Lock Edit Value	e Name E
8	态	All Annot
	A	Fiducials
	🛎 🕌 🖌 -3.7,	12.0, 26.8 F

Click on the arrow to create a fiducial, and position it in the left cingulum in the coronal slice

Data Probe

L F B

Help & Acknowledgeme	nt		_
Parameter set FiducialSeec	dingParameters		1
▼ 10			_
Input DTI Volume	Select a Dien	sorVolume	¢
Input Fiducial List or Model	Fiducials List		\$
Output Fiber Bundle	Select a FiberBu	undle	\$
 Seed Placement Options 	6		
Fiducial Region Size		= 2.50mm	4
Fiducial Seeding Step Size	-0	= 1.00mm	4
Seed Selected Fiducials			
Max Number of Seeds	100		4
 Tractography Seeding P 	arameters		
Minimum Path Length		20.00mm	4
Stopping Criteria	Fractional Anisotr	ору	\$
Stopping Value		0.25	4
Stopping Track Curvature	0	0.70	4
Integration Step Length		0.50mm	4
 Enabling Options 			
Create Tracts Initially As T	ubes		\$
Enable Seeding Tracts			

। 🚵 📸 🕍 | Modules: 🔍 Tractography Fiducial Seeding ᅌ 🛑 🏠 🛛 🟠

Øx - 1

Select the module Tractography Fiducial Seeding

Select the DTI volume 'dti' Select the Fiducial List 'Fiducials List' Select the Output Fiber Bundle 'Create New Fiber Bundle' and rename it 'Cingulum'

» 🐻 🗛 👆 🔻

L F B

3DSlicer		
 Help & Acknowledgemer 	nt	
Parameter set FiducialSeed	lingParameters	
▼ 10		
Input DTI Volume	dti	
Input Fiducial List or Model	Fiducials List	
Output Fiber Bundle	Cingulum	
▼ Seed Placement Options		
Fiducial Region Size	•	2.50mn
Fiducial Seeding Step Size	0	= 1.00mn
Seed Selected Fiducials		
Max Number of Seeds	100	
 Tractography Seeding Pa 	arameters	
Minimum Path Length	0	10.00mn
Stopping Criteria	Fractional Anisotro	ору
Stopping Value		0.15
Stopping Track Curvature =	0	0.80
Integration Step Length	<u>]</u>	0.50mm
 Enabling Options 		
Create Tracts Initially As Tu	ubes	
Enable Seeding Tracts		

📸 📸 Modules: 🔍 Tractography Fiducial Seeding 🗧 🌀 🥥

Øx - 1

Data Probe

L F B Set the tractography parameters as follows:

» 🐻 🔊 🗛 🔶 🔻

- -Fiducial region size: 2.5 mm
- -Fiducial Seeding Step Size: 1.0 mm

Ø

🛛 🔁 🕇 🥆

- -Maximum number of seeds: 100
- -Minimum Path Length: 10 mm
- -Stopping Criteria: Fractional Anisotropy
- -Stopping Value: 0.15
- -Stopping Track Curvature: 0.8
- -Integration step length: 0.5 mm
- -Create Tracts Initially as Tubes

Ζ.

🔍 Tractography Fiducial Seeding 🗧 🧿 🕘 🟠

Part of the left cingulum appears in the 3D viewer.

M 3DSlicer

Move the Left Cingulum fiducial to explore the spatial relationship between the left cingulum and the corpus callosum

Data Probe

В

🖂 😔 靠 🗖

🗖 🗛 🗛 😽 🔻

▼ Edit	ns					
	10		-	*		Ĩ
Active lis	t: Fiducia	ls List	۲	Q	Ω	ă
Vi	s Lock E	Edit Value	е	Na	me	D
=		么		All	Annot.	
	2	<u>A</u>		Fid	ucials.	
- 🛛 🕸	×	-3.7,	12.0, 2	6.8 Lef	tCing.	
		- 8.5, ⁻	12.9, 24	I.9 Rig	htCin.	

🛯 🚵 🚵 Modules: 🔍 🗹 Annotations

Click on the arrow icon to create a new fiducial, and position it in the right cingulum area.

Change the name of the new fiducial to 'Right Cingulum' in the Annotations module

Fiducial Seeding 👩 🜆 👧 🔶 🔻

🚵 📸 🐜 Modules: 🔍 🖬 Annotations

3DSlicer

🖻 💻 🧿 🔘 🚹 🏠 🔍 🌰 📓 🖉 🛛 🖉 🗘 🛨

Part of the left and right cingulum appear in the 3D viewer.

Move the fiducials to explore the spatial relationship between the left and right cingulum, and the corpus callosum

В

Tractography 'on-the-fly'

matter structures interactively

F B

DTI Analysis

🖻 💻 🧿 🔕 🟠 🕼 🚳 🍓 🔏 🖉

Ø 🗙 🗝 1

\$

Befault Scene Camera Wiew View View View View View View View V		
 Help & Acknowledgement Display & Modify Scene Nodes Scene View Default Scene Camera dwi dti baseline baseline-label trace fa corpusCallosum All Annotations LeftCingulum Fiducials List Cingulum RightCingulum F_2 Scene View 	3DSlicer	
 Display & Modify Scene Nodes Scene View Default Scene Camera dwi baseline baseline-label trace fa corpusCallosum All Annotations LeftCingulum Fiducials List Cingulum RightCingulum F_2 Scene View 	 Help & Acknowledgement 	
Nodes Scene View Default Scene Camera dwi dti baseline-label trace fa corpusCallosum All Annotations LeftCingulum Fiducials List Cingulum RightCingulum F_2 SceneViewToplevelHierarchyNode Master Scene View	 Display & Modify Scene 	
 Scene View Default Scene Camera dwi dti baseline-label trace fa corpuScallosum All Annotations LeftCingulum Fiducials List Cingulum RightCingulum F_2 SceneViewToplevelHierarchyNode Master Scene View 	Nodes	
	Scene View Default Scene Camera dwi dti baseline baseline-label trace fa corpusCallosum All Annotations LeftCingulum Fiducials List Cingulum RightCingulum F_2 SceneViewToplevelHierarchyNode Master Scene View	~

🖍 🚵 🐜 Modules: 🔍 🛦 Data

Scene Model: Transform

Display MRML ID's
 Show Hidden nodes

Filter:

Load & Add Scenes Or Individual Datasets

Data Probe

L F B Select the module Data to display the list of elements that have been generated in this tutorial

0

» 🐻 🜆 🚲 🔶 🕶

Conclusion

This tutorial guided you through the different steps of a Diffusion MR Analysis pipeline, from tensor estimation to 3D tracts visualization, for exploring and studying the brain white matter pathways.

Acknowledgments

National Alliance for Medical Image Computing NIH U54EB005149

Neuroimage Analysis Center NIH P41RR013218

Questions and Comments

Contact: spujol@bwh.harvard.edu

- <u>www.slicer.org</u>
- Mailing lists: <u>slicer-user@bwh.harvard.edu</u> <u>slicer-devel@bwh.harvard.edu</u>

