

Image-guided navigation software and novel applications

Eigil Samset, PhD

Brigham and Women's Hospital Harvard Medical School University of Oslo

Journal club, 5/9/07

Acknowledgements

- Close collaborators:
 - Daniel Kacher, MSc
 - Renxin Chu, PhD
 - W. Scott Huge, PhD
 - Arne Hans, PhD
 - Simon DiMaio, PhD
 - Randy Ellis, PhD
- Leadership
 - Ferenc Jolesz, MD
 - Tina Kapur, PhD
 - Sandy Wells, PhD
 - Don Baim, MD
 - Ron Kikinis, MD
 - Noby Hata, PhD
 - Kirby Vosburgh, PhD
 - Clare Tempany, MD
 - Carl-Fredric Westin, PhD

- Clinicians
 - Laurence Epstein, MD
 - Robert Winslow, MD
 - Raymond Kwong, MD
 - Stuart G. Silverman, MD
 - Kemal Tunckali, MD
 - Servet Tatli, MD
- Other good collaborators
 - Raul San Jose Estepar, PhD
 - Sonia Pujol, PhD
 - Steve Pieper, PhD
 - Haiyng Liu, PhD
 - Gary Zintara, PhD
 - Bruno Madore, PhD
 - Larry Panych, PhD
 - Karl Krissian, PhD
 - Walid Kyriakos, PhD
 - Mike Halle, PhD
 - Paul Morrison, MSc

Acknowledgements

- Students
 - Jenny Folkesson, MSc
 - Christian Bauer
 - Jochen von Spiczak, MSc
 - Annie Tang, MSc
- Companies
 - Ehud Schmidt, PhD (GE Healthcare)
 - Erez Nevo, PhD (Robin Medical)
 - Ingmar Viohl, PhD (Interventional Imaging Inc.)
 - Vince Kazmer (I3)
 - Pelin Aksit (GE)
 - Glenn H. Reynolds (GE)
 - Dan Groszmann (GENav)
 - Oystein Grimstad (GENav)

- Admins
 - Katie Mastrogiacomo
 - Debbie O'Shea Begley
 - Arlene Parquette
 - Bob McKie
 - Ashleigh Fitzgerald
 - Harry Khidhir
- Grants:
 - Norwegian Research Council: "Novel MRI-Guided Navigation Methods"
 - NIH, U41: "Image Guided Therapy Center"
 - CIMIT: "Development of MRI-Compatible Devices for MRI and EP Guided Cardiac Ablation"
 - CIMIT: "Interactive platform for MRI-guided cardiac ablation procedures"

Overview

- Software infrastructure
 - Why special software infrastructure for IGT?
 - NaviTrack
 - SIGN and some applications
 - SIGN and Slicer3?

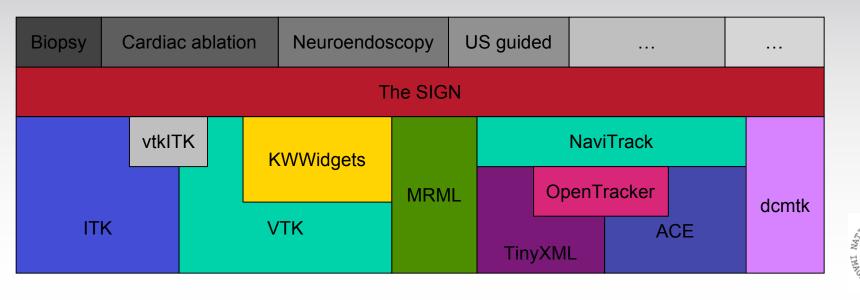
• MRI-Guided cardiac ablation

- Motivation
- Toolbox
- MRI-scanner control and recon
- Catheter visualization
- Whats next?

Why special software infrastructure for IGT?

- Cutting edge IGT applications need a customized software architecture
- The architecture should be:
 - Dynamically configurable
 - Support multimodal imaging and tracking
 - Capable of handling device interaction
 - Testable and robust
 - Supportive of real time image processing and computer vision

Application Silos


- One clinical application => One software application
- Workflow oriented applications
- Facilitates streamlined documentation of chain from requirements through design, implementation and testing

The SIGN

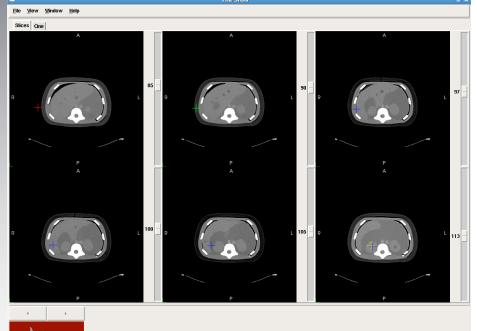
- An Application Programmer Interface for IGT applications.
- Allows programmers access to support libraries
- Supplies mechanisms for:
 - Viewers, tracking, workflow, data IO,...
- Extensible:
 - Applications
 - Workflow elements
 - Filters
 - +++

Navigation framework: SIGN

Allows the application programmer to:

- Customize the user interface
- Use an established data-model (Mrml)
- Connect to a large variety of trackers and other devices
- Create simple applications with minimum effort
- Control MRI scanners and other intraoperative imagers
- Design workflow oriented applications
- Perform rapid prototyping of navigation tools

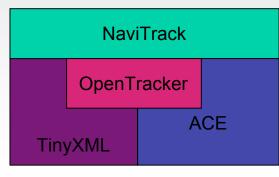
www.ncigt.org/sign



ational Center for Image-Guided Therapy | Brigham and Wamen's Haspital | 75 Francis Street | Baston, MA 02115

Navigation framework: SIGN

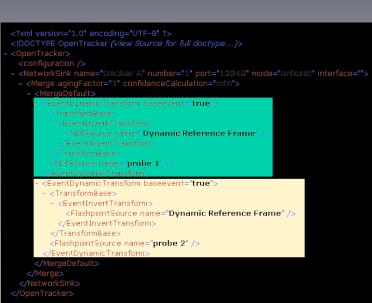
- Integrated dicom server
- Applications can be build out of workflow elements
 - Triggered by GUI events
 - Triggered by tracker / device events
 - Triggered by Dicom server
 - Triggered by program state
- Registration algorithms
 - Iterative Closest Point
 - Uncented Kalman Filter
 - Singular Value Decomposition

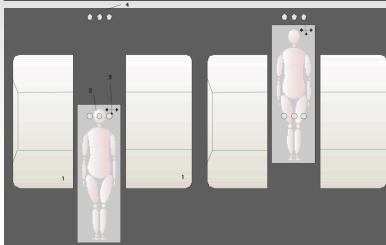

The SIG

Navigation

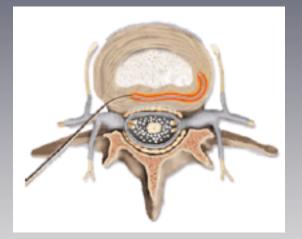
NaviTrack

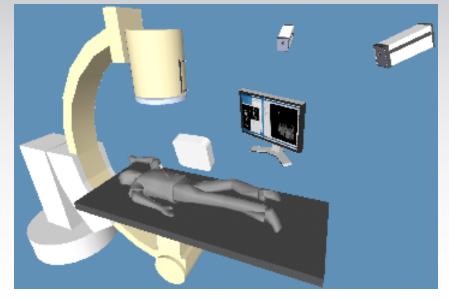
- An Application Programmer Interface for medical device integration
 - Trackers
 - MRI scanner
 - US scanners
 - ECG monitors
 - Foot switches
 - +++
- Data flow graph defined in xml. Metaphor: sources, sinks and filter nodes
- Allows distributed setup, file logging and playback

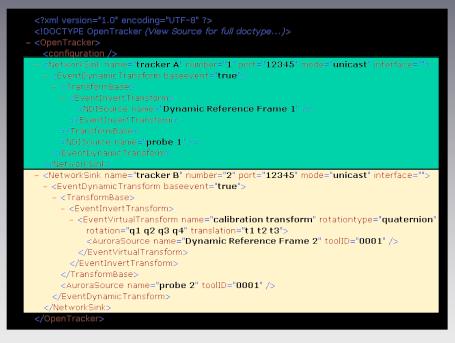


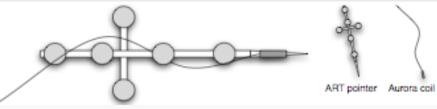


Hybrid Examples: Optical optical

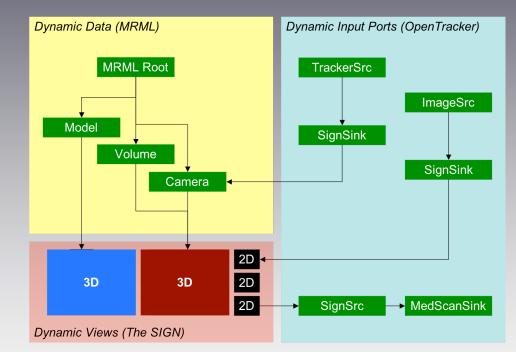








Hybrid Examples: Optical-EM

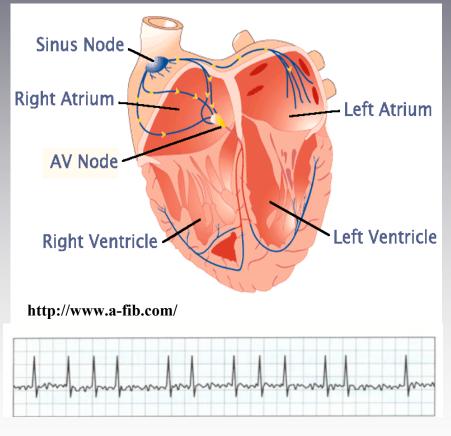


The SIGN - configuration paradigm

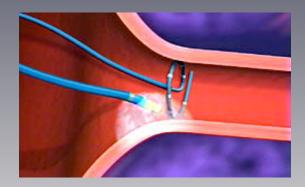
- Data is configured in MRML-file
- Trackers are configured in NaviTrack-file
- Connections are configured in MRML-file

SIGN & Slicer3

- Slicer is the "Swiss Army Knife" of medical image computing
- Slicer provides a good data model (Mrml) for data exchange
- SIGN can be used to make a "Surgical Scalpel" tailored for a specific clinical task, *complementary to Slicer*
- SIGN is independent of Slicer, but the use of the same data model and basic tools *reduces* duplication and *enables* interaction
- SIGN is currently being integrated in the Slicer3 bundle shortly and build using getbuildtest.tcl



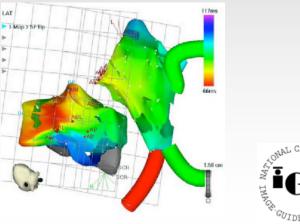
Atrial Fibrillation and Ventricular Tachycardia


- Prevalence of disease
 - Atrial Fibrillation (AFIB)
 - 2 million afflicted in U.S.
 - 25 million in U.S., Europe, China, India, and Japan.
 - 15% of strokes caused by AFIB
 - Ventricular Tachycardia
 - 200,000 treated each year in U.S.
 - Increased risk of sudden death
 - Prevalence increases as population ages
 - Characterized by abnormal cardiac electrical activity

Cardiac ablation

- Objectives:
 - Regain normal heart rhythm
 - Control the heart rate
 - Prevent stroke

- Alternative to implantable cardioverter defibrillator, pacemaker, and pharmaceuticals
- Catheter based ablation with EP mapping has proven effective in 2/3 of the cases

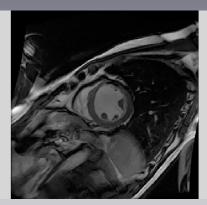


Electro Physiological Mapping

- Measures electric potential
- Detects arrhythmic foci
- Requires catheter tracking
- Surface map can be generated based on:
 - Tracked points
 - Merge with pre-op MRI

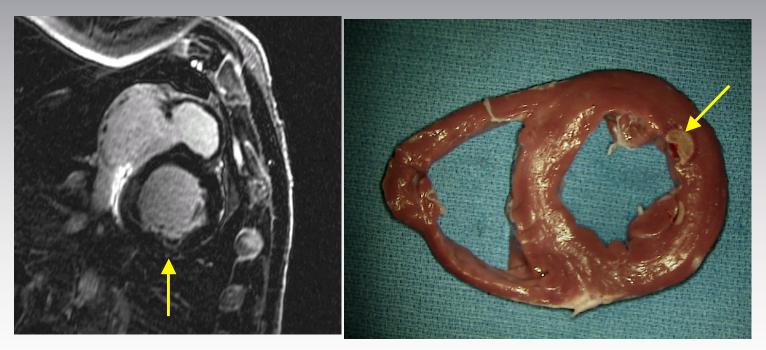
CartoMerge Mark el.al. Heart 2006;92;266-274

X-ray guided intervention


- Current procedure is guided by X-ray
 - Unsatisfactory visualization of anatomy
 - Radiation issues
 - Nephroroxic contrast agents
 - Musculoskeletal issues related to wearing lead

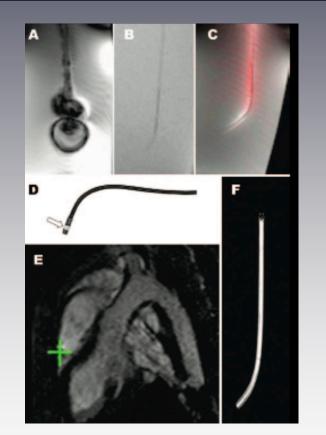
Magnetic Resonance guided Cardiac Ablation

- MRI can:
 - Give good depiction of the anatomy
 - Visualize the tissue to be treated
 - Visualize / track the catheter
 - Visualize the treatment effect
- Contrast enhanced MRI can detect focal necrosis in the myocardium.
- MRI has the potential to:
 - Improve safety through better visualization
 - Improve speed through better navigation
 - Improve outcome through better monitoring / quality control



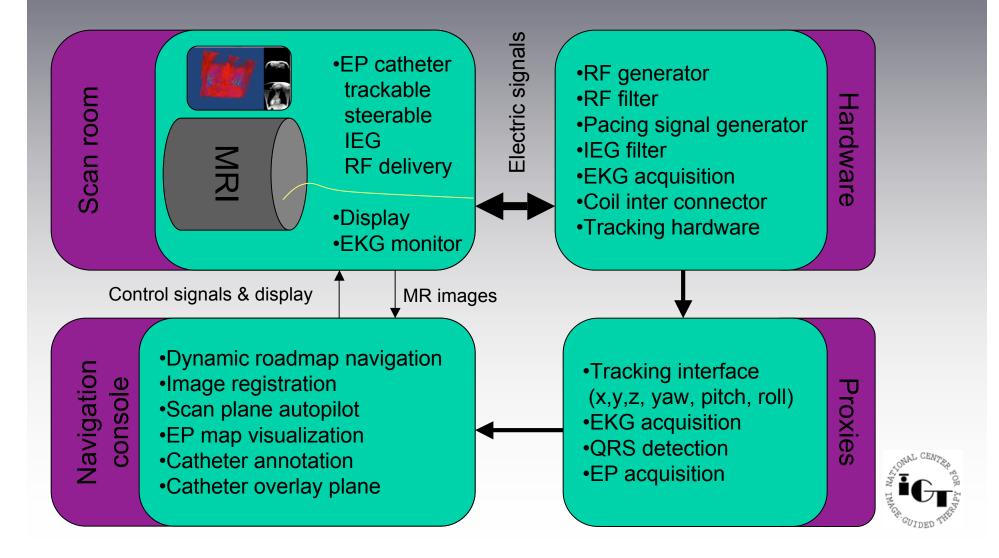
RF Ablation during **RT** MR Imaging

• Injury seen with myocardial dynamic contrast enhanced 3D


Histology

3D MDE MGH - *Courtesy of Ehud Schmidt GE Healthcare*

Catheter visualization


- Black catheter by artifact (A)
- Black catheter by signal void (B)
- Bright catheter with MRI antenna (C)
- Tracked catheter with MRI micro coil (D)
- Position of tracked catheter superimposed on image (E)
- Wireless inductively coupled coil (F)

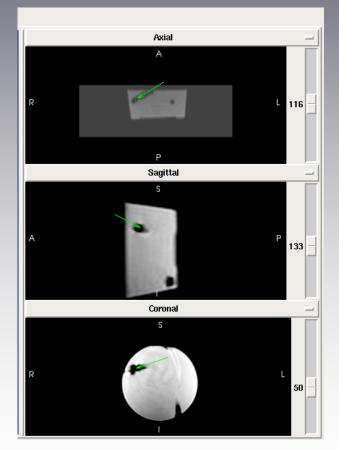
Cardiovascular Interventional Magnetic Resonance Imaging *Lederman etal Circulation 2005 112:3009-3017*

Integrated MRI-guided EP package

Methods

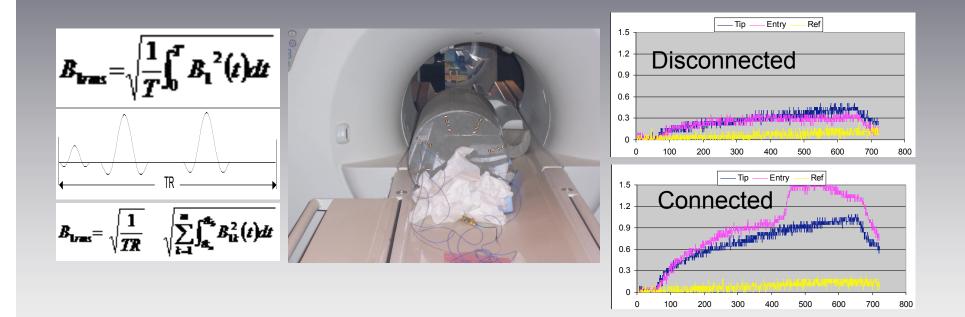
• MRI-compatible EP catheter

- Trackable
- Safe
- Navigation framework
 - Catheter visualization
 - Interactive and fast imaging
 - Time-synchronized roadmap
 - EP map visualization
- Image processing
 - Myocardium segmentation
 - Scar detection


MRI-compatible EP, tracked catheter

- Fully MRI-compatible catheter with deflection
- Capable of measuring bipolar EP and deliver RF energy
- Safe
- Two embedded 6DOF tracking sensors
- Coordinates given in true image space
- MRI vendor independent

EM tracked catheter

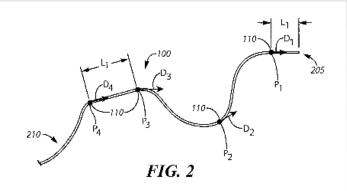

- Tracking based on current induced in coil by MR gradients
- Signal compared to gradient driver signal
- Coordinates given in true image space
- Gives direction as well as position
- Does not take up MR receive channels

Safety Testing

Temperature increase without safety measures: up to 25°C

B-spline interpolation

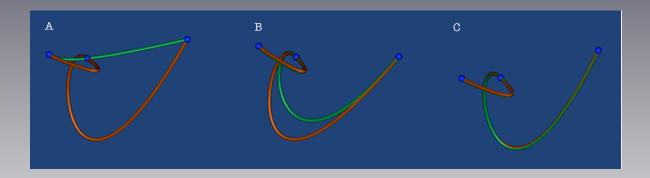
$$P_i = (x_i, y_i, z_i)$$

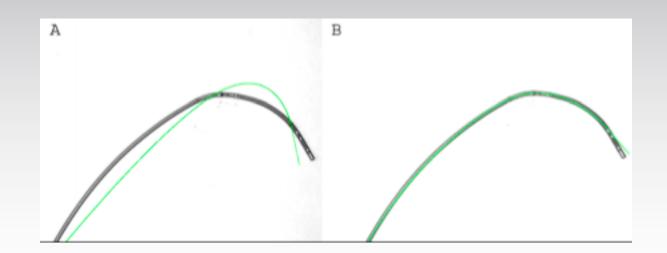

P(s) = (x(s), y(s), z(s))

 $D_i = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right)$

 $P(s) = s \cdot h \cdot C = \begin{bmatrix} s^3 & s^2 & s & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_i \\ P_{i+1} \\ D_i \\ D_{i+1} \end{bmatrix}$

$$\arg\min_{D_i} \left(L_i - \int_0^1 \sqrt{\left(\frac{dx(s)}{ds}\right)^2 + \left(\frac{dy(s)}{ds}\right)^2 + \left(\frac{dz(s)}{ds}\right)^2} ds \right)$$

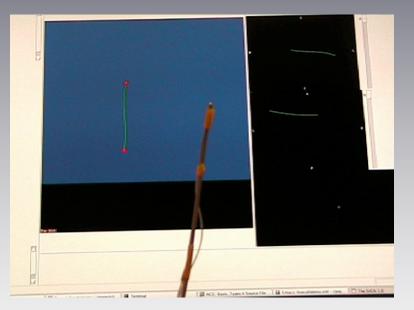




 $P(0) = (x(0), y(0), z(0)) = (x_i, y_i, z_i) = P_i$

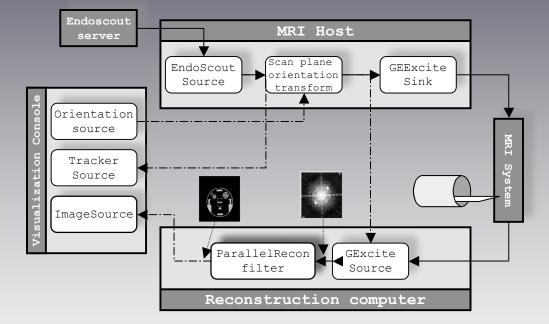
 $P(1) = (x(1), y(1), z(1)) = (x_{i+1}, y_{i+1}, z_{i+1}) = P_{i+1}$

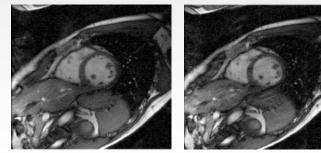
B-spline interpolation



Catheter visualization

- 6DOF tracking enables accurate depiction of the catheter, based on tracking data
- Spline interpolated catheter visualization based on knowledge of:
 - Sensor position
 - Sensor orientation
 - Length between sensors

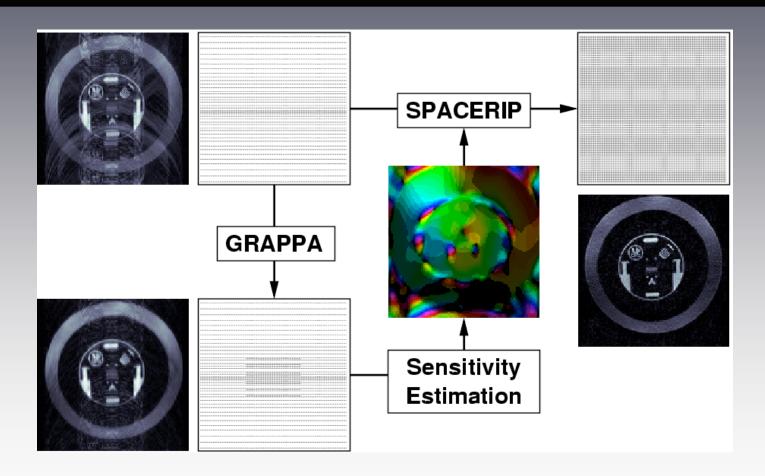




Interactive MR imaging using parallel acquisition and parallel reconstruction

E Samset, WS Hoge, FA Jolesz

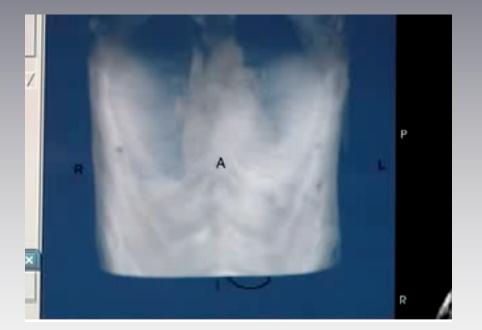
- Interactive MR imaging for image-guided therapy requires high frame-rate and low latency
- Parallel imaging at high imaging speeds requires automatic regularization, which can lengthen reconstruction time
- Parallelization of the reconstruction algorithm resulted in reduction of the reconstruction time below the acquisition time
- Fast, regularized SPACERIP with self-referenced coilsensitivity estimates enables interactive scan-plane manipulation with *no temporal filtering*


SPACERIP 2x

SPACERIP 3.4x

See Poster: 1125

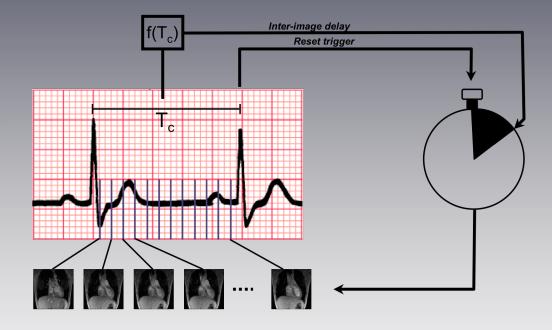
Parallel imaging w/ SPACERIP



Parallelization of all major computation elements results in recon time 100-120ms (fat node)

Cardiac Navigation Software

- Time synchronized with intra-operative ECG
- Dynamic roadmap combined with RT imaging
- Volume rendering and projected views


MRI scanner interaction

- All parameters supported by PSD to be controlled in realtime, can be controlled:
 - Field of View
 - Slice thickness
 - Flip Angle
 - AutoNex
 - Swap phase-frequency
 - Fat-saturation / Spatial saturation
 - Flow compensation
 - Inversion Recovery
- FGRE only recent development: FIESTA

Time synchronized roadmap

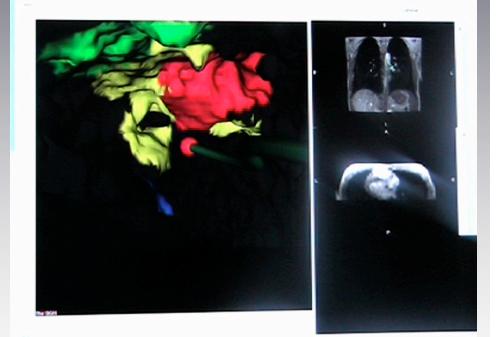
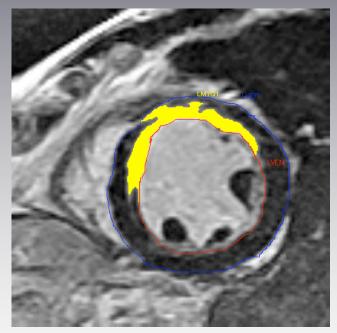
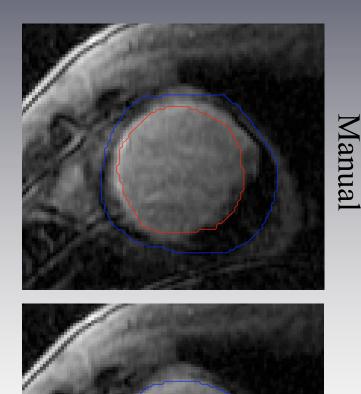

- Trigger-delay and # of time points used to determine time function
- Software calculates inter-image delay based on previous cycle
- QRS detection triggers reset

Image-registration and mapping


- Pre-operative dynamic roadmaps registered with segmented models, and fast real-time imaging
- EP mapping on anatomical surface models

Automatic scar segmentation


- Myocardial scar edges correlates with electro physiological foci
- Automatic segmentation for improved targeting

Courtesy of Raymond Kwong

Automatic scar segmentation

Automatic

- Automatic segmentation in contrast enhanced MRI
- Classifier (computed from training set) forms the joint basis for:
 - Coupled level sets
 - Particle filtering

Summary / Future Work

- MR-guided cardiac ablation is feasible, and will be continued to be developed between BWH, UiO, I3 and Robin Medical
- SIGN is a generic OpenSource framework for IGT applications, and will continue to be supported by my group in Oslo
- NaviTrack is intergrated with Slicer3 and will continue to be a collaborative effort

