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Why diffusion imaging?
•White matter (WM) is
organized in fiber bundles

•Identifying these WM
pathways is important for:

–Inferring connections
b/w brain regions
–Understanding effects
of neurodegenerative
diseases, stroke, aging,
development …

From Gray's Anatomy: IX. Neurology
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Diffusion in brain tissue

• Gray matter: Diffusion is
unrestricted ⇒ isotropic

• White matter: Diffusion is
restricted ⇒ anisotropic

• Differentiate tissues based on the diffusion (random
motion) of water molecules within them
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Diffusion MRI
• Magnetic resonance

imaging can provide
“diffusion encoding”

• Magnetic field strength
is varied by gradients in
different directions

• Image intensity is
attenuated depending
on water diffusion in
each direction

• Compare with baseline
images to infer on
diffusion process

No
diffusion
encoding

Diffusion
encoding in
direction g1

g2
g3

g4
g5

g6
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Courtesy of Gordon Kindlmann

Imaging diffusion
• Image the average direction of water diffusion at

each voxel in the brain
⇒ Infer WM fiber orientation at each voxel

• Clearly, direction can’t be described by a usual
grayscale image
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Tensors

• We express the notion of “direction” mathematically
by a tensor D

• A tensor is a 3x3 symmetric, positive-definite matrix:

•  D is symmetric 3x3 ⇒ It has 6 unique elements
• Suffices to estimate the upper (lower) triangular part

d11 d12 d13 
d12 d22 d23
d13 d23 d33

D =
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Eigenvalues/vectors

• The matrix D is positive-definite ⇒
– It has 3 real, positive eigenvalues λ1, λ2, λ3  > 0.

– It has 3 orthogonal eigenvectors e1, e2, e3.

D = λ1 e1⋅ e1´ + λ2 e2⋅ e2´ + λ3 e3⋅ e3´  

eigenvalue
e1x 
e1y
e1z

e1 =eigenvector

λ1 e1
λ2 e2

λ3 e3
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Physical interpretation
• Eigenvectors express diffusion direction

• Eigenvalues express diffusion magnitude

λ1 e1

λ2 e2

λ3 e3

λ1 e1
λ2 e2

λ3 e3

Isotropic diffusion:
λ1 ≈ λ2 ≈ λ3

Anisotropic diffusion:
λ1 >> λ2 ≈ λ3

• One such ellipsoid at each voxel: Likelihood of
water molecule displacements at that voxel
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Diffusion tensor imaging
Image:

A scalar intensity
value  fj at each voxel j

Tensor map:

A tensor Dj at each
voxel j

Courtesy of Gordon Kindlmann
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Scalar diffusion measures
Mean diffusivity (MD):
Mean of the 3 eigenvalues

Fractional anisotropy (FA):
Variance of the 3 eigenvalues,
normalized so that 0≤ (FA) ≤1

Faster
diffusion

Slower
diffusion

Anisotropic
diffusion

Isotropic
diffusion

MD(j) = [λ1(j)+λ2(j)+λ3(j)]/3

[λ1(j)-MD(j)]2 + [λ2(j)-MD(j)]2 + [λ3(j)-MD(j)]2

FA(j)2 =
λ1(j)2 + λ2(j)2 + λ3(j)2

! 

3

2
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More summary measures

• Axial diffusivity: Greatest eigenvalue

• Radial diffusivity: Average of 2 lesser eigenvalues

• Inter-voxel coherence: Average angle b/w the
primary eigenvector at some voxel and the primary
eigenvector at the voxels around it

AD(j) = λ1(j)

RD(j) = [λ2(j) + λ3(j)]/2
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Back to the tensor
d11

d13
d12

d22d23d33

• Remember: A tensor has
six unique values

• Must estimate six times as many values at each voxel
 ⇒ Must collect (at least) six times as much data!

d11 d12 d13 
d12 d22 d23
d13 d23 d33

D =
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MRI data acquisition
Measure raw MR signal

(frequency-domain samples
of transverse magnetization)

Reconstruct an image of
transverse magnetization
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DT-MRI data acquisition
Must acquire at least 6 times as
many MR signal measurements

Need to reconstruct 6 times as
many values

⇐
d11

d13
d12

d22d23d33
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Spin-echo MRI

• Use a 180° pulse to refocus spins:
90° 180° Gy

90° 180°

acquisition

• Apply a field gradient Gy for location encoding

Measure transverse
magnetization at each
location -- depends on
tissue properties (T1,T2)fast

fast

slow

slow
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Diffusion-weighted MRI

• Apply two gradient pulses:
90° 180°Gy Gy

• Case 1: If spins are not diffusing

90° 180°Gy Gy
y = y1, y2

No displacement in y ⇒
No dephasing ⇒
No net signal change

y = y1, y2

acquisition
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Diffusion-weighted MRI

90° 180°Gy Gy

• Case 2: If spins are diffusing

90° 180°Gy Gy
y = y1, y2

Displacement in y ⇒
Dephasing ⇒
Signal attenuation

y = y1+Δy1, y2+Δy2

acquisition
• Apply two gradient pulses:
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Choice 1: Directions

• Diffusion direction || Applied gradient direction
⇒ Maximum signal

• Diffusion direction ⊥ Applied gradient direction

⇒ No signal

• To capture all diffusion directions well, gradient
directions should cover 3D space uniformly

Diffusion-encoding gradient g
Displacement detected

Diffusion-encoding gradient g
Displacement not detected

Diffusion-encoding gradient g
Displacement partly detected
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How many directions?

• Six diffusion-weighting directions are the
minimum, but usually we acquire more

• Acquiring more directions leads to:
+ More reliable estimation of tensors
– Increased imaging time ⇒ Subject discomfort, more

susceptible to artifacts due to motion, respiration, etc.

• Typically diminishing returns beyond a certain
number of directions [Jones, 2004]
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Choice 2: The b-value

• The b-value depends on acquisition parameters:
b = γ2 G2 δ2 (Δ - δ/3)

– γ the gyromagnetic ratio

– G the strength of the diffusion-encoding gradient
– δ the duration of each diffusion-encoding pulse

– Δ the interval b/w diffusion-encoding pulses

90° 180°

G

acquisition

Δ

δ
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How high b-value?

• Typical values for DTI ~ 1000 sec/mm2

• Increasing the b-value leads to:
+ Increased contrast b/w areas of higher and lower

diffusivity in principle
– Decreased signal-to-noise ratio ⇒ Less reliable

estimation of tensors in practice

• Data can be acquired at multiple b-values for
trade-off

• Repeat same acquisition several times and
average to increase signal-to-noise ratio
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Diffusion tensor model
•  fj

b,g = fj
0 e-bg′⋅Dj⋅g

where the Dj the diffusion tensor at voxel j
• Design acquisition:

– b the diffusion-weighting factor
– g the diffusion-encoding gradient direction

• Reconstruct images from acquired data:
– fj

b,g image acquired with diffusion-weighting factor b and
diffusion-encoding gradient direction g

– fj
0 “baseline” image acquired without diffusion-

weighting (b=0)

• Estimate unknown diffusion tensor Dj
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Noise in DW images
• Due to signal attenuation by diffusion encoding,

signal-to-noise ratio in DW images can be an
order of magnitude lower than “baseline” image

• Eigendecomposition is sensitive to noise, may
result in negative eigenvalues

Baseline
image

DW
images
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Field inhomogeneities

• Causes:
– Scanner-dependent
(imperfections of main magnetic
field)
– Subject-dependent (changes in
magnetic susceptibility in tissue/air
interfaces)

• Results: Signal loss in interface
areas, geometric distortions

Signal loss
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Eddy currents
• Fast switching of diffusion-

encoding gradients induces
eddy currents in conducting
components

• Eddy currents lead to residual
gradients that shift the
diffusion gradients

• The shifts are direction-
dependent, i.e., different for
each DW image

• Results: geometric distortions
From Le Bihan et al., Artifacts and
pitfalls in diffusion MRI, JMRI 2006
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Distortion correction
Post-process DW images to reduce distortions due to

field inhomogeneities and eddy-currents:

– Either register distorted DW images to an
undistorted (non-DW) image
[Haselgrove’96, Bastin’99, Horsfield’99, Andersson’02, Rohde’04, Ardekani’05,
Mistry’06]

– Or use side information on distortions from
separate scans (field map, residual gradients)
[Jezzard’98, Bastin’00, Chen’06; Bodammer’04, Shen’04]
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Tensor estimation
•  fj

b,g = fj
0 e-bg′⋅Dj⋅g

• Estimate tensor from images:
– Usually by least squares (implying Gaussian noise statistics)

[Basser’94, Anderson’01, Papadakis’03, Jones’04, Chang’05, Koay’06]

log( fj
b,g / fj

0 ) = -bg′⋅Dj⋅g = -B⋅Dj

– Or accounting for Rician noise statistics [Fillard’06]

• Pre-smooth or post-smooth tensor map to reduce noise
[Parker’02, McGraw’04, Ding’05; Chefd’hotel’04, Coulon’04, Arsigny’06]
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Other models of diffusion

• High angular resolution diffusion imaging (HARDI)
– A mixture of the usual (“rank-2”) tensors [Tuch’02]

– A tensor of rank > 2 [Frank’02, Özarslan’03]

– An orientation distribution function [Tuch’04]

– A diffusion spectrum (DSI) [Wedeen’05]

• More parameters at each voxel ⇒ More data needed

• The tensor is an imperfect model: What if more than
one major diffusion direction in the same voxel?
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Example: DTI vs. DSI

From Wedeen et al.,
Mapping complex
tissue architecture
with diffusion
spectrum magnetic
resonance imaging,
MRM 2005


