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White-matter imaging
• Axons measure ~µm in

width
• They group together in

bundles that form the
white matter

• We cannot image
individual axons but
we can image bundles
with diffusion MRI

• Useful in studying
neurodegenerative
diseases, stroke, aging,
development…

From Gray's Anatomy: IX. NeurologyFrom the National Institute on Aging
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Diffusion in brain tissue

• Gray matter: Diffusion is unrestricted
⇒ isotropic

• White matter: Diffusion is restricted
⇒ anisotropic

• Differentiate between tissues based on the diffusion
(random motion) of water molecules within them
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Diffusion MRI
• Magnetic resonance imaging

can provide “diffusion
encoding”

• Magnetic field strength is
varied by gradients in
different directions

• Image intensity is attenuated
depending on water diffusion
in each direction

• Compare with baseline images
to infer on diffusion process

No
diffusion
encoding

Diffusion
encoding in
direction g1

g2
g3

g4
g5

g6
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How to represent diffusion

• At every voxel we want to know:
 Is this in white matter?
 If yes, what pathway(s) is it part of?

− What is the orientation of diffusion?
− What is the magnitude of diffusion?

• A grayscale image cannot capture all this!
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Tensors
• One way to express the notion of “direction” mathematically

is by a tensor D
• A tensor is a 3x3 symmetric, positive-definite matrix:

•  D is symmetric 3x3 ⇒ It has 6 unique elements
• Suffices to estimate the upper (lower) triangular part

d11 d12 d13 
d12 d22 d23
d13 d23 d33

D =
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Eigenvalues/vectors
• The matrix D is positive-definite ⇒

– It has 3 real, positive eigenvalues λ1, λ2, λ3  > 0.
– It has 3 orthogonal eigenvectors e1, e2, e3.

D = λ1 e1⋅ e1´ + λ2 e2⋅ e2´ + λ3 e3⋅ e3´  

eigenvalue e1x 
e1y
e1z

e1 =
eigenvector

λ1 e1
λ2 e2

λ3 e3
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Physical interpretation
• Eigenvectors express diffusion direction

• Eigenvalues express diffusion magnitude

λ1 e1

λ2 e2

λ3 e3

λ1 e1
λ2 e2

λ3 e3

Isotropic diffusion:
λ1 ≈ λ2 ≈ λ3

Anisotropic diffusion:
λ1 >> λ2 ≈ λ3

• One such ellipsoid at each voxel: Likelihood of water molecule
displacements at that voxel
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Direction of eigenvector corresponding
to greatest eigenvalue

Diffusion tensor imaging
Image:

An intensity value at
each voxel

Tensor map:

A tensor at each voxel
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Direction of eigenvector corresponding
to greatest eigenvalue

Red: L-R, Green: A-P, Blue: I-S

Diffusion tensor imaging
Image:

An intensity value at
each voxel

Tensor map:

A tensor at each voxel
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Scalar diffusion measures
Mean diffusivity (MD): Mean
of the 3 eigenvalues

Fractional anisotropy (FA):
Variance of the 3 eigenvalues,
normalized so that 0≤ (FA) ≤1

Faster
diffusion

Slower
diffusion

Anisotropic
diffusion

Isotropic
diffusion

MD(j) = [λ1(j)+λ2(j)+λ3(j)]/3

[λ1(j)-MD(j)]2 + [λ2(j)-MD(j)]2 + [λ3(j)-MD(j)]2

FA(j)2 =
λ1(j)2 + λ2(j)2 + λ3(j)2

! 

3

2
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More summary measures
• Axial diffusivity: Greatest eigenvalue

• Radial diffusivity: Average of 2 lesser eigenvalues

• Inter-voxel coherence: Average angle b/w the primary
eigenvector at some voxel and the primary eigenvector at the
voxels around it

AD(j) = λ1(j)

RD(j) = [λ2(j) + λ3(j)]/2
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Beyond the tensor

• High angular resolution diffusion imaging (HARDI)
– A mixture of the usual (“rank-2”) tensors [Tuch’02]

– A tensor of rank > 2 [Frank’02, Özarslan’03]

– An orientation distribution function [Tuch’04]

– A diffusion spectrum (DSI) [Wedeen’05]

• More parameters at each voxel ⇒ More data needed

• The tensor is an imperfect model: What if more than one major
diffusion direction in the same voxel?
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Models of diffusion

Tensor (DTI):
Single orientation and magnitude

Ball-and-stick:
Orientation and magnitude for a small number of
anisotropic compartments

Orientation distribution function (Q-ball):
No magnitude info, only orientation

Diffusion spectrum (DSI):
Full distribution of orientation and magnitude
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Example: DTI vs. DSI

From Wedeen et al.,
Mapping complex
tissue architecture
with diffusion
spectrum magnetic
resonance imaging,
MRM 2005
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Data acquisition
d11

d13
d12

d22d23d33

• Remember: A tensor has six
unique parameters

d11 d12 d13 
d12 d22 d23
d13 d23 d33

D =

• To estimate six parameters at each
voxel, must acquire at least six
diffusion-weighted images

• HARDI models have more
parameters per voxel, so more
images must be acquired
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Spin-echo MRI
• Use a 180° pulse to refocus spins:

90° 180° Gy

90° 180°

acquisition

• Apply a field gradient Gy for location encoding

Measure transverse
magnetization at each
location -- depends on
tissue properties (T1,T2)

fast

fast

slow

slow
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Diffusion-weighted MRI
• Apply two gradient pulses:

90° 180°Gy Gy

• Case 1: If spins are not diffusing

90° 180°Gy Gy
y = y1, y2

No displacement in y ⇒
No dephasing ⇒
No net signal change

y = y1, y2

acquisition
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Diffusion-weighted MRI

90° 180°Gy Gy

• Case 2: If spins are diffusing

90° 180°Gy Gy
y = y1, y2

Displacement in y ⇒
Dephasing ⇒
Signal attenuation

y = y1+Δy1, y2+Δy2

acquisition
• Apply two gradient pulses:
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Choice 1: Directions
• Diffusion direction || Applied gradient direction

⇒ Maximum signal

• Diffusion direction ⊥ Applied gradient direction

⇒ No signal

• To capture all diffusion directions well, gradient directions
should cover 3D space uniformly

Diffusion-encoding gradient g
Displacement detected

Diffusion-encoding gradient g
Displacement not detected

Diffusion-encoding gradient g
Displacement partly detected



Anastasia Yendiki

How many directions?
• Acquiring more directions leads to:

+ More reliable estimation of tensors
– Increased imaging time ⇒ Subject discomfort, more susceptible

to artifacts due to motion, respiration, etc.

• DTI:
– Six directions is the minimum

– Usually a few 10’s of directions

– Diminishing returns after a certain number [Jones, 2004]

• HARDI/DSI:
– Usually a few 100’s of directions
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Choice 2: The b-value
• The b-value depends on acquisition parameters:

b = γ2 G2 δ2 (Δ - δ/3)
– γ the gyromagnetic ratio

– G the strength of the diffusion-encoding gradient

– δ the duration of each diffusion-encoding pulse

– Δ the interval b/w diffusion-encoding pulses

90° 180°

G

acquisition

Δ

δ



Anastasia Yendiki

How high b-value?
• Increasing the b-value leads to:

+ Increased contrast b/w areas of higher and lower diffusivity in
principle

– Decreased signal-to-noise ratio ⇒ Less reliable estimation of
tensors in practice

• DTI: b ~ 1000 sec/mm2

• HARDI/DSI: b ~ 10,000 sec/mm2

• Data can be acquired at multiple b-values for trade-off

• Repeat same acquisition several times and average to increase
signal-to-noise ratio
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Looking at diffusion data

Baseline
image

DW
images

b2, g2 b3, g3b1, g1b=0

b4, g4 b5, g5 b6, g6

A diffusion data set consists of:
• A set of non-diffusion-weighted a.k.a “baseline” a.k.a. “low-

b” images (b-value = 0)
• A set of diffusion-weighted (DW) images acquired with

different gradient directions g1, g2, … and b-value >0
• The diffusion-weighted images have lower intensity values



Anastasia Yendiki

From image to tensor
•  fj

b,g = fj
0 e-bg′⋅Dj⋅g

where the Dj the diffusion tensor at voxel j

• Design acquisition:
– b the diffusion-weighting factor

– g the diffusion-encoding gradient direction

• Reconstruct images from acquired data:
– fj

b,g image acquired with diffusion-weighting factor b and
diffusion-encoding gradient direction g

– fj
0 “baseline” image acquired without diffusion-weighting (b=0)

• Estimate unknown diffusion tensor Dj
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Field inhomogeneities

• Causes:
– Scanner-dependent
(imperfections of main magnetic field)
– Subject-dependent (changes in
magnetic susceptibility in tissue/air
interfaces)

• Results: Signal loss in interface areas,
geometric distortions

Signal loss
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Eddy currents
• Fast switching of diffusion-

encoding gradients induces
eddy currents in conducting
components

• Eddy currents lead to residual
gradients that shift the
diffusion gradients

• The shifts are direction-
dependent, i.e., different for
each DW image

• Results: geometric distortions

From Le Bihan et al., Artifacts and pitfalls
in diffusion MRI, JMRI 2006
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Data analysis steps
• Pre-process images to reduce distortions

– Either register distorted DW images to
an undistorted (non-DW) image

– Or use information on distortions from
separate scans (field map, residual
gradients)

• Fit a diffusion model at every voxel
– DTI, DSI, Q-ball, …

• Do tractography to reconstruct pathways
and/or

• Compute measures of anisotropy/diffusivity
and compare them between populations
– Voxel-based, ROI-based, or tract-based

statistical analysis


