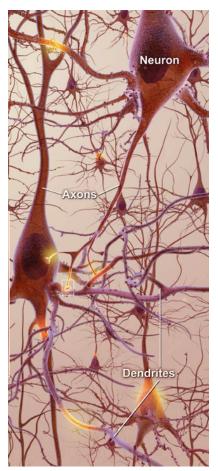
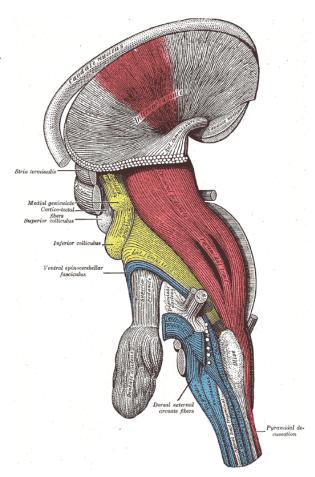


Mathematical and physical foundations of DTI


Anastasia Yendiki, Ph.D.

A. A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School

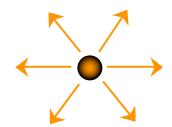
41th Annual Meeting of the Society for Neuroscience November 11th, 2011 Washington, DC



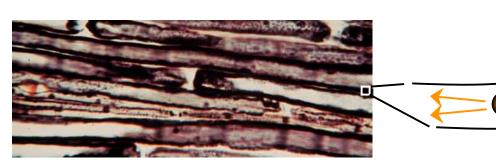
White-matter imaging

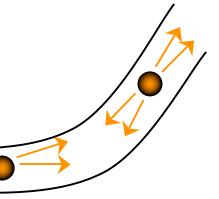
From the National Institute on Aging

- Axons measure ~μm in width
- They group together in bundles that form the white matter
- We cannot image individual axons but we can image bundles with diffusion MRI
- Useful in studying neurodegenerative diseases, stroke, aging, development...



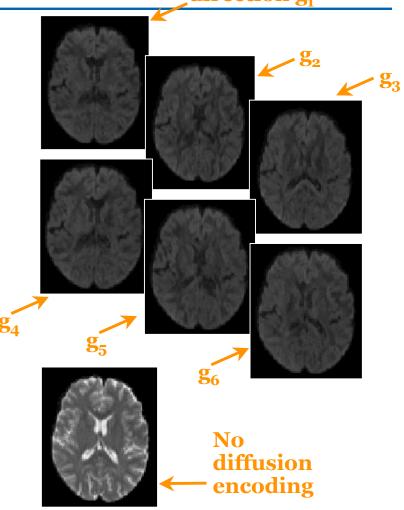
From Gray's Anatomy: IX. Neurology



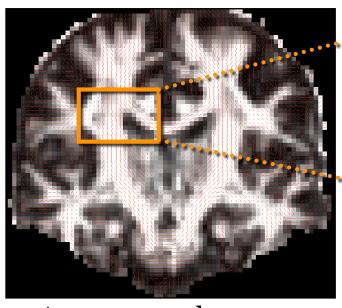

Diffusion in brain tissue

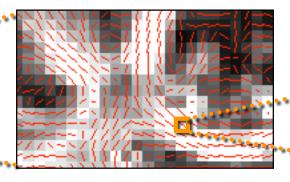
- Differentiate between tissues based on the diffusion (random motion) of water molecules within them
- Gray matter: Diffusion is unrestricted
 ⇒ isotropic

• White matter: Diffusion is restricted ⇒ anisotropic



Diffusion MRI

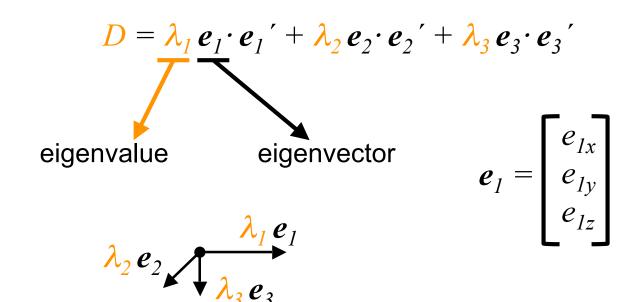

Diffusion encoding in direction g₁


- Magnetic resonance imaging can provide "diffusion encoding"
- Magnetic field strength is varied by gradients in different directions
- Image intensity is attenuated depending on water diffusion in each direction
- Compare with baseline images to infer on diffusion process

How to represent diffusion

- At every voxel we want to know:
 - Is this in white matter?
 - If yes, what pathway(s) is it part of?
 - What is the orientation of diffusion?
 - What is the magnitude of diffusion?
- A grayscale image cannot capture all this!

Tensors

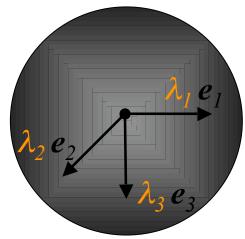

- One way to express the notion of "direction" mathematically is by a tensor *D*
- A tensor is a 3x3 symmetric, positive-definite matrix:

$$D = \begin{bmatrix} d_{11} d_{12} d_{13} \\ d_{12} d_{22} d_{23} \\ d_{13} d_{23} d_{33} \end{bmatrix}$$

- *D* is symmetric $3x3 \Rightarrow$ It has 6 unique elements
- Suffices to estimate the upper (lower) triangular part

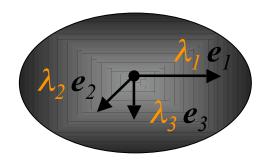
Eigenvalues/vectors

- The matrix *D* is positive-definite ⇒
 - It has 3 real, positive eigenvalues λ_1 , λ_2 , $\lambda_3 > 0$.
 - It has 3 orthogonal eigenvectors e_1 , e_2 , e_3 .



Physical interpretation

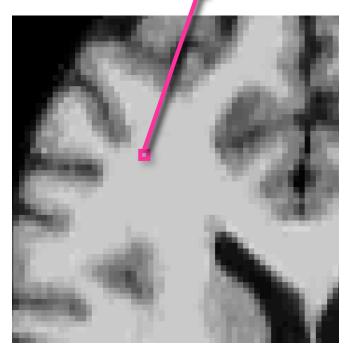
- Eigenvectors express diffusion direction
- Eigenvalues express diffusion magnitude


Isotropic diffusion:

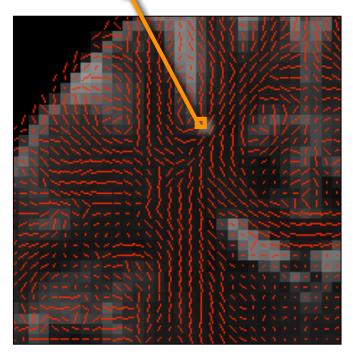
$$\lambda_1 \approx \lambda_2 \approx \lambda_3$$

Anisotropic diffusion:

$$\lambda_1 >> \lambda_2 \approx \lambda_3$$


 One such ellipsoid at each voxel: Likelihood of water molecule displacements at that voxel

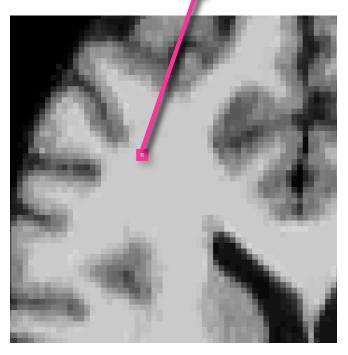
Diffusion tensor imaging


Image:

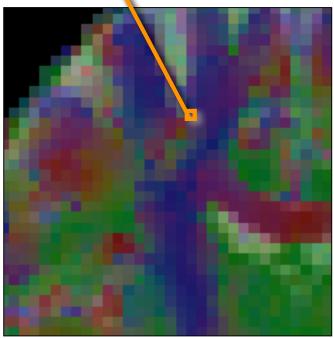
An **intensity value** at each voxel

Tensor map:

A tensor at each voxel


Direction of eigenvector corresponding to greatest eigenvalue

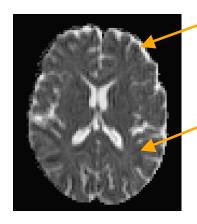
Diffusion tensor imaging


Image:

An **intensity value** at each voxel

Tensor map:

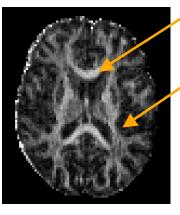
A tensor at each voxel



Direction of eigenvector corresponding to greatest eigenvalue

Red: L-R, Green: A-P, Blue: I-S

Scalar diffusion measures



Faster diffusion

Slower diffusion

Mean diffusivity (MD): Mean of the 3 eigenvalues

$$MD(j) = \left[\frac{\lambda_1(j) + \lambda_2(j) + \lambda_3(j)}{3}\right] / 3$$

Anisotropic diffusion

Isotropic diffusion

Fractional anisotropy (FA):

Variance of the 3 eigenvalues, normalized so that $0 \le (FA) \le 1$

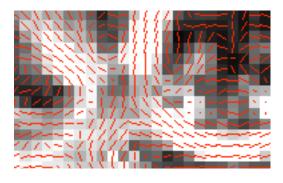
$$FA(j)^{2} = \frac{3}{2} \frac{[\lambda_{1}(j)-MD(j)]^{2} + [\lambda_{2}(j)-MD(j)]^{2} + [\lambda_{3}(j)-MD(j)]^{2}}{\lambda_{1}(j)^{2} + \lambda_{2}(j)^{2} + \lambda_{3}(j)^{2}}$$

More summary measures

• **Axial diffusivity:** Greatest eigenvalue

$$AD(j) = \frac{\lambda_1(j)}{\lambda_2(j)}$$

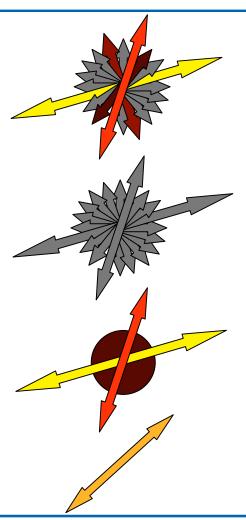
• Radial diffusivity: Average of 2 lesser eigenvalues


$$RD(j) = [\lambda_2(j) + \lambda_3(j)]/2$$

• **Inter-voxel coherence:** Average angle b/w the primary eigenvector at some voxel and the primary eigenvector at the voxels around it

Beyond the tensor

• The tensor is an imperfect model: What if more than one major diffusion direction in the same voxel?



- High angular resolution diffusion imaging (HARDI)
 - A mixture of the usual ("rank-2") tensors [Tuch'02]
 - A tensor of rank > 2 [Frank'02, Özarslan'03]
 - An orientation distribution function [Tuch'04]
 - A diffusion spectrum (DSI) [Wedeen'o5]
- More parameters at each voxel ⇒ More data needed

Models of diffusion

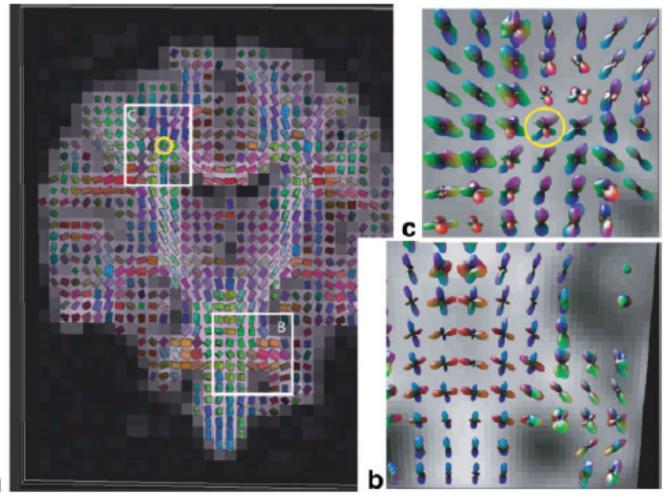
Diffusion spectrum (DSI):

Full distribution of orientation and magnitude

Orientation distribution function (Q-ball):

No magnitude info, only orientation

Ball-and-stick:


Orientation and magnitude for a small number of anisotropic compartments

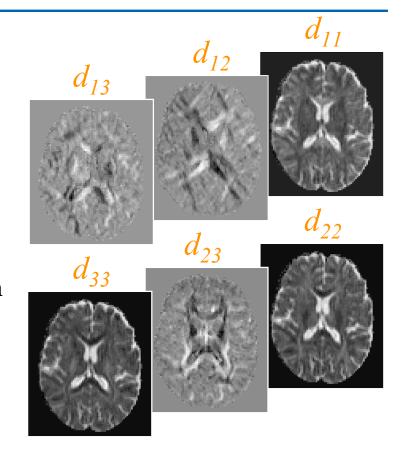
Tensor (DTI):

Single orientation and magnitude

Example: DTI vs. DSI

From Wedeen *et al.*, Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging, MRM 2005

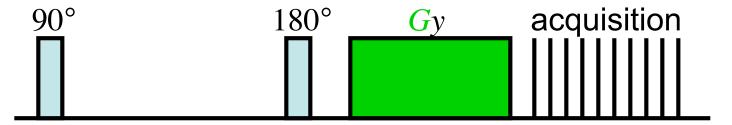
a

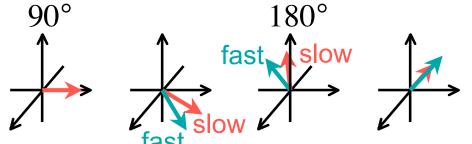


Data acquisition

• Remember: A tensor has six unique parameters

$$D = \begin{bmatrix} d_{11} d_{12} d_{13} \\ d_{12} d_{22} d_{23} \\ d_{13} d_{23} d_{33} \end{bmatrix}$$

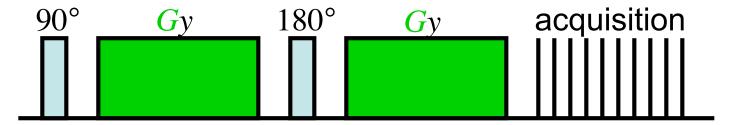

- To estimate six parameters at each voxel, must acquire at least six diffusion-weighted images
- HARDI models have more parameters per voxel, so more images must be acquired



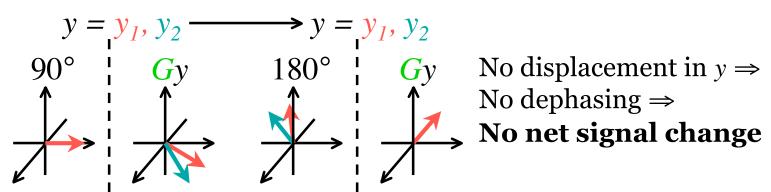
Spin-echo MRI

• Use a 180° pulse to refocus spins:

• Apply a field gradient *Gy* for location encoding

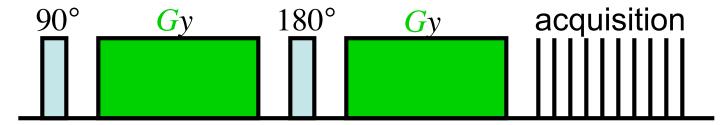


Measure transverse magnetization at each location -- depends on tissue properties (T_1, T_2)

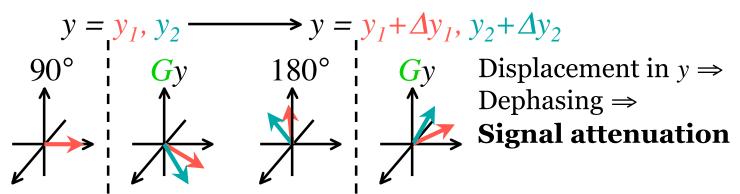


Diffusion-weighted MRI

Apply two gradient pulses:



Case 1: If spins are not diffusing



Diffusion-weighted MRI

Apply two gradient pulses:

Case 2: If spins are diffusing

Choice 1: Directions

- Diffusion direction || Applied gradient direction
 - ⇒ Maximum signal


Diffusion-encoding gradient *g*Displacement detected

- Diffusion direction

 ⊥ Applied gradient direction
 - \Rightarrow No signal

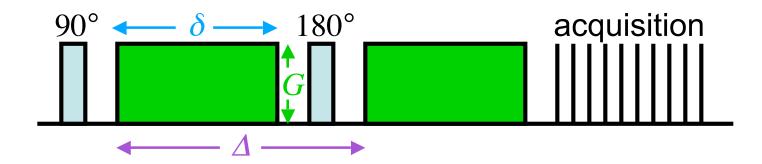
Diffusion-encoding gradient *g*Displacement not detected

• To capture all diffusion directions well, gradient directions should cover 3D space uniformly

How many directions?

- Acquiring more directions leads to:
 - + More reliable estimation of tensors
 - Increased imaging time ⇒ Subject discomfort, more susceptible to artifacts due to motion, respiration, etc.

• DTI:


- Six directions is the minimum
- Usually a few 10's of directions
- Diminishing returns after a certain number [Jones, 2004]
- HARDI/DSI:
 - Usually a few 100's of directions

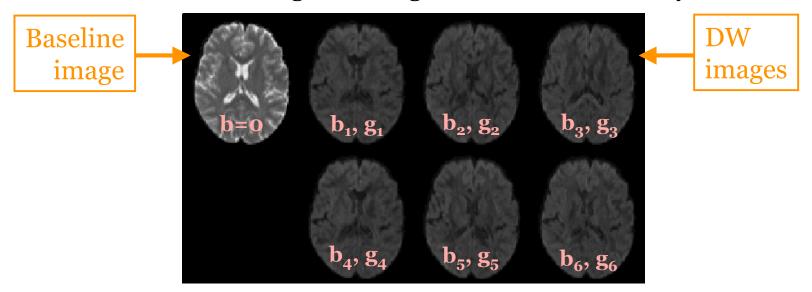
Choice 2: The b-value

• The b-value depends on acquisition parameters:

$$b = \gamma^2 G^2 \delta^2 (\Delta - \delta/3)$$

- γ the gyromagnetic ratio
- *G* the strength of the diffusion-encoding gradient
- $-\delta$ the duration of each diffusion-encoding pulse
- —
 ∆ the interval b/w diffusion-encoding pulses

How high b-value?

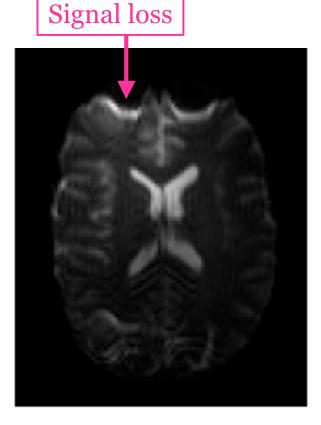

- Increasing the b-value leads to:
 - + Increased contrast b/w areas of higher and lower diffusivity in principle
 - Decreased signal-to-noise ratio ⇒ Less reliable estimation of tensors in practice
- DTI: b ~ 1000 sec/mm²
- HARDI/DSI: b ~ 10,000 sec/mm²
- Data can be acquired at multiple b-values for trade-off
- Repeat same acquisition several times and average to increase signal-to-noise ratio

Looking at diffusion data

A diffusion data set consists of:

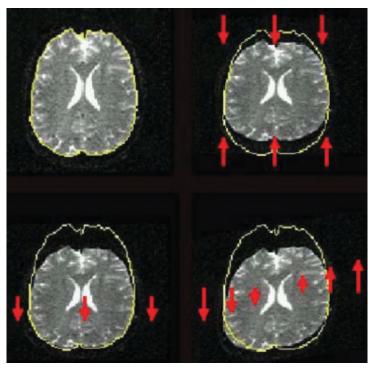
- A set of non-diffusion-weighted a.k.a "baseline" a.k.a. "low-b" images (b-value = 0)
- A set of diffusion-weighted (DW) images acquired with different gradient directions $g_1, g_2, ...$ and b-value >0
- The diffusion-weighted images have lower intensity values

From image to tensor


- $f_j^{b,g} = f_j^0 e^{-bg' \cdot D_j \cdot g}$ where the D_j the diffusion tensor at voxel j
- Design acquisition:
 - b the diffusion-weighting factor
 - g the diffusion-encoding gradient direction
- Reconstruct images from acquired data:
 - $f_j^{b,g}$ image acquired with diffusion-weighting factor b and diffusion-encoding gradient direction g
 - f_i^{θ} "baseline" image acquired without diffusion-weighting ($b=\theta$)
- Estimate unknown diffusion tensor D_i

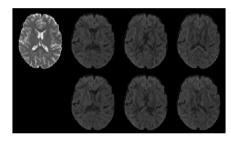
Field inhomogeneities

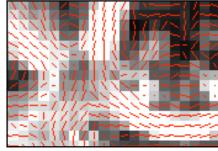
• Causes:

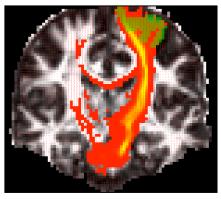

- Scanner-dependent(imperfections of main magnetic field)
- Subject-dependent (changes in magnetic susceptibility in tissue/air interfaces)
- Results: Signal loss in interface areas, geometric distortions

Eddy currents

- Fast switching of diffusionencoding gradients induces eddy currents in conducting components
- Eddy currents lead to residual gradients that shift the diffusion gradients
- The shifts are **directiondependent**, *i.e.*, different for each DW image
- Results: geometric distortions




From Le Bihan *et al.*, Artifacts and pitfalls in diffusion MRI, JMRI 2006



Data analysis steps

- Pre-process images to reduce distortions
 - Either register distorted DW images to an undistorted (non-DW) image
 - Or use information on distortions from separate scans (field map, residual gradients)
- Fit a diffusion model at every voxel
 - DTI, DSI, Q-ball, ...
- Do tractography to reconstruct pathways and/or
- Compute measures of anisotropy/diffusivity and compare them between populations
 - Voxel-based, ROI-based, or tract-based statistical analysis

