

NA-MIC National Alliance for Medical Image Computing http://na-mic.org

Training & DTI Validation

Sonia Pujol, PhD NA-MIC Training Core P.I.

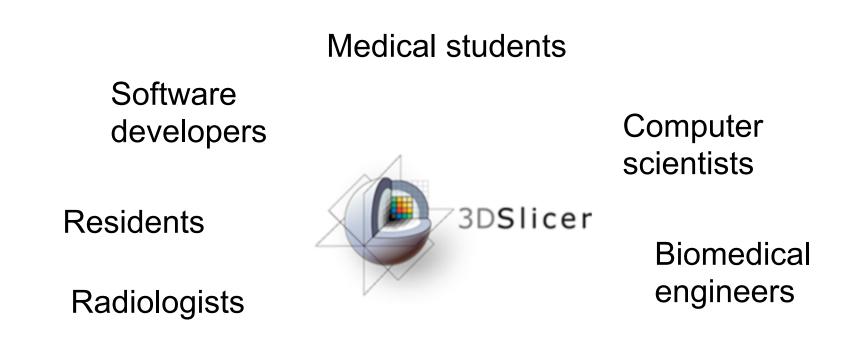
→Teaching effort to accelerate the transfer of NA-MIC technology to the community

→Technology sharing effort to enable interoperability between open-source software

→ Validation effort to investigate the comparative performances of algorithms

2012 NA-MIC Training Workshops

17 workshops at national & international venues


- 1. SPIE Medical Imaging, San Diego, CA, February 2012
- 2. Iowa Training Workshop, Iowa City, Iowa. March 2012
- 3. ISBI 2012, Barcelona, Spain, April 2012
- 4. Slicer Workshop, Sydney Australia, April 2012
- 5. Slicer Master Class, Perth, Australia, May
- 6. Slicer Master Classe, Darlinghurst, Austra
- 7. Madrid-MIT Mvision, Madrid, Spain. May 2
- 8. CARS 2012, Pisa, Italy. June 2012
- 9. AAPM 2012 meeting, Charlotte, NC. July
- 10. BU Slicer Training Session, Boston, MA.
- 11. Slicer invited lecture, Mexico City, Mexico. September 2012.
- 12. HST.583 neuroimage analysis lab, September 2012.
- 13. MICCAI 2012 DTI Challenge, Nice, France. October 2012
- 14. Cranio-Maxillo Facial workshop, Cleveland. November. 2011
- 15. RSNA 2012, Chicago, II. December 2012
- 16. HST.583 Diffusion Tensor Imaging Lab, December 2012
- 17. PNL Training workshop, Boston, MA. December 2012

In 2012, 704 clinical researchers and scientists participated in NA-MIC Workshops

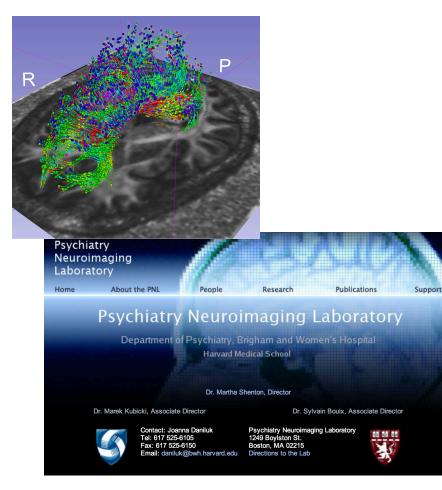
- Radiotherapy: AAPM 2012
- Radiology: RSNA 2012
- Neuroscience: SPIE 2012
- Cephalometry: CMF Cleveland 2012
- Image-Guided therapy: CARS 2012

NA-MIC workshops reach diverse audiences

Medical Physicists

Neurosurgeons

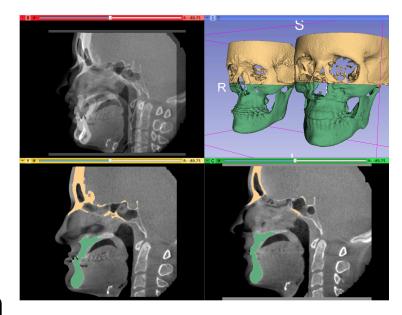
NA-MIC Workshops



Hands-on workshops tailored for clinicians, clinical researchers, and scientists at national events, invited seminars, and international conferences

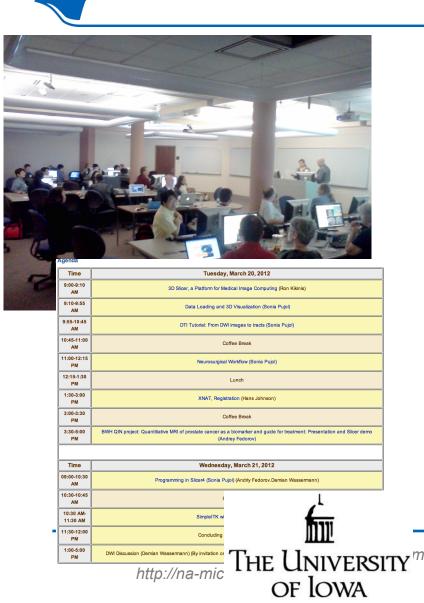
NA-MIC Training Workshops: National Venues

Psychiatry Neuroimaging Lab, Boston



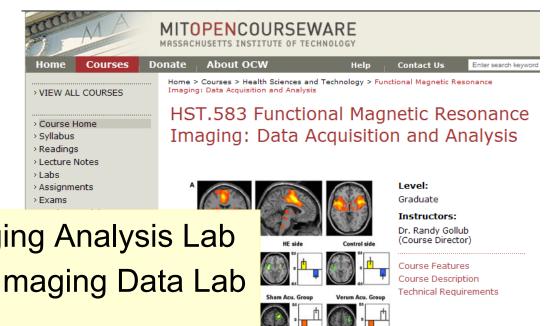
- Theme: An introduction to DTI analysis in Slicer4
- Local Organizer: Zora Kikinis, Ph.D.
- Workshop Faculty: Sonia Pujol, BWH
- 20 participants

Cranio-Maxillo Facial Workshop, Cleveland


- Theme: Open-source 3D image analysis in dentistry
- Workshop Faculty Beatriz Paniagua, UNC Tung Nguyen, UNC Lucia Cevidanes, U.Michigan

- 11 participants
- Dental dataset

University of Iowa, Iowa City



Two-day Slicer4 user and developer training workshop

- Local organizer: Hans Johnson, Univ. of Iowa David Welch, Univ. of Iowa
- Workshop Faculty:
 Sonia Pujol, BHW
 Ron Kikinis, BWH
 Demian Wasserman, BWH
 Andriy Fedorov, BWH
 - Audience: 36 scientists and clinical researchers

HST.583 Course, Boston

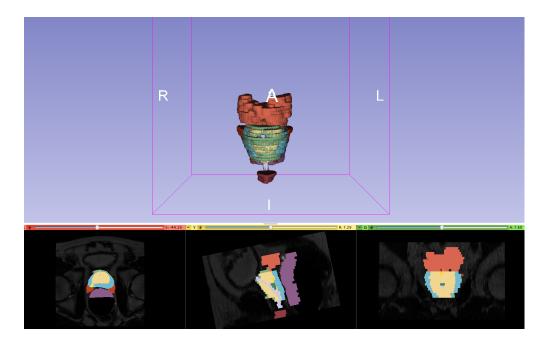
 Harvard-MIT Health Science and Technology

- Diffusion Tensor Imaging Analysis Lab
- Life Cycle of Medical Imaging Data Lab (S.Pujol)

> Newsletter sign-up

🖸 SHARE 🛛 📲 😭 🦓 ...

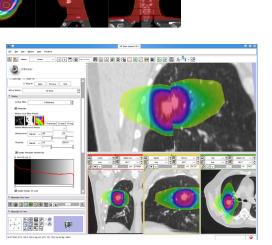
> Donate


udy conducted by some HST.583 p assess the brain basis of pain ncture and expectancy-evoked placebo treatments. (Source: Kong. J., T. J. Kaptchuk, G Polich, I. Kirsch, M. Vangel, C. Zvlonev, B. Rosen, and R.

Polich, I. Kirsch, M. Vangel, C. Zyloney, B. Rosen, and R. Gollub, "Expectancy and treatment interactions: A dissociation between acupuncture analgesia and expectancy evoked placebo analgesia." *NeuroImage* 45, no. 3 (15 April 2009): 940-949. doi:10.1016/j.coursingage.2008.12.025. Courtery.

949. doi:10.1016/i.neuroimage.2008.12.025. Courtesy of Elsevier, Inc., <u>http://www.sciencedirect.com</u> . Used with permission.)

Boston University, Boston


- Basics of data loading and 3D visualization of prostate models in Slicer4
- Introduction to label map, MRML file, and Slicer scene
- Tutorial organizer: Carl Jaffe, BU
- Tutorial faculty: Sonia Pujol, BWH
- Audience: BU Radiology residents

NA-MIC Training Workshops: International Conferences

AAPM 2012, Charlotte, NC

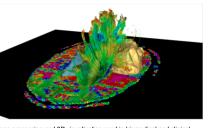
- Theme: 3DSlicer for radiation therapy research
- Gregory Sharp, Nadya Shusharina, James Shackleford,, MGH
- 25 participants

National Alliance for Medical Image Computir http://na-mic.org

Joint meeting of the American Association of Physicists in Medicine (AAPM) and the Canadian Organization of Medical Physicists (COMP)

🕲 😂 🐁 🔣 🏑 📖 🐼 🛊 • Perstert 🙀 Jas Jas | 🔶

SPIE 2012, San Diego



Contents [show]

Exploring Brain Connectivity in-vivo: from Theory to Practice - A hands-on analysis workshop on Diffusion MRI by the National Alliance for Medical Image Computing (NA-MIC)

Course Description:

The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has opened up the possibility of studying the complex organization of the brain's white matter in-vivo. By measuring the diffusion of water molecules in tissues, the technique gives insights into the structure and orientation of major white matter pathways, and DT-MRI findings have the potential to play a critical role in the extraction of meaningful information for diagnosis, prognosis and following of treatment response. The course will guide participants through the fundamental aspects of DT-MRI data analysis, as well as the challenges of transferring cutting-edge DT-MRI techniques to clinical routine. The format will include a series of hands-on sessions with the participants running DT-MRI analysis on their own laptops, to provide a practical experience of extracting useful clinical information from Diffusion MR images. The hands-on sessions will use DT-MRI to from the NA-MIC

toolkit, which include the 3DSlicer software, an open-source platform for medical image processing and 3D visualization used in biomedical and clinical research. Participants will be guided through an integrated workflow for exploring the brain white matter in a series of datasets that will be provided as part of the course. This event is part of the on-going effort of the NIH-funded National Alliance for Medical Image Computing (NA-MIC) to transfer the latest advances in biomedical image analysis to the scientific and clinical community.

http://www.na-mic.org/Wiki/index.php/ SPIE_2012_DTI_Workshop

National Alliance for Medical Image Computing http://na-mic.org

SPIE 2012 Course: "Exploring Brain Connectivity in vivo: from Theory to Practice"

- Guido Gerig, Utah
- Martin Styner, UNC
- Sonia Pujol, BWH

Full pipeline on the fundamentals of DTI

Lectures & hands-on sessions on acquisition, analysis and interpretation of DT-MRI data

ISBI 2012, Barcelona

- Two-day ISBI 2012 workshop on Open-source medical image analysis software
- Invited lecture on 3D Slicer
- Interoperability of 3D Slicer with open-source packages
- Workshop organizers: Wiro Niessen, Erasmus NC, Marc Modat, UCL

Eurobioimaging and ISBI present: Workshop on Open Source Medical Image Analysis software

Organizers: Wiro Niessen (Erasmus MC) and Marc Modat (UCL)

website link

deadline: 2 March 2012 EuroBioImaging is aimed at providing a research infrastructure for biomedical imaging research. One of the goals of the ESFRI (European Strategy Forum on Research Infrastructures) project EuroBioImaging is to provide easy access to advanced, validated, quantitative image processing and analysis methods. Currently, a wide range of medical image analysis applications and platforms are available. These are targeted at different user groups, varying from software developers to end-users. This workshop aims to bring together both developers and users of medical image analysis software to discuss the state-of-the-art and future development of medical image analysis software. Topics of the workshop include:

- open source software / platforms
- inter-operability between software / platforms
- evaluation, validation & challenges
 open access databases
- open access databases
 workflows in image processing workflows
- open source licenses

The program will feature a series of invited talks by software developers and researchers who have significantly contributed to the field. It will also include contributed talks that will be selected on the basis on an abstract. In addition to the presentations, there will be special slots for demos as well as some round table discussions for drafting a road map for future resource development in the context of Eurobioimaging.

CARS 2012, Pisa

Faculty

Sonia Pujol, Ph.D., Harvard University, Boston, USA Gabor Fichtinger, Ph.D., Queen's University, Kingston, Canada Nobuhiko Hata, Ph.D., Harvard University, Boston, USA Junichi Tokuda, Ph.D., Harvard University, Boston, USA

http://www.na-mic.org/Wiki/index.php/CARS_2012

National Allance for Medical Image Computing http://na-mic.org

Hands-on Workshop on Image-guided therapy

Saturday June 30, 2012 9:00 am – 4:30 pm Palazzo dei Congressi, Pisa, Italy

A joint event of the National Alliance for Medical Image Computing (NA-MIC), the Neuroimage Analysis Center (NAC), and the National Center for Image-Guided Therapy (NCIGT) funded through the National Institutes of Health.

contact: spujol@bwh.harvard.edu

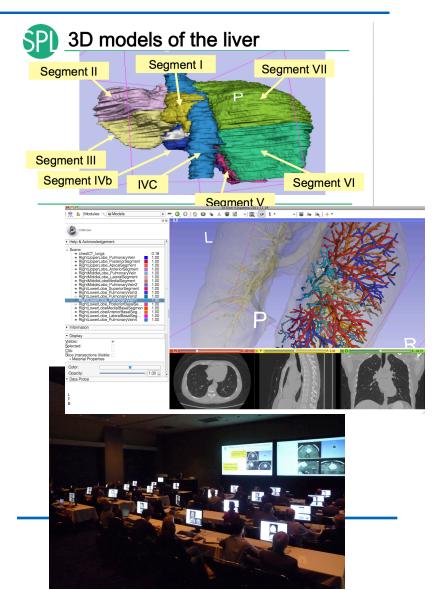
RSNA 2012

- RSNA 2012: 75,000
 participants
- NA-MIC 1-week long series of events
 - Refresher courses:
- 3 hours hands-on courses (>100 attendees)
 - Quantitative Imaging
 Reading Room: 54
 hours demos

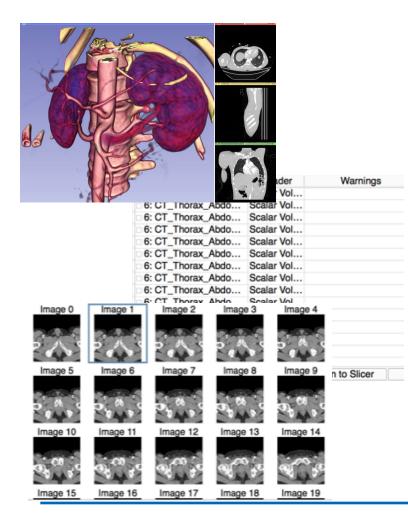
One-week long series of events at RSNA

Sunday, November 25	Monday, November 26	Tuesday, November 27	Wednesday, November 28	Thursday, November 29	Friday, November 30
8:00am-11:00am. 3D Slicer Exhibit d, Quantitative Imaging Reading Room, Lakeside Learning Center, Hall E, LL- QRR3007	8:00am-11:00am. 3D Slicer Exhibit &, Quantitative Imaging Reading Room, Lakeside Learning Center, Hall E	8:00am-11:00am. 3D Slicer Exhibit &, Quantitative Imaging Reading Room, Lakeside Learning Center, Hall E	8:00am-12:15pm. 3D Slicer Exhibit & Quantitative Imaging Reading Room, Lakeside Learning Center, Hall E	8:00am-12:15pm. 3D Slicer Exhibit Ø, Quantitative Imaging Reading Room, Lakeside Learning Center, Hall E	
	- 12:15pm-1:15pm . Meet-The- Experts Session P, Quantitative Imaging Reading Room, Lakeside Learning Center, Hall E - 1:15pm-6:00 pm . 3D Slicer Exhibit P, Quantitative Imaging, Lakeside Learning Center, Hall E	Visualization of DICOM images for Radiology Applications" Sonia Pujol, Kitt Shaffer, Ron Kikinis ₪. Room S401CD	Lakeside Learning Center, Hall E 	- 12:15pm-1:15pm . Meet-The- Experts Session ₽, Quantitative Imaging Reading Room, Lakeside Learning Center, Hall E - 1:15pm-6:00pm . 3D Slicer Exhibit ₽, Quantitative Imaging Reading Room, Lakeside Learning Center, Hall E	Reading Room, Lakeside

Thanks to Slicer developer team



RSNA 3DVisualization Course


3D interactive visualization of liver & lung segments 5th edition (RSNA 2008, 2009, 2010, 2011, 2012)

Course Instructors:

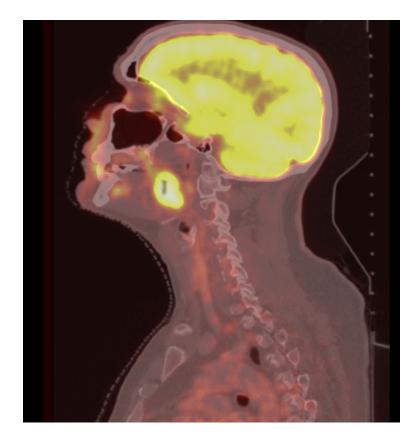
- Kitt Shaffer, MD, PhD,
 Vice Chairman for Radiology Research, BU Medical Center
- Sonia Pujol, Ph.D., BWH
- 105 international attendees

3D Visualization course: New Additions

- DICOM data loading in Slicer 4
- GPU-based Volume rendering

RSNA Quantitative Imaging Course

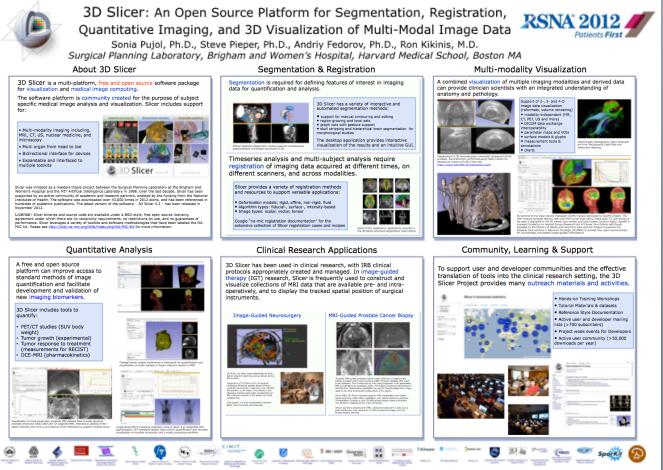
Measurements of small volumetric changes in slow growing tumors, and quantitative imaging analysis of FDG-PET/CT data


4th edition (RSNA 2009, 2010, 2011, 2012)

Course Instructors:

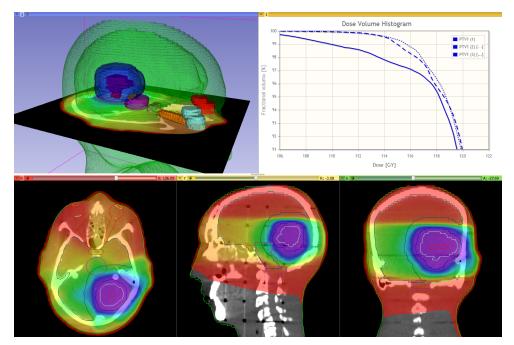
- Katarzyna Macura, MD, PhD, JHU
- Sonia Pujol, Ph.D., BWH
- 105 international attendees

Quantitative Image Analysis Course: New Addition



New Clinical case:

→ Measurement Metabolic
 Activity in squamous cell
 carcinoma using the FDG-PET/
 CT Standard Uptake Value
 Computation module in Slicer4


Quantitative Imaging Reading Room Exhibit

RSNA 2012 Quantitative Imaging Reading Room

QIRR New Addition: SlicerRT

- SlicerRT Extension
 - DICOM-RT import
 - RT-specific analysis:
 Dose Accumulation
 Dose Comparison (gamma)
 Isodose contours / surfaces
 Contour Comparison
 Contour Morphology
- Plastimatch
 BSpline registration
 Landwarp registration

- Csaba Pinter, Andras Lasso, An Wang, David Jaffray, and Gabor Fichtinger, "SlicerRT: Radiation therapy research toolkit for 3D Slicer", Med. Phys. 39 (10), October 2012
- https://www.assembla.com/spaces/slicerrt/

National Alliance for Medical Image Computing http://na-mic.org

Slide courtesy of Csaba Pinter

NA-MIC International Outreach

NA-MIC Outreach: Australia

Creating Tools for Medical Image Computing

a presentation by

Dr Ron Kikinis, Director, Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA

sponsored by

When: 2nd May 2012, 5:30 - 7:30 PM

Where: Conference Room 4, Ground Floor, Aikenhead Wing, St Vincent's Hospital, 41 Victoria Parade, Fitzroy, VIC 3065, click here to download campus map.

Entry: HISA members are invited to attend free of charge. Non-members \$25.

Professor Kikinis investigates how to extract information and knowledge out of biomedical imaging data and use the knowledge to help diagnosis and treatment. Medicine is primarily an empiric field of science with relatively little theory. The engineering sciences, on the other hand, have a solid theoretical foundation, which allows easy hypothesis formation and extrapolation. This results in very different scientific cultures and how the scientific method is used in each field. Working as a translator between medical doctors, computer scientists and physicists is both a great privilege and an enormous challenge. Surprisingly few concepts are shared among these fields of science, which makes successful interdisciplinary work difficult to accomplish.

The fields of Radiology and Surgery are undergoing a quiet revolution, which started several decades ago. Capabilities of imaging devices have evolved in leaps and bounds, producing a larger quantity of more complex data. In order to take advantage of these novel capabilities in

diagnostics and treatment, it is necessary to research, develop and deploy new image processing capabilities and, for treatments, to link them to devices.

Successful research in this field requires interdisciplinary teams with effective communications and shared values. While prototypes are sufficient for algorithm research, translation into biomedical research requires the creation of tools that can be used by physicians. Industrial involvement in this process only occurs after the value of a new capability has been demonstrated in translational research.

For the last decade, Professor Kikinis has focused on creating a software platform to make it easier to translate engineering prototypes for image post-processing into diagnostics and surgical treatment.

In his talk, Professor Kikinis will discuss current state-of-the-art tools and recent progress from a personal perspective.

Open Source Image Processing Software for Translational Clinical Research.

Master Class and Public Lecture, May 14-16, 2012, The University of Western Australia, Perth, AU

Creating Tools for Medical Image Computing.

May 2, 2012: St Vincent's Hospital, Melbourne

April 26, 2012: St Vincent's Hospital, Darlinghurst

NA-MIC Outreach: Spain

Innovation, Leadership, Impact

Invited 2-day event:

- DTI analysis
- Neurosurgical Planning
- Programming in Slicer

Workshops Faculty

- Pollina Golland, MIT
- Ron Kikinis, BWH
- Sonia Pujol, BWH

NA-MIC Outreach: Mexico

PRIMER SIMPOSIO EN BIOINGENIERIA MEDICA

El Primer Simposio en Bioingeniería Médica es un evento académico y de investigación orientado a los estudiantes y profesionales del área médica que utilizan la tecnología en sus actividades profesionales. Este año nos hemos dado a la tarea de reunir a especialistas expertos en diversas áreas relacionadas con la medicina para que nos compartan sus conocimientos, experiencias y perspectivas en cada una de sus áreas.

Consideramos que este evento es enriquecedor no solamente para la formación académica de nuestros estudiantes de la Licenciatura en Bioingeniería Médica, sino también, para todos los profesionales del área médica quienes sin duda encontrarán información valiosa para sus labores diarias.

"Esperamos contar con su valiosa y entusiasta participación."

Invited Lecture:

« The 3DSlicer opensource platform for medical image computing and imageguided therapy. » Sonia Pujol, BWH

Universidad Autónoma del Estado de México "2013, 50 Aniversario Luctuoso del Poeta Heriberto Enriquez" Audience: 200 biomedical engineering students

2013 training events:

17 workshops

704 NA-MIC training workshop participants

2005-2013:

2,716 scientists and clinicians trained by NA-MIC

1

Carl

- Miles

Dissemination Update

14th Project Week: Salt Lake City, Utah, January 2012

- •104 attendees: 19 academic institutions, 6 companies
- •57 Projects: Segmentation, Registration, IGT, Radiotherapy, Informatics, DTI, Engineering

15th Project Week: MIT, Summer June 2012

- •88 attendees: 20 academic institutions, 8 companies
- •62 Projects: TBI, Radiation Therapy, Huntington's Disease, Atrial Fibrillation, IGT, Segmentation, Registration, Tractography, Vessels, Engineering

National Alliance for Medical Image Computing http://www.na-mic.org

Tina Kapur, Ph.D., Co-Pl Steve Pieper, Ph.D., Co-Pl

NA-MIC standard methodology for technology sharing

Sonia Pujol, Ph.D. – Steve Pieper, Ph.D.

Slicer Execution Model

NA-MIC AHM 2006

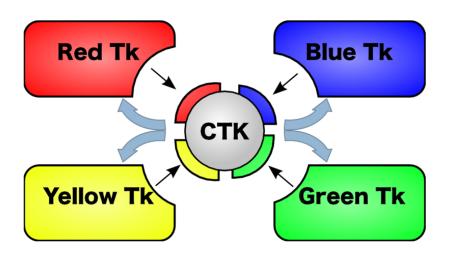
Slicer3:Execution Model

Home < Slicer3:Execution	Model
CONTENTS [hide] 1 Abstract 2 Status 3 Documentation 4 Background	
Abstract	
NAMIC has adopted a	cer3 Execution Model is to facilitate a "run-everywhere" philosophy for algorithm writers. standard for algorithm "self-description" that is followed when command line executables grid, clusters, etc will be able to use the executables directly in their environment.
The Slicer3 execution	model contains three components:
C++ classes th 2. Command Line C++ code that can be include 3. Slicer3 GUI - T	at can be accessed in applications. Processing - This is a C++ library that parses an xml description of a module and creates parses the command line arguments specified in the xml module description. This code d in the command line module to access the command line arguments at run-time. his GUI and related MRML and Logic classes uses the Module Description Parser to RML and Logic classes for each module "discovered" at run-time.
Currently, an initial im	plementation of all three components is complete.
Here 🛃 is a discussion	n page on how to deal with reference systems in the Execution Model.
Documentation	
Look at the Execution	Model Documentation for details.
Background	
	tion of the Slicer3 Execution Model followed a Wiki discusion of requirements and s. Refer to the Execution Model Discussion for background and motivation.

Slicer Execution Model

NA-MIC AHM 2006

NA-MIC Training Workshop 2008


MITK presentation by Ivo Wolf, Marco Nolden, Sascha Zelzer

Slicer Execution Model

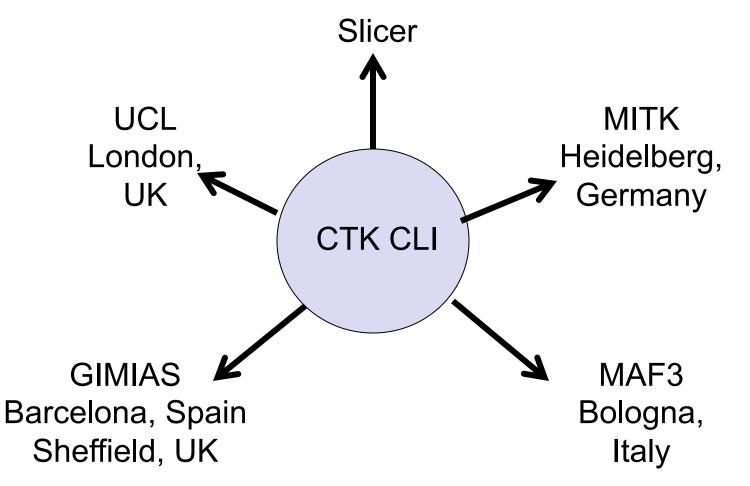
NA-MIC AHM 2006

NA-MIC Training Workshop 2008

Slicer Execution Model

NA-MIC AHM 2006

NA-MIC Training Workshop 2008


CTK 2009

CTK Hackfest, Boston, 2012

CTK CLI 2012

→ CTK adoption of Slicer Execution model

ISBI 2012 Open-source workshop

Workshop on Open-Source Medical Image Analysis Software 30th April and 1st May

 3DSlicer presentation

Submission

website link

deadline: 2 March 2012 Eurobioimaging and ISBI present: Workshop on Open Source Medical Image Analysis software

Organizers: Wiro Niessen (Erasmus MC) and Marc Modat (UCL)

EuroBioImaging is aimed at providing a research infrastructure for biomedical imaging research. One of the goals of the ESFRI (Buropean Strategy Forum on Research Infrastructures) project EuroBioImaging is to provide easy access to advanced, validated, quantitative image processing and analysis methods. Currently, a wide range of medical image analysis applications and platforms are available. These are targeted at different user groups, varying from software developers to end-users. This workshop aims to bring together both developers and users of medical image analysis software to discuss the state-of-the-art and future development of medical image analysis software. Topics of the workshop include:

- · open source software / platforms
- inter-operability between software / platforms
- · evaluation, validation & challenges
- · open access databases
- workflows in image processing workflows
- open source licenses

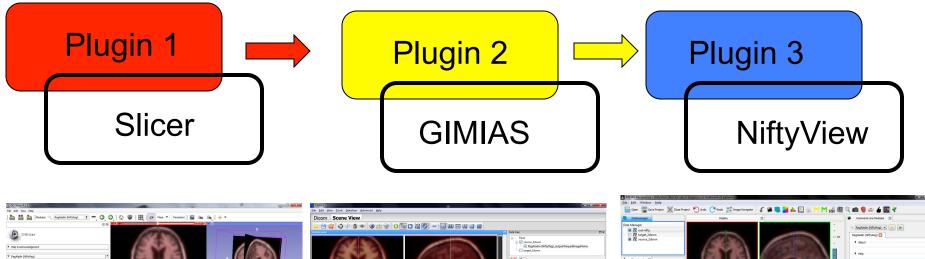
The program will feature a series of invited talks by software developers and researchers who have significantly contributed to the field. It will also include contributed talks that will be selected on the basis on an abstract. In addition to the presentations, there will be special slots for demos as well as some round table discussions for drafting a road map for future resource development in the context of Eurobioimaging.

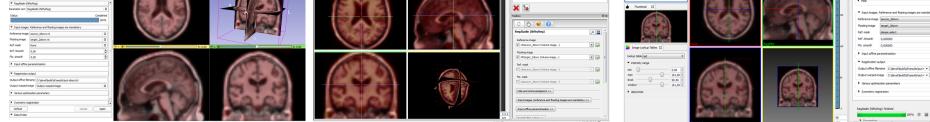
Bonner Photo Credit

3DSlicer

 NiftyReg (UCL, London)
 presentation

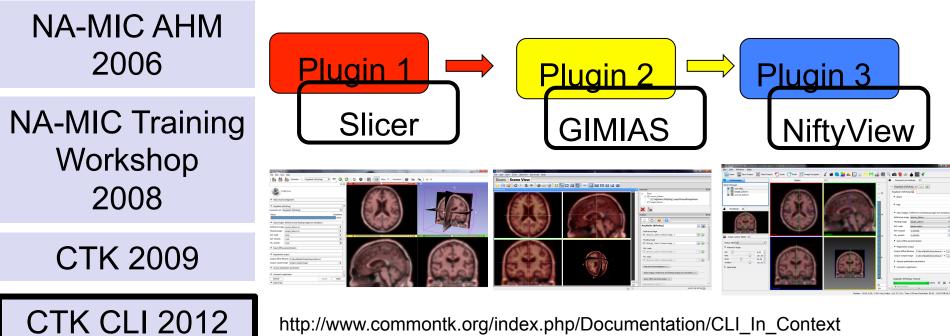
NA-MIC Summer Project week


2012 Summer Projec	t Week:NiftyReg			
Project Week 2012				
Projects List	NiftyReg			
What is Niftyreg?				
 Local deformation (non-ri Implementation: C/C++ [S All dependencies are incl Installation through CMake 	ration based on a block-matching technique. gid) based on a cubic B-Spline parametrisation. IMD, OpenMP, CUDA] uded into the project (nifticlib, zlib, [NRRD, png]). te and step-by-step install can be found here d through svn: svn co https://niftyreg.svn.sourceforge.			
ey Investigators	00	3D Slicer 4.1.0-2012-1	06-18	
 University College Londo BWH: Sonia Pujol 	n: Marc Mc @ @ @	- 1	S	
Objective	Help & Acknowledgement Help Acknowledgement This work was partially funded by CBRC grant 168 (UK)			
NiftyReg & is an open-sou and non-linear registration Sebastien Ourselin at the	n develope reg_aladn Parameter set: Select a CommandLineModule ¢ Centre for Satus ide			
Computing, University Co objectives is to make Nifty	Reg avails Peterence required			
	Ref. mark Ref. Bancen Do Do Do Do Do Posing Image Required Po. mark Ro, month Do	R	Р	
	Input affine parametrisation Input affine parametrisation Input affine terms from Filing/Fili Input affine terms from Filing/Fili			
	Hegistration output Output affine filename outputResult.txt Output warped image outputResult.nii			
	Various optimisation parameters Default Cancel Apply			

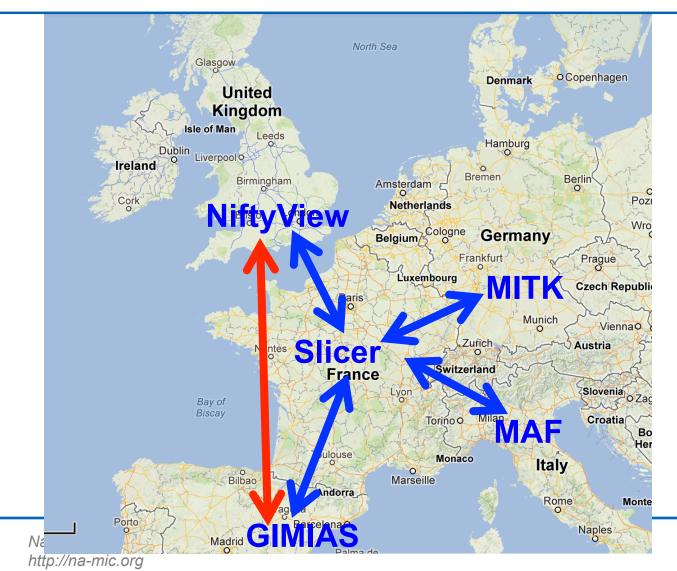

 Integration of NiftyReg library as Slicer CLI Extension

Marc Modat, UCL Sonia Pujol, BHW

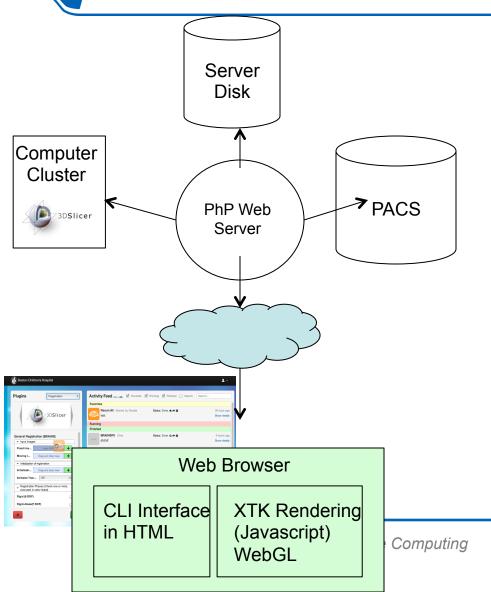
NiftyReg integration



http://www.commontk.org/index.php/Documentation/CLI_In_Context



Slicer Execution Model



http://www.commontk.org/index.php/Documentation/CLI In Context

Slicer SEM leverages interoperability between packages

Open-source platform "ChRIS"

Slicer CLI modules accessible via the web

Client/Server application for Slicer remote execution on PACS data

Dr. Rudolph Pienaar Dr. Ellen Grant Nicolas Rannou

MA

Children's Hospital, Boston,

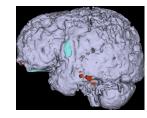
RSNA Liver tutorial

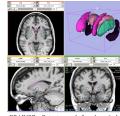
00			3	D Slice	er 4.2.1					
<u>File E</u> dit <u>V</u> iew <u>H</u> elp										
Modules: 🔍 SelfTests	\$	-, 0,	Ð,	۲	٢	۹ 🗹	6	🔟 💲 🗝 🐻 🥬	a 🔈 🔶	-
	9 🗙	- 1 ⊕								
3DSlicer								S		
 Help & Acknowledgement 	A									
 Self Tests 										
Run All										
AtlasTests	11									
Charting	í									
CloseScene	í I									
DataProbe	íL.									
MRMLSceneExists	ήŪ									
RSNA2012ProstateDemo	j i		D					D		
RSNA2012Quant	j -		R					Р		
RSNA2012Vis										
SliceLinkLogic										
Slicer4Minute										
SlicerMRBTest										
ThresholdThreadingTest										
ViewControllersSliceInterpolationBug1926										
fiher visibility crash2438 ▼ Data Probe										
244.1000	_									
L F B										

- Python implementation
 (Steve Pieper) for selftests of tutorials
 integrated to Slicer
 distribution
- Users can confirm correct execution of a module based on the tests
- First use at RSNA 2012

Summer 2012 Tutorial Contest

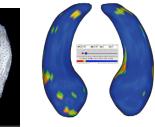
• 5 tutorial submissions First prize winner:

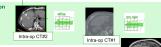

NA-MIC National Alliance for Medical Image Computing http://www.na-mic.org

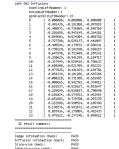

Qualitative and quantitative comparison of two RT dose distributions

James Shackleford Nadya Shusharina Greg Sharp

Massachusetts General Hospital jshackleford@partners.org | (617) 726-0186 NA-MIC Tutorial Contest: Summer 2012

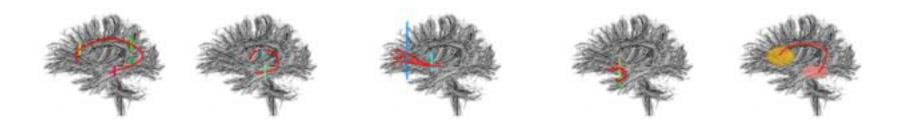

© 2012, All Rights Reserved




BRAINSCut Output example for sub-cort structures

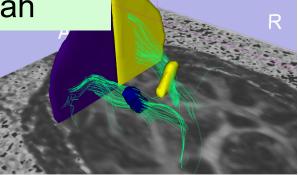
Select	Status	Name	Category	Description	HomePage
	0	ABC			3
	0	ARCTIC	Contical Thickness	ARCTIC is an e	S
	0	EMFiberClusteringModule	Tractography	An EM approa	S
	0	ExampleCommandLine			S
	0	ExampleLoadableGuiLessModule	Examples	An example of	S
	0	ExampleLoadableModule	Examples	An example of	S
	2	HammerRegistration	Work in Progress	HammerRegist	3
	0	LabelDiameterEstimation	Statistics		S
		plastimatch-slicer			3
	0	PythonSampleScriptedModule	Developer Tools	This is an exar	S
	0	TcfSampleScriptedModule	Developer Tools	This is an exar	3

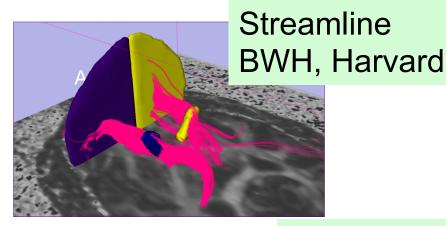
essing	Mask CT	l
ration	and the second s	

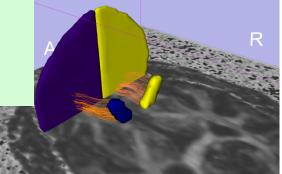

→ Next Tutorial Contest: NA-MIC Summer Project Week 2012

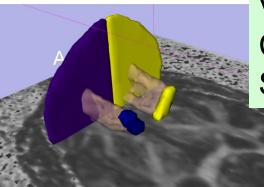
DTI Tractography Validation Update

 Exploratory work on validation of DTI tractography

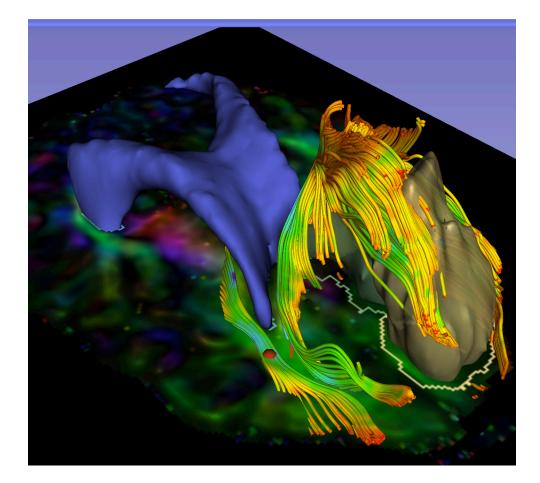

 Cross-comparison of tractography algorithms on major white matter fascicles




Early Implementation


Fiber Tracking SCI, Utah

GTRACT Iowa University

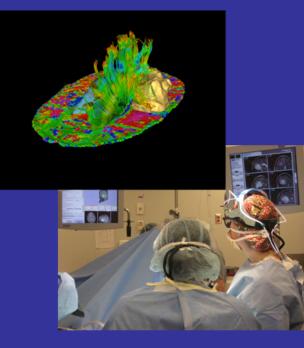


Volumetric Connectivity SCI, Utah

Pujol et al. ISMRM 2009

DTI for Neurosurgery

Pre-operative assessment of white matter anatomy for tumors located in eloquent areas where motor, sensory, speech and cognitive function reside.


Dr. Alexandra Golby

- Where is the tract?
- Is it normal?
- Is it symmetric?
- Is anything missing?
- Is it functional?

MICCAI 2011 DTI Challenge, 1st Edition

14th International Conference on Medical Image Computing and Computer Assisted Intervention

Workshop Faculty

Sonia Pujol, PhD, Surgical Planning Laboratory, Harvard Medical School Ron Kikinis, MD, Surgical Planning Laboratory, Harvard Medical School Alexandra Golby, MD, Brigham and Women's Hospital, Harvard Medical School Guido Gerig, PhD, The Scientific Computing and Imaging Institute, University of Utah Martin Styner, PhD, Neuroimage Research and Analysis Laboratory, University of North Carolina William Wells, PhD, Surgical Planning Laboratory, Harvard Medical School Carl-Fredrik Westin, PhD, Laboratory of Mathematics in Imaging, Harvard Medical School Sylvain Gouttard, MSc, The Scientific Computing and Imaging Institute, University of Utah

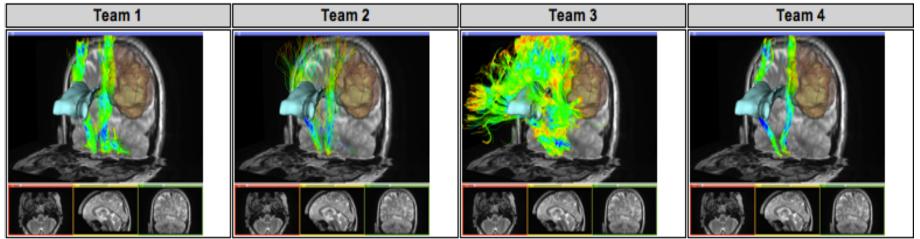
DTI Tractography for Neurosurgical Planning: A Grand Challenge

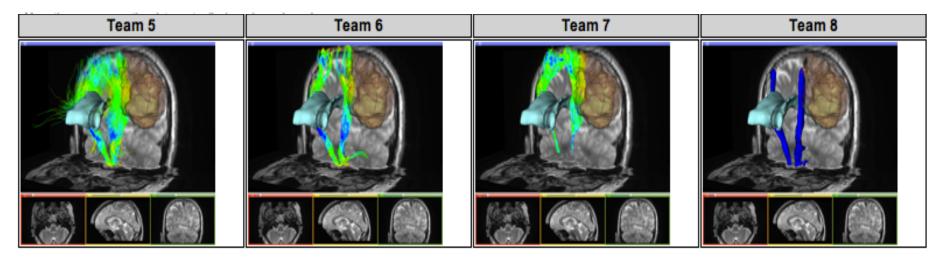
MICCAI 2011 Workshop Sunday September 18, 9am-6pm Westin Harbour Castle Toronto, Canada

National Alliance for Medical Image Computing

<u>http://www.na-mic.org/Wiki/index.php/Events:_DTI_Tractography_Challenge_MICCAI_2011</u>

MICCAI 2011 Workshop





- 8 tractography teams
- 2 practicising neurosurgeons
- 23 international participants

MICCAI 2012 DTI Challenge, 1st Edition

MICCAI 2012 DTI Challenge, 2nd Edition

MICCAI 2012 DTI Tractography Challenge Second Edition INTRODUCTION THE CHALLENGE DATA FACULTY KEYNOTE SPEAKER REGISTRATION CONTACT Welcome to the 2nd edition of the MICCAI DTI Tractography Challenge. The workshop will be held on Monday October 1st, 2012 as part of the 15th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2012). The 15th International Conference on Medical Image Computing and Computer Assisted Intervention 1-5 October 2012 - Acropolis Convention Center - Nice, France MICCAL http://dti-challenge.org

MICCAI 2012 DTI Challenge

- 10 tractography teams
- 5 practicising neurosurgeons
- 36 international participants

- Sonia Pujol, BWH
- Ron Kikinis, BWH
- Alexandra Golby, BWH
- Arya Nabavi, Kiel Hospital, Germany
- Guido Gerig, SCI Utah
- Martin Styner, UNC
- William Wells, BWH
- CF Westin, BWH
- Laurent Chauvin, BWH

• Dr. Carlo Pierpaoli, NIH

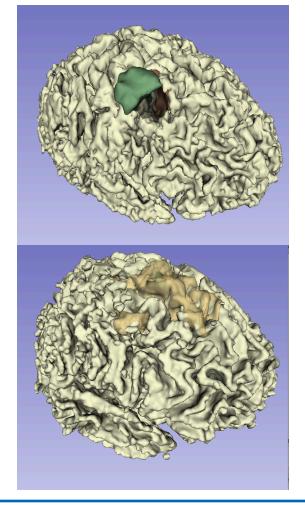
Considerations on the use of Diffusion MRI tractography to investigate brain connectivity

Tractography: The Good, The Bad and the Ugly

Neurosurgeons

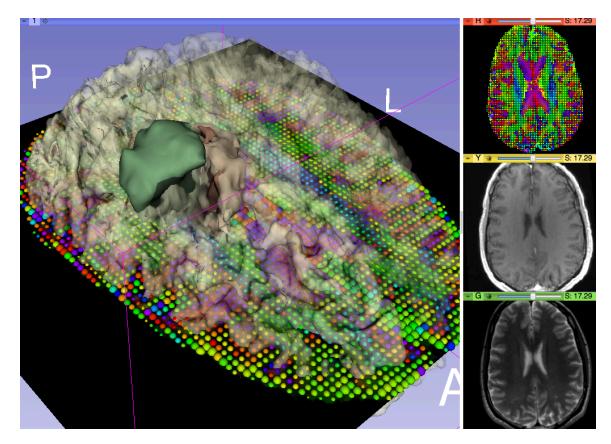

- Dr. Alexandra Golby, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Dr. Arya Nabavi, University Hospital Schleswig-Holstein, Kiel, Germany
- **Dr. Sandrine De Ribaupierre**, Western University, London, Ontario, Canada
- Dr. David Fortin, Sherbrooke University, Sherbrooke, Canada
- Dr. Francesco Cardinale, Epilepsy and Parkinson Surgery Centre "Claudio Munari", Milan, Italy

10 international teams

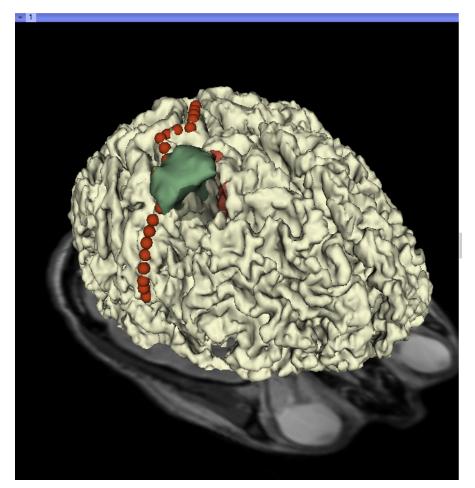


- USA (3)
- Canada (2)
- France
- Italy
- Germany
- Turkey
- Spain
- → 19 tractography methods represented

10 international teams


- 1. Ali R. Khan, Maged Goubran, Jonathan C. Lau, Roy Eagleson, Terry M. Peters, and Sandrine de Ribaupierre. Robarts Research Institute, London, Canada
- 2. Aymeric Stamm, Olivier Commowick, Patrick Perez, and Christian Barillot. INSERM U746-CNRS UMR6074-INRIA University of Rennes I, Rennes, France
- 3. -Peter F. Neher, Bram Stieltjes, Marco Reisert, Hans-Peter Meinzer, and Klaus H. Fritzsche. German Cancer Research Center, Heidelberg, Germany
- 4. .Antonio Tristan-Vega, Santiago Aja-Fernandez, and Carl-Fredrik Westin. University of Valladolid, Valladolid, Spain
- 5. Riza Alp Guler, Ali Demir, and Gozde Unal. Sabanci University, Istanbul, Turkey
- 6. Alessio Moscato, and Francesco Cardinale, Niguarda Hospital, Milan, Italy
- 7. Gabriel Girard, Maxime Chamberland, Jean-Christophe Houde, David Fortin, and Maxime Descoteaux. Sherbrooke University, Sherbrooke, Canada
- 8. Joy Matsui, Eun Young Kim, Vincent Magnotta, and Hans Jonhson. University of Iowa, Iowa City, USA
- 9. Sudhir K Pathak, Deepa Krishnaswamy, and Walter Schneider, University of Pittsburgh, Pittsburgh, USA
- 10.Hesamoddin Salehian, Guang Cheng, Jiaqui Sun, and Baba Vemuri. University of Florida, Gainesville, USA

- Patient 1: Recurrent/residual anaplastic astrocytoma Grade III
- Patient 2 : Oligodendroglioma grade II
- Patient 3: Oligodendroglioma Grade II
- Patient 4: Anaplastic astrocytoma Grade III



- T1,T2, DWI, DTI
- Pre-segmented tumor regions
- 3D White Matter Surface

Challenge Datasets (new)

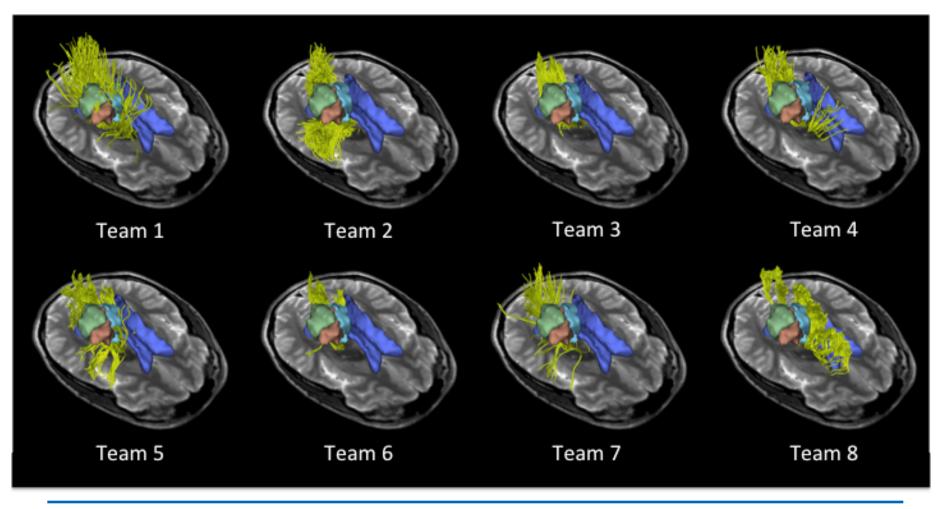
 Delineation of pre-central gyrus (expected motor cortex location)

Dr. Alexandra Golby, MICCAI 2012

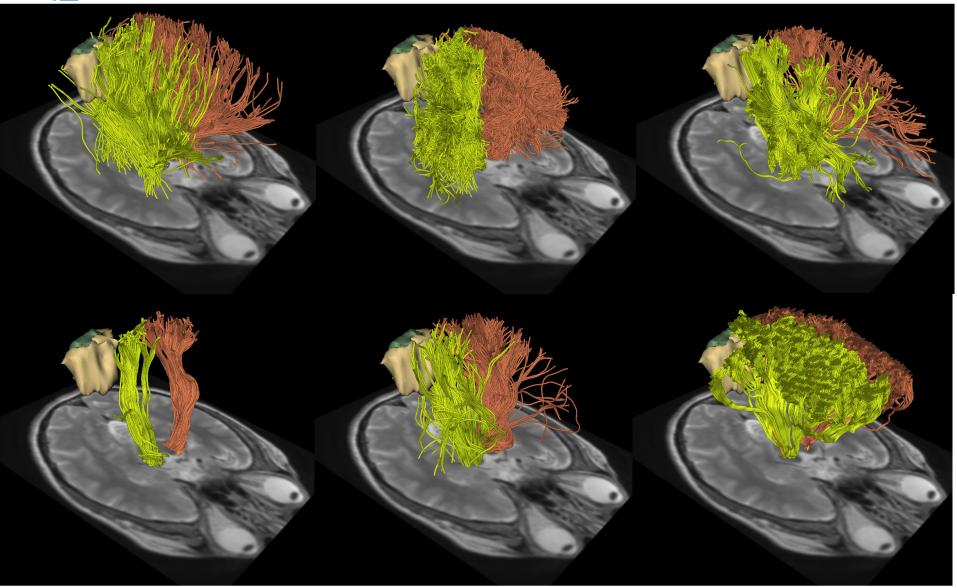
- Where is the tract?
- Is it normal?
- Is it symmetric?
- Is anything missing?
- Is it functional?

- Quantitative assessment (STAPLE, DICE, FA Profile)
- Qualitative evaluation by clinicians and DTI experts

- 2nd Edition: Standardization effort
- Web-based questionaire for review

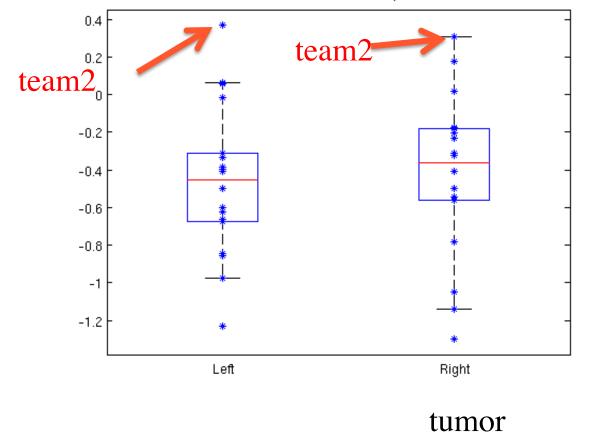

Practicing neurosurgeons and DTI experts:

- 1. Dr. Alexandra Golby
- 2. Dr. Arya Nabavi
- 3. Dr. Ron Kikinis
- 4. Dr. Carlo Pierpaoli
- 5. Dr. Carl-Fredrik Westin


DTI Tractography Challenge Preliminary Results

Patient1 (pre-workshop)

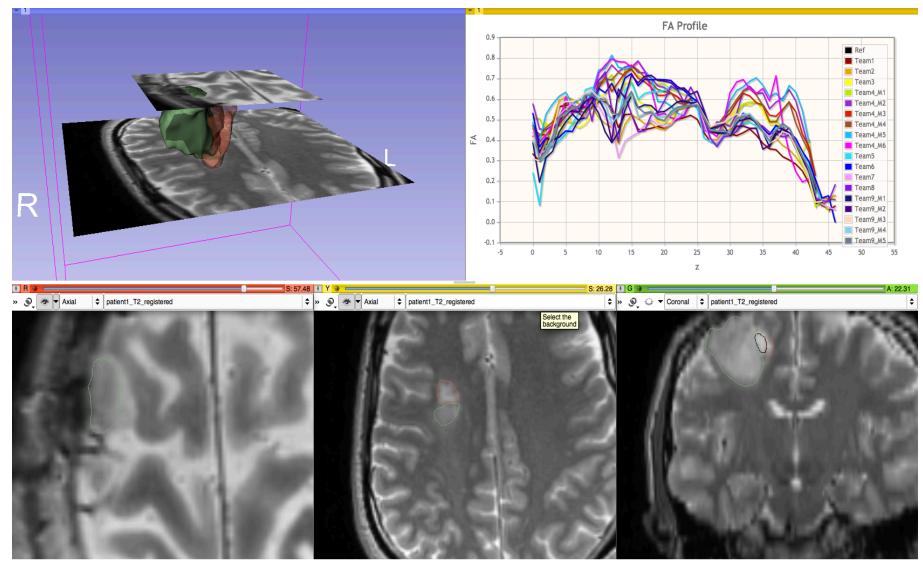
Patient 3 (5-hour on-site challenge)



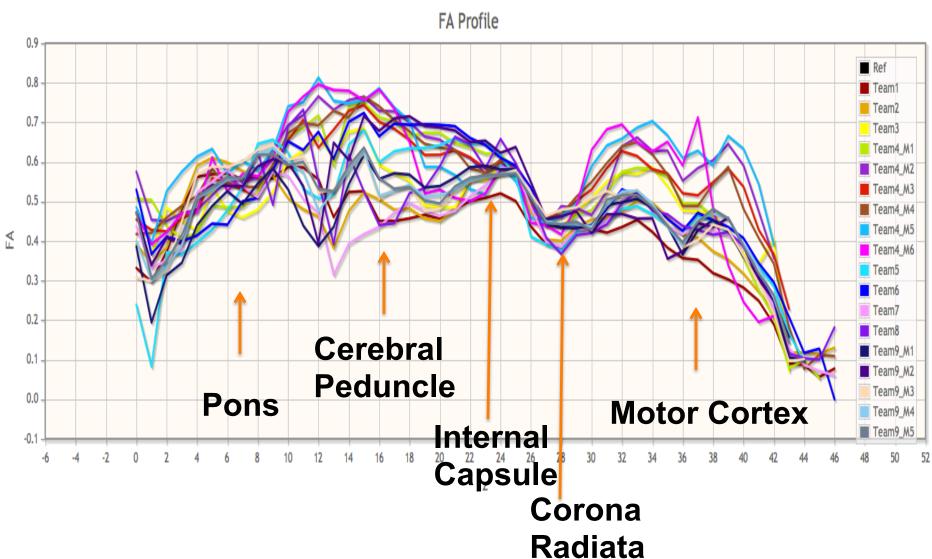
- Metric 1: STAPLE sensitivity score
- Metric 2: Dice coefficient of overlap
- Metric 3: Fiber FA profile along tract

Patient 1 - Sensitivity

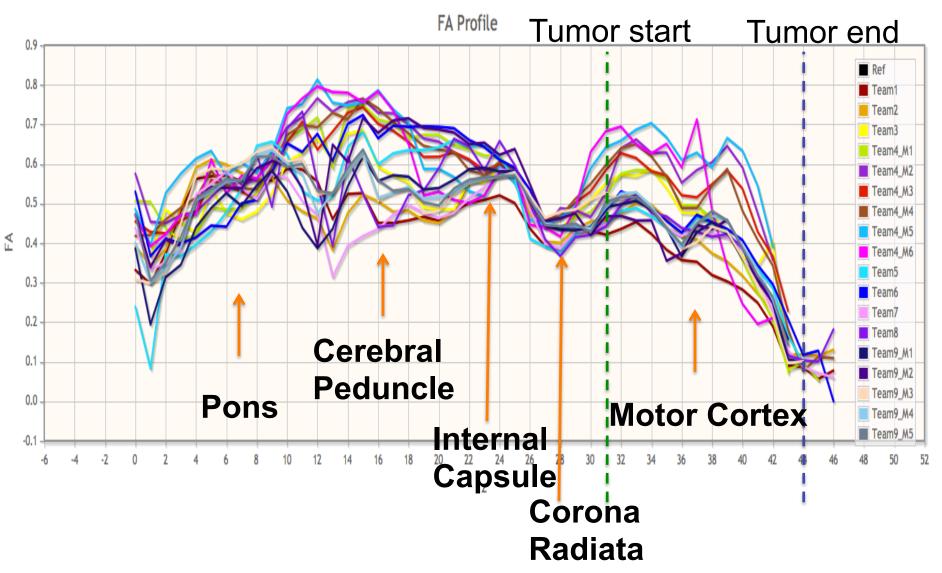
Dice coefficient of overlap


• Patient1:

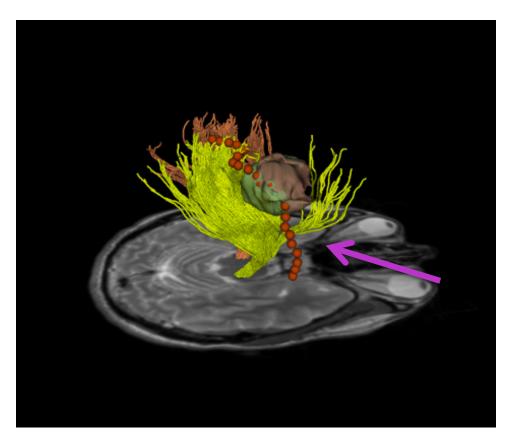
mean: 25.81 % (left) / 26.48 % (right) peritumoral mean: 36.37 %


• Patient2:

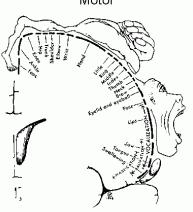
mean: 25.89 % (left) / 22.35 % (right)



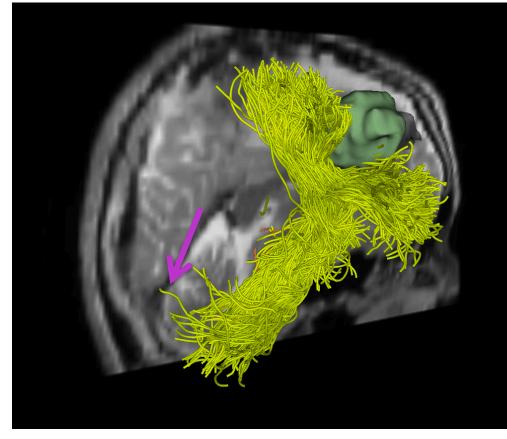
Clinical evaluation criteria


- C1. Presence of False Negative Tracts
- C2. Presence of False Positive Tracts
- C3. Correct depiction of the CST in specific anatomical regions
- C4. Correct depiction of the peritumoral tracts
- C5. Presence of implausible tracts

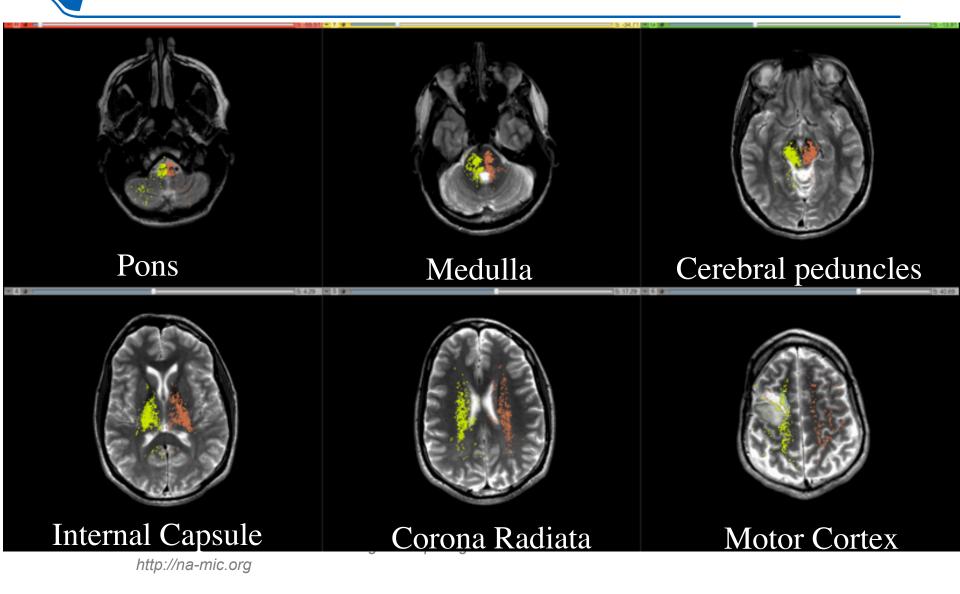
C6. Clinical relevance of the

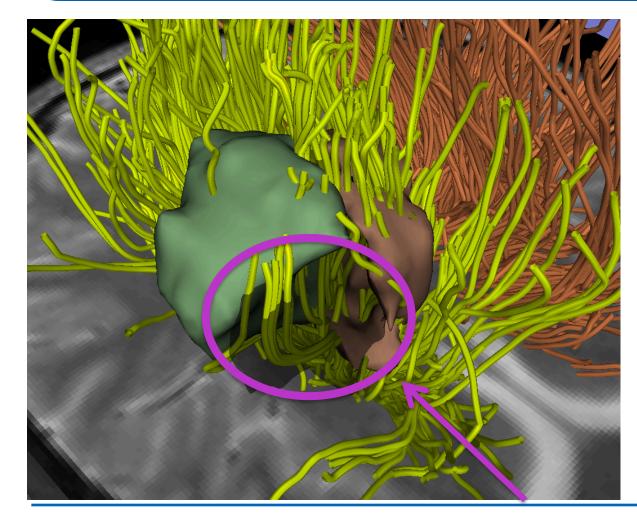

tractography reconstruction

nttp://na-mic.org


Which parts of the corticospinal tract are missing?

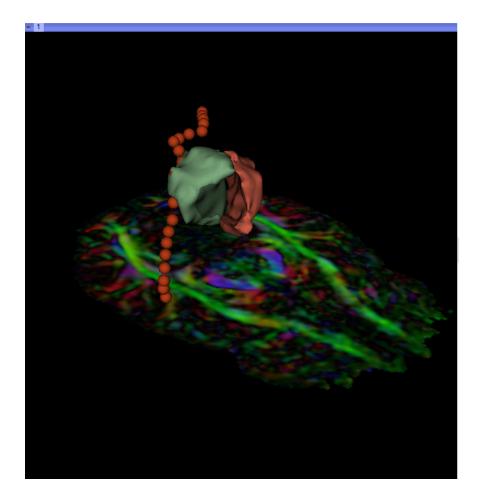
(After W. Penfield and T. Rasmussen, 1950)

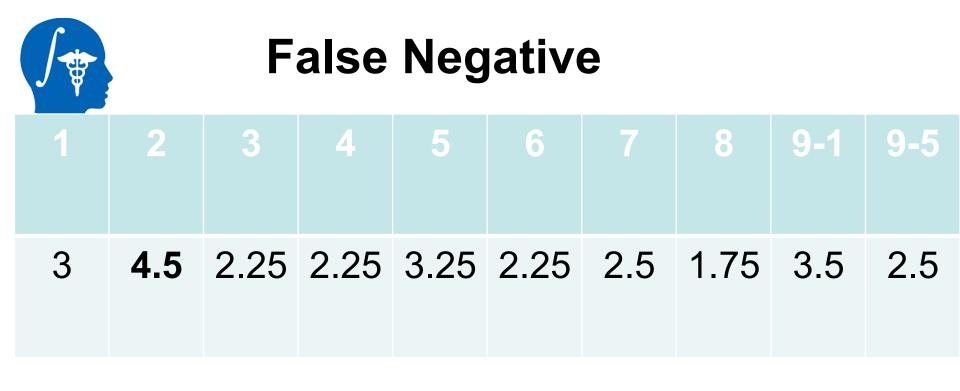

C2. False Positive


Did the tractography capture fiber bundles outside the corticospinal tract? If yes, where are the false positive tracts?

C3. Specific anatomical regions

U





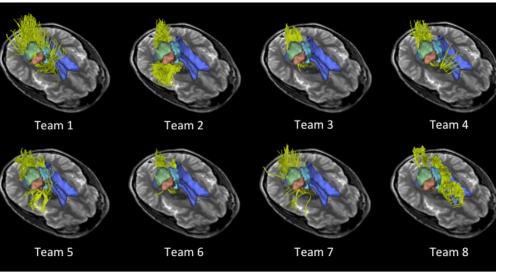
Are there tracts in place where they are implausible?

False Positive

 1
 2
 3
 4
 5
 6
 7
 8
 9-1
 9-5

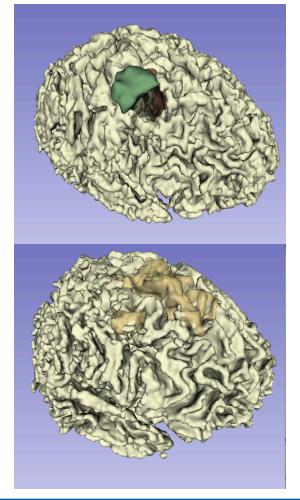

 1.75
 3.25
 4.0 3.0
 2.50
 3.0
 2.5
 1.75
 2.5
 3.0

Anatomical regions


	1	2	3	4	5	6	7	8	9-1	9-5
СР	2.5	3	1.66	4	3	3.33	1.66	2	3	3
IC	2.5	3	2	3.5	2.66	3.33	2.66	2	2.5	2.5
MC	2	3.5	1.66	2.25	1.66	2.33	3.0	1.75	2.5	3.0

Workshops findings

- Large intra- and interalgorithm variability
- Reviewer variability
- Improved results for some of teams



CST Lateral Projections

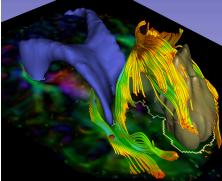
Back to the Patients

Patient 1: 47 yo professional golfer

Patient 2 : 32 yo woman with recurrent seizures

 \rightarrow Tractography needs to be used with caution

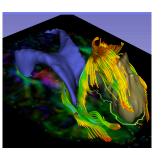
MICCAI DTI Challenge: An international Effort


The two editions of the DTI Challenge gathered an international group representing 16 leading organizations

- DTI Experts
- Practicising neurosurgeons
- Tractography algorithms
 developers
- Neuroradiologists

Working Group





- Long-term goal: Validation
- Short-term goal: Standardization effort:
 - Anatomy
 - Data
 - Evaluation

Working Group

Two-way bridge between the scientists who create the tractography tools, and the neurosurgeons who will use the tools in the clinics.

DTI Challenge: Conclusion

- Appropriate reflection of the current state of the art in the field
- Submission of an abstract to World Congress of Neurosurgery (WFNS 2013)
- Submission of new challenge proposal to MICCAI 2013
- On-going learning effort for the community

