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Several papers have appeared criticizing the kappa coefficient because of its tendency to fluctuate
with sample base rates. The importance of these criticisms is difficult to evaluate because they are

presented with regards to a highly specific model of diagnostic decision making. In this article,
diagnostic decision making is viewed as a special case of signal detection theory. Each diagnostic
process is characterized by a function that relates the probability of a case receiving a positive diagno-
sis to the severity or salience of symptoms. The shape of this diagnosability curve greatly affects the
value of kappa obtained in a study of interrater reliability, how it changes in response to variation
in the base rates, and how closely it corresponds to the validity of diagnostic decisions. The common
practice of evaluating a diagnostic procedure, when criterion diagnoses for comparison are unavail-

able, on the basis of the magnitude of the kappa coefficient observed in a reliability study is question-
able. New methods for measuring interrater agreement are necessary, and possible directions for
research in this area are discussed.

The kappa coefficient (Cohen, 1960) is generally regarded as

the statistic of choice for measuring agreement on ratings made

on a nominal scale. It is relatively easy to calculate, can be ap-

plied across a wide range of study designs, and has an extensive

history of use, particularly in the area of the reliability of psy-

chiatric diagnosis, to recommend it. Recently, however, there

has been growing concern that it may not be entirely satisfac-

tory as an index of interrater agreement. This article examines

the arguments that have been raised, noting that in some ways

they are correct and in other ways they are not. However, in the

course of doing this, additional problems will become apparent

that ultimately cast further doubt on the usefulness of kappa as

a general tool for evaluating interrater agreement. It is shown

that kappa's ostensible purpose of providing a measure of inter-

rater agreement that is corrected for chance is questionable, and

that an observed value of kappa can be interpreted only in the

context of a specific decision-making model known to govern

classificatory judgments, but that this model is typically not

known to the researcher.

The approach taken is to view the measurement of interrater

reliability from the standpoint of signal detection theory. Al-

though signal detection theory has been applied extensively to

the assessment of the validity of diagnostic procedures (Lusted,

1968;Metz, 1978;Swets, 1986;Swets&Pickett, 1982), compar-

atively little attention has been paid to applying it to problems

arising in conjunction with the measurement of interrater

agreement. In addition to clarifying kappa's limitations as an

agreement index, the signal detection model has many impor-

tant implications for further research in this area.
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Chance Correction

Originally, the kappa coefficient was proposed as a measure

of agreement that circumvents certain problems with the sim-

pler agreement statistic, the observed percentage of times pairs

of raters agree on assigning a case to the same category, or pa.

Cohen (1960) argued that in addition to pa, a second term, pc,

should be calculated, representing the level of agreement ex-

pected were raters to make classifications (a) on a random basis,

and (b) according to probabilities that correspond to the base

rates with which they make each diagnosis. Kappa combines

both terms in the formula K = (p0 - pc)/(\ - pc), providing a

"chance-corrected" measure of agreement. The term pc, how-

ever, represents the amount of agreement that would occur un-

der a null hypothesis of random decision making by all raters.

If the null hypothesis were true, kappa would be exactly equal

to zero; to the extent that it is not, the null hypothesis is unlikely,

and there is evidence for concluding that raters are not making

their decisions on a random basis. However, because pc is de-

rived under the conditions of a null hypothesis of completely

random agreement, it is not clear how the magnitude of kappa

is to be interpreted once the null hypothesis is known not to be

true.

Base Rate Problem

Much of the recent concern about the kappa statistic has cen-

tered around what has been called the "base rate problem"

(Spitznagel & Helzer, 1985). That is, the same diagnostic pro-

cess may yield different values of kappa depending on the pro-

portions of positive and negative cases in the sample. The im-

mediate concern is that kappa values obtained from different

studies may not be comparable, although there are other equally

important consequences associated with base rate variation as

well.
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Figure 1. Curve relating the probability of positive diagnosis to symp-
tom intensity or salience (T: diagnostic threshold, or the point along the
continuum separating positive and negative cases).

Some degree of responsivity to base rates is to be expected
for any index that globally assesses the reliability or validity of
both positive and negative diagnoses. In general, we would ex-
pect some difference in the accuracy with which diagnosticians
are able to detect positive and negative cases. Moving the sam-
ple base rates in the direction of the more recognizable category
will tend to raise both reliability and validity. For the kappa
coefficient, however, this is complicated by the fact that the base
rates themselves figure prominently in its calculation.

Spitznagel and Helzer (1985) have made the best technical
investigation of the subject to date. They presented evidence
suggesting that kappa is too responsive to base rates to be useful
as an index of interrater agreement; however, that conclusion's
generality is limited by the assumption that the decisions of one
diagnostician are independent of those of another, conditional
on the true diagnosis. This assumption of conditional indepen-
dence is plausible when the disorder being diagnosed is dichoto-
mous, but not when, as is more generally the case, there are
gradations in terms of symptomatology or the salience of diag-
nostically relevant information. For example, suppose that all
positive cases have a .7 probability of being diagnosed positive.
The probability of a positive case receiving a positive diagnosis
by two diagnosticians is .7 X .7 = .49. However, now suppose
that there are two types of positive cases, present in equal pro-
portions, one with a .5 probability of receiving a positive diag-
nosis and the other with a .9 probability. In this case, the proba-
bility of a positive case receiving two positive diagnoses is .5
(.5 X .5) + .5(.9 X .9) = .53. What is needed is a way to evaluate
kappa across a wider and more representative range of diagnos-
tic situations.

Models of Diagnostic Decision Making

The ensuing discussion is restricted to the simple case in
which diagnosticians are asked to decide whether cases either
do or do not have a particular disorder. Figure 1 illustrates a
hypothetical curve characterizing diagnosticians' responses to
varying levels of a patient's symptomatology. The x-axis corre-
sponds to symptom level, and may, depending on the context,
indicate either symptom intensity or the salience of diagnosti-
cally relevant information. In general, the more severe the disor-
der, the greater the case's value on the x-axis. This dimension
may correspond to one clinically relevant symptom, such as the
degree of depression, or, given certain assumptions of additivity,
a composite representing several different symptoms, such as
Minnesota Multiphasic Personality Inventory profile elevation.

Frequency

Severity of disorder

Figure 2. Frequency distribution showing the number of cases at each
symptom level (T: the diagnostic threshold).

The p-axis corresponds to the probability that a patient with
a given symptom level will be diagnosed as having the disease.
This is closely related to the concept of an item characteristic
curve in test theory (Hulin, Drasgow, & Parsons, 1983), but for
convenience it is referred to here as the diagnosability curve for
a disorder. The point T indicates the diagnostic threshold, the
dividing point in terms of symptom level above which cases
qualify as having the disorder and below which they do not.

Figure 1 is drawn arbitrarily, but has two factors that are
likely common to most curves of this type. First, it levels out at
both extremes; we expect that there is a point on the x-axis
above which increasing the level of disease does not raise the
probability of a positive diagnosis, and one below which de-
creasing levels do not decrease the probability. Second, the
curve is monotonic nondecreasing; cases with lower levels of
symptomatology are never associated with higher probabilities
of positive diagnosis. Even without specifying the exact shape
of a diagnosability curve, however, we can derive a number of
implications concerning the nature and measurement of diag-
nostic processes. We begin by denning the following:

x = level of symptomatology;
p(x) = function specifying the probability of a positive diagnosis

for a case with symptom level x;
q(x)=l-p(x);
fix) = frequency of cases at symptom level X (Figure 2);

T - diagnostic threshold; and
N = total number of cases.

The frequency distribution for case severity,/ is shown here
as a normal curve. This would correspond to a disorder denned
as an extreme level of some trait that is normally distributed
across the population. This may be an appropriate model for
diagnoses such as personality disorders. Alternatively, if positive
cases can be thought of as constituting a distinct population,
such as a disorder with an organic basis, the situation may be
more accurately represented as the sum of two overlapping dis-
tributions of positive and negative cases.

Knowing T and the shapes of p and/is sufficient to calculate
the entire range of statistics pertaining to the evaluation of diag-
nostic procedures. Suppose that x has been divided into a large
number of equal-sized intervals. Defining a(x) = fT(x) + q\x),
the expected value of p0 is equal to the sum of the product
a(x)f(x) across all intervals, divided by the total number of
cases, N. Similarly, the proportion of positive diagnoses made
equals the sum ofp(x)f(x) over all intervals of x, divided by
N, and the proportion of negative diagnoses equals the sum of
q(x)f(x) across all intervals, again divided by A'; squaring both
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Figure 3. Decision-making model with provision for random guessing on uncertain cases, based on Maxwell
(1977); (a) diagnosabih'ty curve for decision-making model (TV the level of severity below which a negative
diagnosis is certai n; TV the level at or above which a positive diagnosis is certain); (b) frequency distribution
and numbers of cases in each region defined by the model (nt, n2, and n3: numbers of cases in each region
defined by T", and TV T: the point dividing positive and negative cases).

of these results and adding them gives the expected value for pc.
As shown in the Appendix, similar formulas can be applied to
calculate commonly used indices of diagnostic validity.

Let us now consider some hypothetical diagnosability curves.
Figure 3a shows one of a class of curves described in connection
with psychiatric diagnosis by Maxwell (1977) and Janes (1979).
Curves of this type are characterized by a three-tiered shape,
corresponding to three types of cases in the sample: one for
which the probability of a positive diagnosis is 1, one for which
the probability is 0—that is, positive or negative diagnoses can
be made with certainty for both groups—and a third group of
questionable cases, where the probability of positive diagnosis
is some value, a, between 0 and 1.

The three ranges are divided on the Jf-axis by T'\ and TV Like
Tin Figure 1, these are diagnostic thresholds. However, unlike
T, they are not points that separate cases according to which
category they actually belong to, but ones separating regions of
the x-axis with differing probabilities of positive diagnosis.
They are, in effect, thresholds for classification as opposed to a
definitional division point represented by T. For the present, it
is assumed that the curve, including T\ and F2, is constant
across all diagnosticians, though ultimately it would be desir-
able to make some provision for individual differences. Maxwell
considered the situation where a - .5, that is, where positive
and negative diagnoses are equiprobable for questionable cases;
however, this might just as easily correspond to some other
value. Here we shall consider the case where a is equal to the
proportion of positive cases in the sample, which would mean
that diagnosticians respond to uncertain cases by displaying the
phenomenon of "probability matching" (Atkinson, Bower, &

Crothers, 1965). Referring to Figure 3b, n, is the number of
cases with symptom levels from the origin to T\, n2 is the num-
ber of cases between T\ and T-,,, and n3 is the number of cases
at or above TV If we assume that the true diagnostic threshold
T, the point separating positive and negative cases, is between
Ti and TI, we can calculate upper and lower bound estimates
for the validity of diagnostic decisions. Sensitivity ranges from
(«nz + nj)/(«2 + "3) to 1-0, and specificity from 1.0 to [HI +
(1 - a)n2]/(«i + n2) as T moves from r, to TV

Figure 4a illustrates a different diagnosability curve corre-
sponding to a diagnostic model discussed by Kraemer (1980)
and Kaye (1980), among others. This is also the diagnostic situ-
ation considered in analyses by Spitznagel and Helzer (1985)
and Grove, Andreason, McDonald-Scott, Keller, and Shapiro
(1981). This model differs from the preceding one in that cases
are divided into only two groups, those for which the probabil-
ity of a positive diagnosis is a and those for which it is /3. T is
the point on the continuum of the disorder level that separates
the two groups. Again, T divides groups for which the probabil-
ity of eliciting a positive diagnosis is different, hence a function
of the cognitive framework of the diagnosticians, and is to be
distinguished from T, the point dividing cases that actually have
and do not have the disorder. It is clear that T and T may be
located at different points along the jc-axis, but for the sake of
discussion we assume that they coincide. Sensitivity is equal to
a, and specificity is equal to (1 - ft). Defining «i and n2 now
in the manner illustrated in Figure 4b, the total proportion of
correctly diagnosed cases is 1(1 - /3)nj + ani]/(n, + HI).

At this point we have seen two contrasting models of diagnos-
tic decision making, each characterized by a different diagnos-

Probobility of

positive
diagnosis

r

Frequency

Severity of disorderSeverity of disorder

Figure 4. [Decision-making model for a disorder manifest as a simple dichotomy: (a) two-tiered diagnosabil-
ity curve (7*: threshold below which probability of positive diagnosis is ft and at or above which is a); (b)
frequency distribution and numbers of cases (nt and «2) in two regions defined by T'.
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Table 1

Joint Rating Distribution

Diagnostician 1

Diagnostician 2

Positive diagnosis
Negative diagnosis

Positive
diagnosis

a
c

Negative
diagnosis

b
d

Note. Letters correspond to the proportion of cases falling in each cell.

ability curve. Though simplistic, neither is entirely implausible

and both have been presented previously in the literature as at

least approximations of what actually occurs in some diagnos-

tic situations. They are also identical to threshold models famil-

iar in signal detection theory. We shall now observe the behavior

of kappa in response to varying the parameters associated with

each model. Let us first consider the impact of changing base

rates under the conditions of the diagnostic model shown in

Figure 3. As an intermediate step in the analyses it is useful to

consider the method of representing interrater agreement data

shown in Table 1. The letters in each cell correspond to the pro-

portion of cases categorized in that combination of ways by two

raters; for example, a is the proportion given a positive diagnosis

by both diagnosticians, d is the proportion given a negative diag-

nosis by both diagnosticians, and so on. Recalling the earlier

assumption that diagnosticians share a common diagnosability

curve, the expected values for the proportions b and c are equal,

and kappa can be calculated as (ad — tf)l{(a + b)(d + b)].

It remains now only to calculate a, b, and d from the model

parameters. Let P, and P2 be the proportions of positive and

negative cases, respectively, in the sample, and let A be the pro-

portion of positive cases clearly recognizable as having the dis-

order and D2 the proportion of negative cases clearly recogniz-

able as not having the disorder. The proportion of cases receiv-

ing positive diagnoses by both diagnosticians consists of the

clearly recognizable positive cases plus the questionable cases

for which they both happen to make a positive diagnosis. There-

fore

where we have stipulated that for this example a = P,. Reason-

ing similarly, the proportion of cases given a negative diagnosis

by both diagnosticians is

d = + Pl[\ - P2D2)]. (2)

Cell b contains only cases given a positive diagnosis by one diag-

nostician and a negative diagnosis by the other, so

b = P,P2(l - + P2D2)]. (3)

Substituting a, b, and d into the equation for kappa yields ex-

pected values for a reliability study with parameters Pt,P2,Dt,

andZ)2.

Examining the results in Table 2, the tendency of kappa to

vary across base rates is apparent. For example, when the detec-

tion rates for positive and negative cases (i.e., sensitivity and

specificity) are .50 and .80, kappa values are shown ranging

from .62 to .69.

We now consider the behavior of kappa under the conditions

of the decision-making model depicted in Figure 4. To promote

consistency, we define the proportion of positive cases detected

as D, = a and the proportion of negative cases detected as D2 =

1 — /3. As before, PI and P2 are the proportions of positive and

negative cases in the sample. A pair of diagnosticians will agree

on a positive diagnosis either if they both recognize a positive

case or if they both fail to recognize a negative case. Thus

P2(\-D2)
2.

By similar logic,

and

b = P,Dt([ - D,) + P2(\ -D2)D2.

(4)

(5)

(6)

a2[l - (P,Dt + P2D2)], d)

Values of kappa obtained for varying prevalences and detection

rates under the conditions of this model are shown in Table 3.

Again, kappa tends to vary across rows and down columns of

the table. However, this finding is overshadowed by the strik-

ingly low values obtained for all combinations of parameters

with this model. Even when the positive and negative detection

rates are both .80, indicating a reasonably valid diagnostic pro-

Table 2

Expected Values of Kappa for Diagnosability Curve in Figure 3

Detection rates: Positive cases

Prevalences'

.10-.90

.30-.70

.50-.50

.70-.30

.90-. 10

.20

.20

.20

.20

.20

.20

.20

.50

.30

.31

.34

.36

.37

.80

.47

.44

.45

.47

.49

.20

.37

.36

.34

.31

.30

.50

Negative cases

.50

.50

.50

.50

.50

.50

.80

.69

.66

.64

.63

.62

.20

.49

.47

.45

.44

.47

.80

.50

.62

.63

.64

.66

.69

.80

.80

.80

.80

.80

.80

• Sample proportions of positive and negative cases, respectively.



144 JOHN S. UEBERSAX

Table 3

Expected Values of Kappa for Diagnosability Curve in Figure 4

Detection rates: Positive cases

Prevalences'

.IO-.90

.30-.70

.50-.50

.70-.30

.90-. 10

.20

.17

.32

.36

.32

.17

.20

.50

.03

.08

.10

.09

.05

.80

.00

.00

.00

.00

.00

.20

.05

.09

.10

.08

.03

.50

Negative cases

.50

.00

.00

.00

.00

.00

.80

.05

.09

.10

.08

.03

.20

.00

.00

.00

.00

.00

.80

.50

.03

.08

.10

.09

.05

.80

.17

.32

.36

.32

.17

* Sample proportions of positive and negative cases, respectively.

cess, the values of kappa are such that a researcher relying on

conventional interpretative guidelines for kappa (e.g., Landis &

Koch, 1977) could end up disregarding what is in actuality a

useful procedure.

In summary, kappa values obtained from samples with

different base rates may not be comparable, and by extension,

when sample base rates are not representative of population

base rates, generalizations of a sample kappa value to popula-

tions may be similarly subject to error. Secondly, how kappa

varies across base rates differs according to the mathematical

characteristics of the particular decision-making process. It is

dependent both on the shape of the diagnosability curve and the

frequency distribution for case severity. The "base rate prob-

lem," therefore, is really only one part of a much broader prob-

lem concerning kappa's dependency on a variety of factors

unique to each diagnostic situation. Given the complexity and

diversity of diagnosability curves that must certainly exist, de-

veloping correction formulas to equate kappas obtained from

samples with different base rates seems pointless. Further, not

only is the comparison of kappa values across different base

rates unwarranted, so are comparisons of values obtained from

different diagnostic categories or procedures, even though the

base rates might be similar. Extending this argument, diagnosti-

cians might differ so much in terms of their diagnosability

curves that kappa values obtained for the same disorder, with

similar base rates, may still not be comparable across studies.

Ultimately, the problem is that there is not a symmetrical map-

ping between diagnostic processes and kappa values. Instead,

there is a many-to-one correspondence, such that any one of a

large number of different combinations of diagnosability curves

and frequency distributions can result in the same value of

kappa. To go backward and try to make specific inferences con-

cerning the nature or quality of a diagnostic procedure on the

basis of an obtained kappa value is, without this information,

impossible, and, with it, complicated.

If the intent is simply to verify that agreement is at a level

beyond chance, then calculating the kappa coefficient and test-

ing whether it differs significantly from 0 can be useful, although

other, potentially more flexible methods (cf. Tanner & Young,

1985) that accomplish essentially the same thing should also

be considered. In connection with diagnostic decision making,

however, verifying that raters are agreeing more often than those

who are merely guessing is a minor concern. Instead, what is

really required is a method for measuring in a meaningful way

the amount of agreement actually present, and in that sense

kappa does not meet the needs of the typical researcher or clini-

Alternatives

The best procedure would be to directly measure the validity

of diagnoses by comparing those obtained by the source or

method in question with those coming from some more accu-

rate or definitive source. The problem is ordinarily that such

criterion diagnoses are comparatively difficult or expensive to

obtain. The operative term here, though, is "comparative."

What we are really confronted with is a decision where the im-

portant issue is whether or not the incremental cost of obtaining

criterion diagnoses is matched by a corresponding increase in

the information provided beyond agreement data. Because the

information value of the kappa statistic appears to be lower than

has been supposed, the additional expense of obtaining crite-

rion diagnoses may in fact be justified in situations where this

was previously thought not to be the case. Of course, this is

complicated by the fact that for psychiatric diagnoses, unam-

biguous methods for obtaining criterion diagnoses are not just

expensive or difficult, they are usually nonexistent. We there-

fore must be more willing to explore new avenues for obtaining

such diagnoses, and where new procedures are not feasible, to

make better use of the information we do have. For example,

the quality of diagnostic decisions made on the basis of routine

interviews could be compared to diagnoses made by a panel of

experts provided with extensive case information, who formu-

late, if not exactly a criterion diagnosis, something very much

like one. This reintroduces the possibility of obtaining separate

estimates for sensitivity, specificity, true and false positive rates,

true and false negative rates, and so on, instead of lumping all

information pertaining to the quality of a diagnostic procedure

under the rubric of one statistic.

Another possibility is to convey the information concerning

a diagnostic procedure's reliability directly in terms of a diag-

nosability curve. Explicit mathematical methods can be devel-

oped to measure the steepness of a diagnosability curve, or the

extent to which it clearly distinguishes between cases with high
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and low probabilities of positive diagnosis. In some cases the
issues causing conditions with different severity levels to be as-
sociated with particular probabilities of positive diagnosis may
be clear-cut enough to approximate a curve on the basis of a
priori knowledge. This may be less feasible for psychiatric diag-
noses, where the categories and diagnostic procedures are by
their nature less precise, but a thorough consideration of the
issues pertaining to a particular type of diagnosis should still
reveal at least some information about the curve. It is also possi-
ble to construct laboratory studies of a diagnostic process,
where diagnosticians are provided with hypothetical clinical vi-
gnettes or other similar data in order to determine how their
decisions are affected by varying symptomatic information.

By using designs in which patients are diagnosed by several
diagnosticians, it is also possible to make inferences concerning
the diagnosability curve directly from data obtained in a clini-
cal study. Ordinarily we are accustomed to thinking in terms of
studies in which patients are independently diagnosed by two
diagnosticians. However, the same general design could be ap-
plied using n raters and results summarized in terms of the
number of patients receiving a positive diagnosis 1, 2, 3,. . . n
times. The resulting frequency distribution can be compared
with an expected distribution generated under the conditions of
a specific diagnosability curve. Similarly, by considering several
diagnosability curves, more or less likely ones can be differen-
tiated on the basis of the observed data.

Table 4 contains hypothetical results of a study in which 100
patients are each evaluated by 10 diagnosticians, and shows the
frequency with which various numbers of diagnosticians agree
on making a positive diagnosis. Figure 5 contains five diagnos-
ability curves, again hypothetical. These curves are compared
in terms of the likelihood that they could account for the ob-
served frequencies. This can be done simply by (a) dividing the
x-axis into intervals and calculating the value ofp(x) at the mid-
point of each; (b) applying the binomial formula to calculate the
expected probability distribution of the number of successes on
a 10-trial experiment, using the values of p(x) previously de-
fined for each interval; (c) forming a weighted average of the
binomial distributions across all intervals to determine the
overall distribution—which requires the specification of the
shape of/(jc) (for illustrative purposes the portion of the normal
distribution between ±2a is assumed); and finally, (d) using the

Table 4
Hypothetical Distribution of Raters' Judgments

l.O-i

No. making
positive diagnosis

0
1
2
3
4
5
6
7
8
9

10

Frequency

6
S
1
1
6
5

11
7
9

15
19

Figure 5. Alternative diagnosability curves compared in terms of the
likelihood of leading to observed frequencies in Table 4; ^ and a show
the mean and standard deviation of the distribution of cases on the
symptom severity dimension (x-axis), (Chi-square values measuring the
correspondence of expected frequencies derived from each curve to the
hypothetical observed frequencies in Table 4 are Curve I . 20.3, Curve
2, 3.2; Curve 3, 13.3; Curve 4, 60.7; and Curve 5, 160.7.)

resulting distribution to determine expected frequencies for
various numbers of positive diagnoses. Chi-square is used here
to compare expected and observed frequencies, although an-
other procedure, such as least squares or maximum-likelihood
estimation could be used in an equivalent way. As shown, the
second curve results in the lowest chi-square value and hence
provides the best fit. Five curves were used in this example, but
the actual computations being trivial by computer, there is no
reason why a larger number could not be considered, resulting
in the specification of a range of plausible diagnosability curves.
In the ideal case, a suitable heuristic would be applied to gener-
ate a plausible set of curves for comparison.

Although it would be highly desirable to develop an entirely
new paradigm for thinking about interrater agreement and its
measurement, we should also consider the behavior of other sta-
tistical indices in response to varying parameters of the diagnos-
tic process to see whether any are more satisfactory than the
kappa coefficient. In fact, a wide range of alternatives have been
suggested, including ps, the proportion of specific agreement
(Fleiss, 1971) and agreement with majority opinion (Schouten,
in press), both of which offer the advantage of providing sepa-
rate measures of agreement on positive and negative diagnoses,
the random error coefficient (Janes, 1979; Maxwell, 1977), the
log of the odds ratio, and contingency table analysis (Tanner &
Young, 1985), in addition to Yule's Y, which has been consid-
ered most recently (Spitznagel &. Helzer, 1985). The potential
usefulness of each of these indices can be better understood by
observing their dependence on changes in base rates across a
wide range of plausible diagnosability curves. A computer sim-
ulation study of this is currently underway.
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Appendix

Formulas for Calculating Validity Indices

Referring to Figures 1 and 2, the total percentage of correct diagnoses and the specificity (Sp) by
is given by the equation

% correct = l/# J q(x)f(x) + I/TV J°° p(x)/(x). (7) Sp

The sensitivity (Se) of the procedure is given by

poo pco

5e = /?(.xl/f.x) -I- I f(x), (8)
Jr Jr

(9)
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