
VARIANCE COMPONENT MODELS FOR
RELIABILITY AND CALIBRATION

Hal Stern
Department of Statistics

University of California, Irvine
sternh@uci.edu

BIRN AHM
San Diego, CA

October 17, 2005



Preliminaries

• Probability model (or statistical model)

– mathematical model relating observable quantities (i.e.,
data) to underlying parameters

– e.g., the traditional one way ANOVA model
yij = µi + εij with εij ∼ N(0, σ2)

• Fixed vs random effects

– fixed effects = factors in an experiment whose levels are set
by investigator and of direct interest to the investigator

– random effects = factors for which levels in the experiment
are thought of as a random sample from an infinite
population of possible levels

– primarily a matter impacting interpretation of inferences

– Bayesian approach to statistical inference does not make
much use of this distinction



Variance components model

• Model used to decompose observed variation in a quantity into
portions attributable to various factors

• Example would be to look at brain activation for a particular
task and consider variation due to

– subject

– site

– day

– hemisphere

– etc.....

• Often used in measurement context (as here)

– to assess reliability/repeatability

– to plan subsequent data collection



Variance components model

• Conceptual example (Snedecor & Cochran, 8th ed., Sect 13.8)

– examine % calcium concentration in leaves

– randomly sample 4 plants from field

– randomly sample 3 leaves per plant

– take two random samples of material per leave for
measurement

– yijk = calcium pct for sample k from leaf j of plant i

– yijk = µ + αi + βj(i) + εijk with
αi ∼ N(0, σ2

a), βj(i) ∼ N(0, σ2
b ), εijk ∼ N(0, σ2

e)

– variance components model with 3 sources of variation

– once we know variance components we can decide how to
best estimate in the future: more plants with few samples
per plant, or fewer plants with lots of samples per plant



Variance components model

• There is not a unique definition for a variance components
model

• Many different models can usually be created for a particular
outcome of interest

• For example, in the above there may be other factors that
could be incorporated

– age of plant

– soil characteristics near plant

• Alternative model might be yijk = xiγ + αi + βj(i) + εijk which
includes a regression term for plant factors in addition to
variance components terms

• We will see this issue later in the fMRI context



Variance components model and ICCs

• Consider a simple repeatability study for fMRI

• I subjects on J days

• Let Yij = activation in ROI for subj i on day j

• Model: Yij = µi + εij with
µi ∼ N(µ, σ2

indiv) and
εij ∼ N(0, σ2

day−to−day) (a.k.a. σ2
error)

• Notice that Yij has mean µ and variance σ2
indiv + σ2

day−to−day

• Of course Yij′ (a diff’t day) has the same mean and variance

• But Yij and Yij′ are correlated because they share a common
subject effect

• ICC = σ2
indiv/(σ2

indiv + σ2
day−to−day) measures this correlation

• This is absolute agreement ICC



Variance components model and ICCs

• Recall earlier comment about the possibilitiy of different
models

• What if we expect there might be day (or judge) effects?

• Might like to look for ICC that does not require absolute
agreement (only agreement in ranking)

• Can consider an alternative model:
Yij = µi + dj + εij

with dj a fixed day effect and other terms as above

• This leads to an alternative version of ICC that accepts a
day-to-day shift in measurements



Variance components model and ICCs

• Example 1: Human phantom study at a single site

– have 5 subjects seen twice

– response is mean activation (beta) in left occipital lobe to
sensorimotor task (avg of four runs)

– can fit simple variance components model and estimate ICC
Site σ2

subj σ2
day−to−day ICC

1 .0090 .0013 .87
2 .0174 .0019 .90
3 .0227 .0124 .65
4 .0060 .0255 .19

– caveat: very small sample (5 subjects seen twice) hence high
variability



Variance components model and ICCs

• Example 2: Human phantom study for a single subject

– two measurements at 10 sites

– response is mean activation (beta) in left occipital lobe to
sensorimotor task (avg of 4 runs)

– can fit simple variance components model and estimate ICC
Subj σ2

site σ2
day−to−day ICC

1 .0053 .0135 .28
2 .0304 .0006 .98
3 .0211 .0028 .88
4 .0071 .0035 .67
5 .0069 .0100 .41

– note: this is a different ICC, measures day-to-day reliability
across different sites for a single subject



Variance components model and ICCs

• Example 3: Human phantom study

– 5 subjects at 10 sites

– response is mean activation (beta) in left occipital lobe to
sensorimotor task (avg of 8 runs over two days)

– can fit simple variance components model and estimate ICC

∗ variance for subjects = .0075
∗ variance for sites = .0141
∗ ICC = .35



Estimating variance components

• Staying with the simple (ICC) variance components model we
can talk about how variance components analyses are done

• To fix ideas, consider a study at a single site (I subjects and J
visits per subject)

• Different estimation strategies

– ANOVA/Method of moments

– Maximum likelihood (ML, REML, MIVQUE)

– Bayesian inference



Estimating variance components - moments

• A traditional analysis of variance of the Yij (with i being
subject and j being visit) is run

• E(MSError) = σ2
day−to−day

• E(MSSubj) = σ2
day−to−day + 2σ2

subj

• method of moments (MOM) equates observed MS to expected
MS and solves for estimates

• σ̂2
day−to−day = MSError is MOM estimate of σ2

day−to−day

• σ̂2
subj = (MSSubj −MSError)/2 is MOM estimate of σ2

subj

• Comments:

– very easy (especially for balanced data)

– but can yield negative estimates (which we know are not
right)



Estimating variance components - ML

• Not much detail today

• Maximum likelihood (ML) returns to the full normal likelihood
for the Yij ’s and chooses parameter estimates to maximize this
likelihood (which typically involves the constraint that they be
nonnegative)

• ML estimation is typically biased in this context if model
includes fixed effects so people prefer REML (ML REstricted
to the variance components)

• May also see a reference to MIVQUE (minimum variance
quadratic unbaised estimation) which is related to ML



Estimating variance components - Bayes

• Don’t actually need to talk about this today

• I have mentioned this in the past though and since this is a
“teaching” session ....



The Bayesian approach to inference - variance components

• Full probability modeling

– likelihood p(y|θ) = p(data | parameters)

– prior distribution p(θ|φ) (depending on other parameters)

– hyperprior distribution p(φ)

– variance components:
∗ likelihood is the normal likelihood for the Y ′

ijs (which
depends on µi and σ2

day−to−day)
∗ prior distribution is the normal random effects

distribution (which depends on µ and σ2
subj)

∗ hyperprior distribution on µ and σ2
subj (often

noninformative)



The Bayesian approach to inference - variance components

• Posterior inference

– Bayes’ thm to derive posterior distribution

p(θ, φ|y) =
p(y|θ)p(θ|φ)p(φ)

p(y)

– probability statements about unknowns (θ, φ)

• Model checking/sensitivity analysis

– does the model fit

– are conclusions sensitive to choice of prior distn/likelihood



What to know about Bayes/traditional methods

• Common statistical appraoches are largely a collection of
methods with good frequentist properties, developed over time
for specific problems (e.g., t-test, REML)

• Bayesian approach can be thought of as a way of
“automatically” generating statistical procedures

• But subjective Bayesian methods don’t really provide for study
of properties of procedures When viewed in this way, there is no

• A modern synthesis is for Bayesians to study the frequentist
properties of their procedures



Variance components models – general

• So far discussion has really been a statistician’s view of ICC
and its relationship to variance components models

• Consider more sophisticated models

• First, a short digression – crossed and nested factors

– Crossed factors - two factors in an experiment are crossed
when each level of the first factor is seen in combination
with each level of the second factor

– Nested factors - one factor is nested within another if the
levels of the nested factor don’t mean the same thing within
each level of the other factor



Variance components models – general

• Nested and crossed factors - examples

• Crossed: study with 3 drugs and 4 doses would have 12
combinations (and then see perhaps 5 patients at each
combination)

• Nested: study with 3 schools and 4 teachers per school would
consider teachers nested within schools because “teacher 1”
doesn’t mean the same thing at each school (more likely we
have 4 randomly chosen teachers from each school)



Variance components models – general

• Consider the human phantom study in all its glory

• Let Yijkl = activation of left occipital lobe during sensorimotor
task run l, visit k, site j, subject i

• A possible model

Yijkl = subji + sitej + subj.siteij + visitk(ij) + runl(ijk)

– considers 4 runs nested within visits (hence assumes no
fatigue or regular run effect)

– considers 2 visits nested within the subject/site interaction
(hence assumes no consistent day 1 / day 2 pattern)

– considers all items as random (a little odd for site)



Variance components models – general

• Example: human phantom study

– 5 subj, 10 site, 2 visits, 4 sensorimotor runs

– mean activation in left occipital lobe

Source σ2 proportion
subj .0055 .19
site .0087 .30

subj.site .0055 .19
visit .0051 .18
run .0040 .14



Variance components models – general

• Again emphasize that alternative models are possible

• Alternative models I: include visit and run as crossed factors
rather than nested factors

Yijkl = subji+sitej+visitk+runl +subj.siteij+subj.visitik+......

– results on next slide



Variance components model – fully crossed

Source DF Squares Mean Square
subj 4 2.0476 0.5119
site 9 3.7343 0.4149
subj*site 36 2.4657 0.0685
visit 1 0.0309 0.0309
subj*visit 4 0.0399 0.0075
site*visit 9 0.1884 0.0209
subj*site*visit 36 0.9660 0.0268
run 3 0.0012 0.0004
subj*run 12 0.0950 0.0079
site*run 27 0.0916 0.0034
subj*site*run 108 0.3774 0.0035
visit*run 3 0.0005 0.0002
subj*visit*run 12 0.0244 0.0020
site*visit*run 27 0.1102 0.0041
subj*site*visit*run 108 0.4949 0.0046
Corrected Total 399 10.6580



Variance components models – general

• Alternative models II

– Run effects don’t look significant

– Can create hybrid that treats visit as crossed with other
factors but leaves runs nested within visits

– Results match those of original nested model

• Alternative models III

– include hemisphere

– Yihjkl is response for hemisphere h (left or right) of subject
i at site j on run l of visit k

– see UCSD variance components results



Application of variance components models

• Simple variance components model gave us ICCs

• What do we get from more complex variance component
models?

a) bored to death

b) a major headache

c) great flexibility

d) all of the above

• Can ask a variety of questions such as

– how similar would the activation be for two runs on the
same subject, site, visit?

– how similar would the activation be for two runs on same
subject at the same site but on different days?



Application of variance components models

• How similar would the activation be for two runs on the same
subject, site, visit?

– correlation of two runs on the same subject, site, visit is

σ2
subj + σ2

site + σ2
subj.site + σ2

visit

σ2
subj + σ2

site + σ2
subj.site + σ2

visit + σ2
run

• How similar would the activation be for two runs on same
subject at the same site but on different days?

– correlation of two runs on the same subject, same site but
diff days is

σ2
subj + σ2

site + σ2
subj.site

σ2
subj + σ2

site + σ2
subj.site + σ2

visit + σ2
run

• Considerations like these lead us to generalizability theory
(next talk)



Variance components and hierarchical models

• What do people (e.g., me) mean by hierarchical models?

– model is specified in layers or stages

– observable outcomes are modeled as depending on
parameters, p(y|θ)

– parameters are given their own probability model involving
other “hyper”-parameters, p(θ|α) (can have more levels)

• Doesn’t this also describe variance components models?

– yes

– variance components models are hierarchical models

• Lots of models, any that are specified hierarchically, can be
thought of as hierarchical models



Variance components and calibration

• What role can variance components models play in calibration?

– Good question – I’m not sure I know the answer yet

– Need to know how consistent variance components are
across different regions (both activated and inactive)

– Could potentially estimate site effects on calibration tasks
(SM, BH) in a study like the phantom study and use the
estimated effects in subsequent analyses

• What role can hierarchical models play in calibration?

– more general view of hierarchical models may allow for
analysis of multisite data sets statistically (e.g., by
controlling for activation on SM/BH tasks in a hierarchical
model)


