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Abstract. This paper presents a method for the automatic segmentation of the 
prostate from pelvic axial magnetic resonance (MR) images incorporating non-
rigid registration with probabilistic atlases (PAs) as part of the 2009 MICCAI 
prostate segmentation challenge.    This scheme was trained and evaluated on 
two sets of small field of view prostate images comprising (i) a set of 15 T2w 
Fast Spin Echo (FSE) axial MR images; and (ii) a single axial FSE axial MR 
image; both acquired with surface coils. Our scheme involves several steps, 
including (i) generation of PAs for the prostate and (ii) segmentation using non-
rigid registration based propagation of the PAs.  A population of preprocessed 
images were used to build an average shape atlas.  The PAs for the prostate 
were generated for this atlas by propagating each subject’s manual 
segmentations.  Segmentation was performed by registering the atlas to each 
preprocessed image and propagating and thresholding the PAs. The automatic 
segmentation results were compared to the manual segmentations using the 
Dice Similarity Coefficient (DSC) with a median DSC for the prostate of 0.76.  

1 Introduction 

The 2009 MICCAI prostate segmentation challenge was held as a workshop of 
MICCAI 2009 in London, UK with the aim of discussing the state-of-art 
segmentation of Prostate MRI in the context of MRI-guided prostate therapy, through 
comparison of the segmentation methods using sample data.    

 
There are few papers on prostate segmentation from MRI (most have focused on 

ultrasound and CT), however recent papers by Martin et al. [1] and Klein et al. [2] 

                                                           
 



have proposed the use of an automatic prostate segmentation method based on non-
rigid registration of a set of pre-labeled MR atlas images.  Atlas based segmentation 
usually involves an atlas image (generally an average of a set of images) with a 
matching set of organ labels.  To segment a new image, the atlas is registered to the 
the subjects’ image to obtain a good correspondence between structurally equivalent 
regions in the two images, and then labels defined on the atlas are propagated to the 
image [3].  In this paper an atlas-based approach is applied which involves the 
automatic segmentation of the prostate from pelvic axial MR images by generating an 
average image atlas incorporating non-rigid registration with probabilistic atlases 
(PAs).  The work presented in this paper is similar to Klein et al. [2]: the main 
difference is that instead of identifying a selection of atlas scans which are most 
similar to the target scan and using only their associated deformed label images, in 
this paper a single prostate atlas is used.    
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Fig. 1.  Coronal, Sagittal and Axial views of training volume 28 (with manual prostate 
segmentation on the right), which was used as the initial atlas case for atlas generation. 

2 Method 

2.1 MR Images 

The training set comprised 15 anonymized patient datasets. These consisted of Fast 
Spin Echo (FSE) T1w and T2w axial MR images.  All images were taken in a 1.5T 
scanner.  Expert segmentation of the prostate from the T2w scans were also provided.   
In addition a single test image was provided for evaluation (also T2w FSE MRI).  



These images were downloaded in nrrd format from the challenge url: 
http://prostatemrimagedatabase.com .  The T1w images were not used in this work.  

2.2 Atlas Generation  

A probabilistic atlas (PA) for the prostate was generated by propagating the manual 
segmentations of for each training case using the obtained affine transform and 
deformation field computed from the MR into the atlas space as per Rohlfing [4] .  An 
arbitrary but representative case in our database was chosen as the initial atlas (case 
28 shown in Figure 1), defining the atlas space alignment 

.   
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Fig. 2. (a) Coronal, Sagittal and Axial views of the generated  average shape atlas, with (b) 
showing the associated probabilistic maps of the prostate (lighter intensity = higher agreement 
between segmentations). 

 
The first iteration involved the registration of every other case to the selected atlas 

case using rigid and affine transformation.  Subsequent iterations involved all subjects 
being registered to the average image using rigid, affine and non-rigid registration.  At 
the end of each iteration a new average atlas is generated and used in the subsequent 
iteration.  In the present study, three iterations were performed.  We used the Insight 
Toolkit (www.itk.org) implementation of the free-form deformation algorithm  [5] for 
non-rigid registration.  After rigid and affine initialization of the transformation, a 
displacement field modeled as a linear combination of B-splines is estimated by the 
maximization of the Mattes mutual information [6] between the two volumes. A 
regular grid of uniformly distributed control points and a gradient descent optimizer 
were used. A four level coarse-to-fine pyramidal based approach was used where each 
pyramidal level doubled the image resolution and the number of control points. 



  2.2 Automatic Segmentation  

After generation of the probabilistic atlas it is used to identify the prostate. from 
surrounding tissue on a new subject in the following way.  Rigid, affine and non-rigid 
registration were used to map the atlas onto each subject’s MR scan and the affine 
transform and deformation fields were then used to map the prostate PA onto each 
scan.  The prostate PA was then thresholded to provide a general segmentation for 
each individual subject. The automatic segmentations were compared against manual 
segmentations using the Dice Similarity Coefficient (DSC = 2 ( A ∩ B / (A union B) 
)) [7]. 

3. Results  

Using affine registration followed by the non-rigid registration, the automatic 
segmentation for each MR scan required approximately 60 minutes on a standard 
desktop PC ( Intel Dual Core @ 3 GHz, 2Gb RAM).   

 
The generated average shape atlas is presented in Figure 2(a) with the associated 

probabilistic segmentations of the prostate should in 2(b). 
 
          

 

Fig. 3. Coronal, Sagittal and Axial views of the test volume (PatientID = 132). 

An example of applying the average shape atlas to automatically segment the test 
scan is shown in Figures 3 to 5.  Coronal, Sagittal and Axial views of the original test 
MRI are shown in Figure 3.  Figure 4(a) displays the result of affine and non-rigid 
registration of the average shape atlas to this subject.  The expert manual 
segmentation for this volume were not made available (for blind assessment by the 



workshop organizers), however Figure 5 presents a qualitative demonstration of 
segmentation accuracy with (a) the segmentation boundary overlaid on a single axial 
slice, and (b) a surface mesh generated from the automatic prostate segmentation  
overlaid on a 3D view of the patient scan.  

The DSC results for all cases are summarized in Figure 6.  Unfortunately the 
registration failed for three of the cases due to significant bias field artefacts in these 
scans (future work will investigate the correction of these artefacts).  The mean DSC 
Overlap for the remaining cases was 0.73 (sd = 0.11), with a median DSC of 0.78. 
   

  
     (a)     (b) 

Figure 4 (a) Shows the average shape atlas from Figure 2 after affine and non-rigid registration 
to the test volume (shown in Figure 3).   The automatic segmentations from registration of the 
probabilistic atlas to this volume are shown on the right (b). 

Figure 7 presents a box and whisker chart describing the effects of different 
thresholding levels on the propagated probabilistic atlas segmentations.  The low 
whiskers are reflective of the three cases which failed to register.   A threshold of 50% 
is commonly used in the literature and appears to be suitable for the set of scans in 
this study. 
 

 
 



 
(a) 

 

 
(b) 

Figure 5. (a) Displays an axial slice from the test volume with the automatic prostate 
segmentation overlaid.  On the right (b), a mesh has generated from the automatic prostate 

segmentation and is shown overlaid on the test volume. 

4. Discussion and Conclusion  

The automatic segmentation of the prostate from axial MR images using a 
probability atlas scheme had good correspondence with the manual segmentation 



results, and may provide useful initial constraints for further segmentation methods 
(for example, by masking the an image and then using active contours within the 
masked region). 
 

These results were constrained by the small number of MR scans (n=15) reducing 
the amount of variation in organ shape, and a greater number of cases should improve 
results.    Although not used in this paper, the use of image preprocessing (particularly 
bias field correction), edge localization and  3D statistical shape model fitting should 
allow more accurate and robust localised segmentation of the organs of interest.    In 
addition a dynamic multi-atlas selection scheme (where only the most similar scans 
are used to generate custom atlases), such as the one employed by Klein et al. [2] 
should also result in slightly higher DSC scores.   
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Figure 6. DSC scores between manual and automatic segmentations of the prostate for each 
training volume.  Two results are provided for each case: the DSC when the prostate 
probabilistic atlas was thresholded at 50%, and also best DSC result for that scan over all 
threshold levels.  Note that in this experiment the average atlas did not register correctly to 
volumes 60, 45 and 85 due to significant bias field artefacts (pre-processing should drastically 
increase the overlap for these volumes). 
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Figure 7.   Box and whisker chart showing the segmentation overlap between manual and 
automatic prostate segmentation at different threshold levels (from 100% to only 10%) of 
agreement in probabilistic segmentation.  The box shows the first quartile, the median (asterisk) 
and the the third quartile of the data.  The whiskers display the total range of the data.  The 
lower results are from cases 60, 45 and 85 and should be improved through bias field correction 
on these scans.    
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