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Abstract. Recent work shows that diffusion tensor imaging (DTI) can
help resolving thalamic nuclei based on the characteristic fiber orien-
tation of the corticothalamic/thalamocortical striations within each nu-
cleus. In this paper we describe a novel segmentation method based on
spectral clustering. We use Markovian relaxation to handle spatial infor-
mation in a natural way, and we explicitly minimize the normalized cut
criteria of the spectral clustering for a better optimization. Using this
modified spectral clustering algorithm, we can resolve the organization
of the thalamic nuclei into groups and subgroups solely based on the
voxel affinity matrix, avoiding the need for explicitly defined cluster cen-
ters. The identification of nuclear subdivisions can facilitate localization
of functional activation and pathology to individual nuclear subgroups.

1 Introduction

All of the sensory pathways of the human brain (with the exception of the
olfactory pathway) project to the cortex via relay neurons in the thalamus. These
relay neurons are clustered into discrete clusters or nuclei that can be delineated
based on histological or functional criteria. Delineation of the nuclei is important
for surgical treatment of the thalamus and for localization of functional brain
activation to specific nuclei.

Recently, it has been shown that the thalamic nuclei can be resolved using
a type of magnetic resonance imaging (MRI) called diffusion tensor imaging
(DTI) [1, 2]. DTI measures the molecular diffusion, i.e., Brownian motion, of the
endogenous water in tissue. In fibrous biological tissues such as cerebral white
matter, water diffusion is anisotropic. In nerve tissue, the diffusion anisotropy
is thought to be due to the diffusion barrier presented by the cell membrane,
although the physical mechanisms for diffusion anisotropy in nerve tissue are not
entirely understood [3].

On DTI, the thalamus shows distinct clusters of diffusion orientation. These
clusters correspond in anatomic location and fiber orientation to the thalamic



nuclei [2]. Diffusion orientation thus provides a new anatomic criterion for dis-
tinguishing thalamic nuclei.

Although DTI can resolve thalamic nuclei, a segmentation algorithm is re-
quired to explicitly delineate the nuclei from the DTI data. Several methods
have been proposed to resolve the thalamic nuclei, including the use of k-means
[2], level-sets [4] and tract reconstructions from manually defined regions on the
cortical surface [1]. A weakness of the k-means algorithm is its geometric bias to-
wards ellipsoidal clusters. Further, both k-means and level sets show sensitivity
to initialization, and susceptibility to local minima.

The present report describes a new approach for segmentation of thalamic
nuclei using the spectral segmentation algorithm described by Shi and Malik
[5] with some modifications. The spectral segmentation algorithm has attracted
considerable interest in the pattern recognition community due its computational
simplicity, strong empirical performance, and rich underlying theory [6, 7, 8]. The
algorithm is based on a classical result from spectral graph partitioning which
relates the second smallest eigenvector of the Laplacian matrix of a graph to
optimal partitions. The spectral clustering algorithm has a number of desirable
features. For example, the algorithm consists entirely of direct matrix operations
and is therefore computationally efficient. Furthermore, the algorithm does not
require a geometric representation of the clusters and therefore contains no ex-
plicit geometric biases.

DTI data from 10 healthy participants were collected and segmented us-
ing the modified spectral clustering to demonstrate feasibility of the proposed
method.

2 Theory

Spectral clustering reduces segmentation into a graph partitioning problem. The
nodes of the graph are chosen to be the data points, and the links connecting the
nodes, commonly referred as edges, are assigned weights based on similarities of
the data points being linked together. In the case of DTI data, the nodes can
be chosen as the diffusion tensors, and the edge weights can be related to the
similarities of the neighboring tensors. In Section 2.1, we will describe the details
of the graph construction for DTI data, and in Section 2.2, we will describe
a procedure to solve the graph partitioning problem via explicit minimization
of an objective function defined on the graph. Once the graph partitioning is
completed, the algorithm produces a hierarchical tree, from which different levels
of segmentations can be extracted.

2.1 Graph Construction

Our approach to nuclei segmentation is to partition the DTI data into compact
regions with homogeneous diffusion properties, since similar diffusion properties
are likely to be indicative of belonging to the same nuclei. For that purpose we
are looking to construct a graph in which the nodes within a homogeneous region



are well connected and the nodes in different homogeneous regions are not. This
graph is constructed based on the spatial distances between the voxels as well
as the tensor dissimilarities.

The first step in the construction is to choose an appropriate metric to quan-
tify the tensor dissimilarities. There are a number of possible metrics for this
purpose, such as angular difference between the principle eigenvector directions,

f1 (T i,T j) = arccos (|vi · vj |) , (1)

where vi is the principal eigenvector of tensor T i. The absolute value of the
dot product solves the problem with the sign ambiguity of the eigenvectors (if v1

is an eigenvector, so is −v1). Another option is to use the full tensor information,

f2 (T i,T j) =
√

trace((T i − T j)2) . (2)

f2 (T i,T j) is explored in several DTI studies under names such as generalized
tensor dot product [9], Frobenius norm [2] and Euclidean distance metric [10].

We also experimented with a recently proposed information theoretic mea-
sure, symmetric K-L divergence [11],

f3 (T i,T j) =
√

trace(T−1
i T j + T

−1
j T i) − 2n , (3)

where n = 3 for diffusion tensors. After choosing a tensor dissimilarity metric,
we need to incorporate spatial relations of the voxels into the graph. One way
to do so is to linearly combine the tensor dissimilarity metric, f(T i,T j), with a
spatial distance, s(xi,xj), as in [2]:

d((xi,T i), (xj ,T j)) = f(T i,T j) + γs(xi,xj) , (4)

where γ is a weighting factor to control the trade-off between the tensor dis-
similarity and the spatial distances. However, selecting an appropriate weighting
factor is complicated by the fact that the spatial distances and the tensor dis-
similarities are inherently different types of features. To avoid this problem, we
use Markovian relaxation, which provides a natural way to incorporate the spa-
tial information. This is done by constructing a sparse affinity matrix, W s, with
non-zero similarities only between face neighbors:

W s(i, j) =

{

exp
−f(T i,T j)

2

σ2 , if s(xi,xj) ≤ 1

0, otherwise.
(5)

The parameter σ is chosen to be the sample variance of f(T i,T j) for neigh-
boring voxels. We then calculate the full affinity matrix, W , using Markovian
relaxation [12]. Specifically, we first convert the sparse weight matrix into a
one-step transition probability matrix whose rows and columns add up to one:

P 1(i, j) =
1

maxl d(l)
×

{

W s(i, j), if i 6= j

maxl d(l) − d(i), if i = j ,
(6)



where d is a vector containing row sums of W s, d(i) =
∑

j W s(i, j). The
diagonal adjustment ensures that the underlying random walk has a uniform
steady state distribution, and therefore every part of the corresponding Markov
field is explored at the same speed during the relaxation. Once the one-step
transition probability matrix is computed, it is possible to calculate the n-step
transition probabilities through Markovian relaxation, which is equivalent to
raising the one-step transition probability matrix to the power n: P n = P n

1

[12]. n is chosen to be smallest integer that will produce a non-zero transition
probability between every node. Finally the diagonal elements of P n are set to
zero to produce the full affinity matrix W .

2.2 Graph Cuts

Once the graph is constructed, one can calculate the k-way graph partition using
Normalized Cuts criteria. Formally, the problem is now reduced to the following:

Given a graph, G = (V ,E) and its edge weight matrix W = {ωij}, find a

set of disjoint sets V 1, V 2, . . . , V k, such that
⋃k

i=1 V i = V , which minimizes
the normalized cut (NCut):

NCut (V 1, V 2, . . . , V k) =

k
∑

i=1

asso(V i,V ) − asso(V i,V i)

asso(V i,V )
, (7)

where asso(A,B) =
∑

i∈A,j∈B
ωij [5].

Finding the normalized cuts, even for the case where k = 2, is NP-complete
due to the combinatorial nature of the discrete permutations, therefore, we need
a polynomial time algorithm that will provide a reasonable solution. Shi and
Malik suggest a number of possibilities for such an algorithm. In this paper, we
use a combination of the methods suggested.

Specifically, we first normalize the weight matrix; M = D−1W , where D

is a diagonal matrix with D(i, i) =
∑

j ωij . We then calculate the two largest
eigenvectors of the normalized weight matrix, M . The largest eigenvector is a
vector of constants due to the normalization and therefore discarded. We then
consider cutting W into two clusters by thresholding the second eigenvector of
M at every possible threshold level, looking for the 2-way cut with the minimum
NCut value. Once the cut is made, we repeat this process for each of the two
newly created clusters, until a very high threshold of a 2-way NCut value is
reached. This threshold is typically close to 1, which is the level at which every
point is clustered by itself regardless of the weights. This splitting is followed by
a greedy merging algorithm, minimizing NCut at every merging step, to reduce
the number of clusters to k. During this merging, the algorithm produces a
hierarchical tree, from which different levels of segmentation can be extracted
by varying k.

At the final stage of our algorithm we allow single data node swaps between
clusters to further reduce the NCut value. At every iteration of this stage, the
algorithm considers the possibility of reassigning a single node to another cluster.



If the resulting cut has a smaller NCut value than before, that node is reassigned
to its new cluster. The algorithm stops if there are nodes that can be reassigned.

3 Methods

3.1 Image acquisition and pre-processing

DTI data were acquired using a twice-refocused spin-echo EPI sequence [13] on
a 3 Tesla Siemens Trio MRI scanner using an 8-channel head coil. The sequence
parameters were TR/TE=8400/82 ms, b=700 s/mm2, gmax=26 mT/m, 10 T2
images, 60 diffusion gradient directions, 1 average, total acquisition time 9 min
59 seconds. The field-of-view was 256×256 mm and the matrix size was 128×128
to give 2 × 2 mm in-plane resolution. The slice thickness was 2 mm with 0 mm
gap.

Correction for motion and residual eddy current distortion was applied by
registering all of the scans to the first acquired non-diffusion-weighted scan for
each participant. The registration used a 12 degree-of-freedom global affine trans-
formation and a mutual information cost function [14]. Trilinear interpolation
was used for the resampling. The diffusion tensor, the tensor eigensystem, and
the FA metric were calculated for each voxel using the formulas of [15] and [16].

The diffusion tensor and FA volumes were normalized to MNI-space (Mon-
treal Neurological Institute) by registering each participant’s T2 volume to a
skull-stripped version of the MNI 152-subject T2 template [17] and then apply-
ing the transformation to the diffusion tensor and FA volumes with 12 degree-
of-freedom global affine transformation and a mutual information cost function
[14].

The registration transformation was then applied separately to the FA and
tensor volumes. The FA volume was resampled using trilinear interpolation and
the tensor volume was resampled using nearest neighbor interpolation. The ten-
sors were reoriented using the rotational portion of the atlas transformation.

3.2 Segmentation

Thalamus masks were drawn manually for each individual by a trained neuro-
anatomist. The masks were drawn for each hemisphere on each individual’s MNI-
normalized FA map. Each hemisphere further segmented into its seven nuclei on
the corresponding tensor map by the neuro-anatomist. The masked thalamus
DTI data was later segmented separately for each hemisphere using the spectral
algorithm described in Section 2.

4 Results

For all thalamic data sets, spectral reordering of the voxel affinity matrix revealed
significant clustering structure (Figure 1D). The network created by the algo-
rithm provides necessary information for the clustering and the spectral ordering



followed by the modified spectral clustering algorithm was able to identify the
clusters. These clusters are presented in Figure 2 (Right) for one of the individ-
uals along with the expert labels (Left). The automatically segmented clusters
are similar in both hemispheres which were processed independently, and they
match well with the expert segmentation.

All 10 subjects were segmented using the modified spectral clustering algo-
rithm at two different levels (of the hierarchical tree) with k = 7 and k = 12. The
experiment is repeated with W s and W to quantify the improvement achieved
by the Markovian relaxation. The resulting clusters are then named in accor-
dance with the expert labels. At this stage several clusters are allowed to inherit
the same labels for a quantitative comparison. These final segmentations are
then compared with the expert labels using the Dice volume overlap measure
[18]. Mean and standard deviation of the volume overlaps from the 10 subjects
are presented in Table 1.

Table 1. Dice volume overlap comparison of spectral clustering results with expert
labels for three tensor distance metrics f1, f2, f3. The experiment is repeated with
the sparse affinity matrix, W s, and with the product of Markovian relaxation, W , at
clustering levels of k = 7 and k = 12. A score of 100 would indicate a perfect match.

W s W W s W

k = 7 k = 7 k = 12 k = 12

Tensor Dist. f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

Mean 75.3 60.6 62.9 79.6 67.2 65.9 80.5 68.3 68.6 83.4 72.7 74.2
St. Dev. 5.7 4.9 5.0 5.6 4.8 5.6 4.6 5.4 3.9 4.1 4.9 5.1

5 Conclusions

In this paper, we presented a modified spectral clustering method for segment-
ing the thalamic nuclei using DTI data. Our method can automatically identify
nuclear groups and subgroups solely based on the voxel affinity without any
prior knowledge of cluster centers. Our experiments indicate that the angular
distances between principle eigenvector directions of tensors produce more con-
sistent segmentations compared to full tensor based measures.
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Fig. 1. A schematic outline of spectral segmentation algorithm. (A) A single slice
tensor data (B) Initial graph corresponding to W s (C) Unordered W (D) Ordered and
clustered W (E) Clusters on the slice (F) Clusters in 3D
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Fig. 2. Left: 3D rendering of expert segmentation of both hemispheres from one sub-
ject. Right: The same subject segmented by spectral clustering with k = 12.
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