

FIBERVIEWER LIGHT TUTORIAL

Berger Jean-Baptiste jean-baptiste.berger@cpe.fr

Launch from Slicer

For Linux and Mac users:

Open the modules list

- → Diffusion
- → Tractography
- → Fiber Viewer Light

For Windows users:

Go into your Slicer directory

(Slicer 4.0.1) then open

- \rightarrow lib \rightarrow Slicer-4.0 \rightarrow cli-modules
- → Double click on

Tractography Labelmap Seeding

FiberViewerLight.exe

Launch from Slicer

- From GUI:
 - > Select a VTK Input File
 - Choose the Clustering Method

• From Command Line:

./FiberViewerLight -i input_name -o output_name

Clustering

Length Method

- Fiber extremities is Threshold default values
- Bars option is the number of bars that will be used on the histogram if none of the fibers were thresholded
- Click on Apply Threshold to display the thresholded fiber
- Click Next or Undo to go back to the main screen, Next will keep changes

Length Method

 Colors go from blue (shortest) to red (longest)

Gravity, Hausdorff and Mean Methods

- Same general approach for each method
- Algorithm based on gravity, Hausdorff or mean pairwise distance matrix :
 - Distance between each center of gravity
 - Maximum of pair wise distances of two fibers
 - Mean of pair wise distances between two fibers

Gravity, Hausdorff and Mean Methods

Distribution

Min 0

Computes classes distribution

Step 0.1

Computes distribution

Max 1

- Clicking on "Compute Distribution" will generate histogram
- There will be (Max Min)/Step
- Click on Next to display generated classes with

Cluster Selector

- Structure of the table :
 Number of elements of ldth
 class and associated color
- Click on the number of elements to select class
- Click again to deselect a class

Cluster Selector

- Click on "Show" to display selected clusters only
- "Undo" to go back to the Distribution panel
- "Next" to keep changes and go back to main menu

Normalized Cut

- Choose the number of cluster which will be the number of classes
- Pairwise mean distance based algorithm

Saving your VTK File

- When you are done:
 - Enter a VTK Filename on the main menu

Or

- Click on "Save VTK" on the main menu and it will open a browser.
- If there is a VTK Filename specified on the main menu, each time you will click on "Save VTK", it will update the VTK output file

Visualization

Plane Settings

- Display a plane by clicking on Plane Option button
- Default display : Center of gravity
- Change origin and normal settings and update thanks to the corresponding button
- Retrieve coordinates by clicking "Get Plan Param" button

Origin	
Undate Plan Get Plan Param	_
Opuate Flair Get Flair Farairi	

Plane Settings

Translate the plan by dragging it

 Rotate the plan by dragging the normal arrow

General Visualization Controls

- Drag to rotate the view
- Shift + Drag to translate the fiber
- Ctrl + Drag to rotate on the perpendicular axe to the screen

Right dragging or wheel to zoom in or out

Contributors

Jean-Baptiste Berger : jean-baptiste.berger@cpe.fr

Clement Vachet :

cvachet@unc.edu

• Martin Styner :

martin styner@ieee.org

