Difference between revisions of "MeshingSummer2009"

From NAMIC Wiki
Jump to: navigation, search
Line 47: Line 47:
  
 
==References==
 
==References==
*Fletcher P, Tao R, Jeong W, Whitaker R. [http://www.na-mic.org/publications/item/view/634 A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI.] Inf Process Med Imaging. 2007;20:346-358. PMID: 17633712.
+
*Grosland Nicole M; Shivanna Kiran H; Magnotta Vincent A; Kallemeyn Nicole A; DeVries Nicole A; Tadepalli Srinivas C; Lisle Curtis
 +
IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development.
 +
Computer methods and programs in biomedicine 2009;94(1):96-107.
 +
 
 +
 
 +
 
 
* Corouge I, Fletcher P, Joshi S, Gouttard S, Gerig G. [http://www.na-mic.org/publications/item/view/292 Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.] Med Image Anal. 2006 Oct;10(5):786-98. PMID: 16926104.
 
* Corouge I, Fletcher P, Joshi S, Gouttard S, Gerig G. [http://www.na-mic.org/publications/item/view/292 Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.] Med Image Anal. 2006 Oct;10(5):786-98. PMID: 16926104.
 
* Corouge I, Fletcher P, Joshi S, Gilmore J, Gerig G. [http://www.na-mic.org/publications/item/view/1122 Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.] Int Conf Med Image Comput Comput Assist Interv. 2005;8(Pt 1):131-9. PMID: 16685838.
 
* Corouge I, Fletcher P, Joshi S, Gilmore J, Gerig G. [http://www.na-mic.org/publications/item/view/1122 Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.] Int Conf Med Image Comput Comput Assist Interv. 2005;8(Pt 1):131-9. PMID: 16685838.

Revision as of 13:19, 2 June 2009

Home < MeshingSummer2009


Key Investigators

  • University of Iowa: Nicole Grosland, Vince Magnotta, Kiran Shivanna
  • Isomics: Steve Pieper, Curtis Lisle

Objective

We are integrating finite element mesh creation tools developed at the University of Iowa into 3D Slicer. The result will be that 3D Slicer models can be further processed into meshes for analysis using external finite element programs, such as ABAQUS.




Approach, Plan

Standalone mesh creation tools exist in the standalone application IA-FEMesh found by clicking here.

The first integration of the IA-FEMesh module was released at the NA-MIC All Hands Meeting in January 2009. The module's first release functions in 3D Slicer for creating meshes interactively, but doesn't allow MRML saves & restores. The second implementation will use MRML display nodes to display the meshes and will support interactive exploration and editing using VTK 3D widgets.

Progress

The rendering and data storage methods have been modified to conform to Slicer's MRML architecture for separate model and display nodes. The three major classes of objects managed by IA-FEMesh (surfaces, building blocks, and meshes) are currently rendering in slicer using custom MRMLDisplayNode subclasses. We hope to complete and test the interaction with the objects and their MRML representations during the project week. We also look to propagate changes back to the standalone code version of IA-FEMesh so future development of the standalone and integrated versions can continue from a single code base.


References

  • Grosland Nicole M; Shivanna Kiran H; Magnotta Vincent A; Kallemeyn Nicole A; DeVries Nicole A; Tadepalli Srinivas C; Lisle Curtis

IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development. Computer methods and programs in biomedicine 2009;94(1):96-107.