Difference between revisions of "Projects:RegistrationLibrary:RegLib C31"

From NAMIC Wiki
Jump to: navigation, search
Line 51: Line 51:
 
##Registration Phases: select only ''Include BSpline''.  
 
##Registration Phases: select only ''Include BSpline''.  
 
##Output Settings: under SlicerBSpline Transform, select "Create New BSpline Transform'', then select ''Rename" and rename it to ''Xf2_e2-e1_BSpl''
 
##Output Settings: under SlicerBSpline Transform, select "Create New BSpline Transform'', then select ''Rename" and rename it to ''Xf2_e2-e1_BSpl''
 +
*'''Align Within Exam 1:'''
 +
#Select ''Load Volume...'' and open the GRE, FLAIR and DWI images, respectively
 +
#Open ''Registration / BRAINSFit'' module
 +
#Select the presets Xf3... to Xf9... or use settings below:
 +
##Registration phases: select ''Initialize with Center of Head Align'', ''include rigid'', ''include ScaleVersor3D'' and ''include Affine''
 +
##increase ''Number of Samples'' in ''Registration Parameters'' to 200,000
 +
 
##Registration Parameters: increase the ''Number of Samples'' field to 200,000
 
##Registration Parameters: increase the ''Number of Samples'' field to 200,000
 
##Leave all other settings at defaults & Click:  ''Apply''. Registration should complete within 3 minutes.  
 
##Leave all other settings at defaults & Click:  ''Apply''. Registration should complete within 3 minutes.  

Revision as of 20:50, 3 November 2010

Home < Projects:RegistrationLibrary:RegLib C31

Back to ARRA main page
Back to Registration main page
Back to Registration Use-case Inventory

v3.6.1 Slicer3-6Announcement-v1.png Slicer Registration Library Case xx: TBI

Input

Modules

Objective / Background

We seek to align two exams (acute baseline and follow-up) as well as all series within exams into a common space for direct evaluation of regional change.

Input Data

  • inter-exam
    • reference/fixed : T1_e1 baseline exam of acute TBI , 512 x 512 x 160 ; 0.5 x 0.5 x 1 mm voxel size, axial acquisition, RAS orientation.
    • moving:T1_e2 follow-up exam of acute TBI , 512 x 512 x 160 ; 0.5 x 0.5 x 1 mm voxel size, axial acquisition, RAS orientation.
  • intra-exam

Registration Challenges

  • we have multiple nested transforms: each exam is co-registered within itself, and then the exams are aligned to eachother
  • strong pathology (hemorrhage?) present at different amounts in the two exams

Key Strategies

  • we first register the scans within each exam to the T1
  • second we register the follow-up T1 scan to the baseline T1
  • we then nest the first alignment within the second

Procedure

  • Load & Center
  1. Load T1 MPRAGE datasets via Load Volume...
  2. volumes are note well centered, i.e. their physical origin defined in the image header differs; we therefore first center both images:
    1. Go to Volumes module, open Info tab
    2. From Active Volume menu, select each image in turn, then click the Center Image button
    3. note how Image origin changes for T1_e1 from 121,-97,-97 to 128,-128,-80 and for T1_e2 from 129,-106,-66 to 128,-128,-80
    4. now that both images have same center their initial misalignment can be seen by placing T1_e1 in the background and T1_e in the foreground and using the toggle-switch
  • Align Exam 2 to Exam 1: T1 1st pass: unmasked
  1. Open Registration / BRAINSFit module
    1. Fixed Image: T1_e1, moving image: T1_e2
    2. Registration Phases: select "Initialize with CenterOfHeadAlign", Include Rigid, "IncludeScaleVersor3D" and Include Affine
    3. Output Settings: under SlicerLinear Transform, select "Create New Linear Transform, then select Rename" and rename it to Xf1_e2-e1_Affine
    4. Registration Parameters: increase the Number of Samples field to 200,000
    5. Leave all other settings at defaults & Click: Apply. Registration should complete within ~ 30 seconds
    6. Go back to the Data module: you should see the T1_e2 image moved under the newly created transform
    7. Select "T1_e1" as background and T2_e2 as new foreground, toggle to see alignment
    8. due to the strong deformations an affine alignment alone does not achieve a perfect match. We can extend the DOF to non-rigid BSpline transforms, but must be aware that doing so might remove differences of interest:
  • Align Exam 2: 2nd pass: nonrigid
  1. Open Registration / BRAINSFit module
    1. Fixed Image: T1_e1, moving image: T1_e2
    2. From "Initialize with previously generated transform" & select the above affine Xf1_e2-e1_Affine
    3. Registration Phases: select only Include BSpline.
    4. Output Settings: under SlicerBSpline Transform, select "Create New BSpline Transform, then select Rename" and rename it to Xf2_e2-e1_BSpl
  • Align Within Exam 1:
  1. Select Load Volume... and open the GRE, FLAIR and DWI images, respectively
  2. Open Registration / BRAINSFit module
  3. Select the presets Xf3... to Xf9... or use settings below:
    1. Registration phases: select Initialize with Center of Head Align, include rigid, include ScaleVersor3D and include Affine
    2. increase Number of Samples in Registration Parameters to 200,000
    1. Registration Parameters: increase the Number of Samples field to 200,000
    2. Leave all other settings at defaults & Click: Apply. Registration should complete within 3 minutes.
    3. You should see the earlier residual misalignment reduced, but strong distortions applied to the e2 image (see results below)

Registration Results

Exam 1 co-registered unregistered exam 1 & 2
Exam 2 co-registered Exam 2 aligned to Exam 1 (affine only)
Exam 2 aligned to Exam 1 Exam 2 aligned to Exam 1 (affine+BSpline)
Exam 2 aligned to Exam 1 BSpline deformation only of Exam 2