Difference between revisions of "Projects:ProstateSegmentation"

From NAMIC Wiki
Jump to: navigation, search
 
(38 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Back to [[Algorithm:GATech|Georgia Tech Algorithms]]
+
Back to [[Algorithm:Stony Brook|Stony Brook University Algorithms]]
 
__NOTOC__
 
__NOTOC__
 
= Prostate Segmentation =
 
= Prostate Segmentation =
  
The objective is to extract the prostate from a 3D ultrasound data set.
+
The objective is to extract the prostate from a 3D MRI and ultrasound data set.
  
 
= Description =
 
= Description =
Two ways are employed to attack the problem. The first way is a combination of Cellular Automata(CA also called Grow Cut) with Geodesic Active Contour(GAC) methods. While the second is using a ellipsoid to match the prostate in 3D image. The details are given below.
+
Two ways are employed to attack the problem. The first way is Random Walks for prostate segmentation. While the second is using a shape based method. The details are given below.
  
 +
Random Walks for prostate segmentation
  
== Cellular Automata and Geodesic Active Contour. ==
+
== Overview ==
  
1 Image segmentation using CA algorithm was proposed by V Vezhnevets and V Konouchine, in "Grow-Cut" - Interactive Multi-Label N-D Image Segmentation. Graphicon, 2005. The algorithm starts from an initialization where two patches in foreground and background, respectively, are picked by hand. Then algorithm iteratively determine the category of each pixel/voxel in the image.
+
The algorithm starts with a few initial seeds marking object and background. Then to decide the category of each of the other(non-seed) pixels, a random walker is released and it walks on the lattice of the image. The difficulty of walking from on pixel position to another is inversely related with the difference between the intensities of the two pixels. Given those settings, the probability of the random walker first hitting each kind of seeds are calculated. And the category of the pixel is assigned to the one with the greatest first hit probability.
  
1.1 Definition of Cellular Automaton for segmentation. A Cellular Automaton is a pixel/voxel in image consisting three state variables: '''Label''', '''Strength''' and '''Feature'''. Thus as in the scenario of segmentation, the Label is the category the pixel belongs to, the Strength describes how confident is this automaton belonging to current category while the Feature is its intensity. Graphically, we use a cartoon to depict one automaton as in the picture:
+
Ideally, through this process the category of each pixel in the image could be decided.
  
[[Image:CA_anAutomaton.png]]
+
== Algorithm detail ==
  
1.2 Initialization of CA. The algorithm needs some seed points in the object and background. The initialization doesn't have to be close to the boundary. Usually just two strokes in and outside of object is enough. We initialize the background region by drawing a square enclosing the whole object thus those outside are background. And we initialize the foreground by drawing a triangle inside the object. Thus, the '''Label''' of each cellular automaton in the manually drawn foreground and background is set to there corresponding value while the '''Strength''' of each automaton is set to 1 indicating we have 100% confidence of its category. However, there are regions belonging neither to the foreground and background. The '''Label''' and '''Strength''' of the automata in those regions are set to ''undecided'' and 0, respectively. And it is those we are going to decide in the subsequent steps. Before describing that process, we give an image illustrating the initialization step in below.
+
The philosophy of random walk segmentation being stated above, it's practically impossible to implement that way. (Say, releasing many random walkers at each pixel and get the first hit probability using Monte-Carlo method.)
  
[[Image:CA_initialization.png]]
+
An analogy between first hit probability of random walks and the electrical potential distribution on a circuit network was given in the middle of last century. The resistance(conductance) in the circuit network is analogous to the crossing difficulty in the random walking scenario. Through the analogy the problem could be converted to a Dirichlet problem:
 +
<math> \triangle u = 0</math>
 +
with boundary conditions:
 +
<math>u = 1 for object seeds</math>
 +
<math>u = 0 for background seeds</math>
  
1.3 Attacking stage of CA and convergence.
+
In the above equation the <math>\triangle </math> is a Laplace-Beltrami operator where the spatial variant resistance is considered to be metric of the space.
  
2 CA algorithm does not deal with smoothness directly. A GAC step is employed, for one purpose, to smooth the result given by CA and for the other to fine tune the contour.
+
== Shape based segmentation ==
  
3 Both algorithms are implemented in 3D. A ITK-Cellular Automata filter, handling N-D data, has already been completed and submitted into the NA-MIC SandBox.
+
The shape based method could constrain the resulting segmentation within the learned variance of the shape. The algorithm consists two stages, learning the shapes and segment new case.
  
== Ellipsoid Matching==
+
== Shape learning ==
  
Prostate is usually modeled as an ellipsoid . Also, with no control of the global shape, the algorithm is highly influenced by noise and incomplete image information like weak boundary. A shape prior would be used to deal with such situations. However, firstly the prior is learned from a sufficient number of training data, which may not be available. Secondly the shapes need to be aligned in order to be learned or applied in segmentation. However for prostate which is mostly an ellipsoid in shape, there's not much prominent shape feature to drive the alignment and segmentation.
+
The training set consists 29 data sets, each of which is manually segmented. Not only the prostate is segmented, but also the rectum. The reason for segmenting rectum will be given later. The segmented results are saved in label map where 0 indicates background, 1 means prostate while 2 is the rectum.
  
So we are trying to first model the prostate using an ellipsoid. With that global constrain of shape, extraction it from image would be more robust. Secondly, if the prostate is well captured by an ellipsoid, then starting from there more local method would be used to capture the detail feature of the organ.
+
To learn the shape of prostate, we first need to register them to get rid of the variance of rigid motion and isotropic scaling.  
  
This way of attacking is under developing and some result would be available before the Core 1 meeting in late May.
+
There is very large shape variance in prostate. Just for ease of describing, we use ellipsoid analogy for the prostate. Some of the prostate has long axis horizontally posed, while some vertically. And some prostate is spherical shaped, having no eminent axis in any direction. So if we are to register the prostates alone, then the "horizontal prostate" would rotate 90 degree to best fit the "vertical prostate" and this may cause wrong point correspondence. This brings the necessity of having another object to "hold the frame", thus the rectum is also segmented out.
 +
 
 +
Having multiple objects to register at once, we employ the label space representation. It's a vectorial representation for multiple objects in image. Then a vector image registration process, based on the L-2 measure between two label space images, was carried on and 7 parameters(3 translation, 3 rotation and 1 isotropic scale) are registered.
 +
 
 +
Registration eliminates the similarity transform among shapes, next we learn the shape of prostate. The signed distance function(SDF) of the object has been used for shape learning by many researchers. In our case, we observed that two similar shapes may have large difference in the far field of their corresponding SDFs. However the shapes are embedded as the zero-contour of the SDF. So the large far field difference brings unnecessary variance.
 +
 
 +
To cure this, instead of learning SDFs, we learn the tanh(hyperbolic tangent) of SDF. The tanh function preserves the zero-contour of SDF while eliminates the far field variance. To sum up, we use tanh(SDF) to represent the shape.
 +
 
 +
Principle component analysis was carried on to learn the above representations of the shapes. And the eigen-vectors with high eigen-values are extracted as the basis of the shape space. Next, we segment a new image within this learned shape space, denoted as S.
 +
 
 +
== Segment new shape ==
 +
 
 +
The new image to be segmented is first preprocessed to high light the region of prostate. Then, within the shape space S, we look for the one that after similarity transformation, best fits the preprocessed image. The fitness is defined by the Binomial energy proposed by Yezzi et. al. in ''A Statistical Approach to Snakes for Bimodal and Trimodal Imagery''. Next we detail the pre-processing and the segmentation.
 +
 
 +
== Pre-processing ==
 +
 
 +
In the learning process we not only learn the shape, but also we could know the mean and standard divination of the intensity of prostate. For the given new image, we compute the likelihood image using the mean and std. To get the posterior image, uniform prior is used widely in literature. However that will include other regions with similar intensities. With another pieces of information, one point in the prostate, we could get better posterior image. That will further aid the segmentation. Next we detail the construction of prior.
 +
 
 +
Given one point in the prostate, preferred to be around center, we build a directional distance map. The local distances, from one grid point to its neighbors, are defined to be the absolute value of directional derivatives at that point toward its neighbors. By solving a Hamilton-Jacobi equation we obtain the directional distance map. The value of the distance map at each point illustrate both its Euclidean distance to the prostate and the similarity in intensity.
 +
 
 +
The prior is build by exp(-distance), and followed by the posterior map. In the later section, we'll call this posterior map by "distance modulated posterior map", or simply posterior map.
 +
 
 +
The posterior map given by uniform and distance modulated prior are, respectively:
 +
 
 +
[[Image:PosteriorWithUniformPrior.png|320px]] and [[Image:Posterior.png|320px]]
 +
 
 +
From which we can see that the distance modulated posterior eliminates the far field interference while maintain the shape(not favoring a spherical shape).
 +
 
 +
== Segmentation of the pre-processed image ==
 +
 
 +
Given the posterior map, we want to find one shape in the shape space to minimize the Binomial energy. Because the shape in the learned shape space is represented by basis, instead of evolving the curve/surface, we only need to optimize over the coefficients of the basis. So the problem is turned into a finite dimensional non-linear optimization problem.
 +
 
 +
We calculate the gradient of the energy with respect to shape basis coefficients and similarity transformation parameters. Then we use the non-linear optimization algorithm LBFGS to get the result, shown in
 +
 
 +
[[Image:ShapeBasePstSegSlicer.png|Shape base prostate segmentation in Slicer through command line module|500px]].
 +
 
 +
As shown in the above image, the algorithm is integrated into 3D Slicer.
  
 
= Key Investigators =
 
= Key Investigators =
Line 41: Line 82:
 
= Publications =
 
= Publications =
  
 +
In Press
 +
 +
Y. Gao, R. Sandhu, G. Fichtinger, A. Tannenbaum; A coupled global registration and segmentation framework with application to magnetic resonance prostate imagery. IEEE TMI (in submission)
 +
 +
= Recent Work =
 +
[[RobustStatisticsSegmentation| Robust Statistics Segmentation]]
  
 +
Project Week Results: [[2009_Summer_project_week_prostate_registration|Jun 2009]]
  
[[Category: Segmentation]]
+
[[Category: Segmentation]] [[Category: Prostate]]

Latest revision as of 01:00, 16 November 2013

Home < Projects:ProstateSegmentation
Back to Stony Brook University Algorithms

Prostate Segmentation

The objective is to extract the prostate from a 3D MRI and ultrasound data set.

Description

Two ways are employed to attack the problem. The first way is Random Walks for prostate segmentation. While the second is using a shape based method. The details are given below.

Random Walks for prostate segmentation

Overview

The algorithm starts with a few initial seeds marking object and background. Then to decide the category of each of the other(non-seed) pixels, a random walker is released and it walks on the lattice of the image. The difficulty of walking from on pixel position to another is inversely related with the difference between the intensities of the two pixels. Given those settings, the probability of the random walker first hitting each kind of seeds are calculated. And the category of the pixel is assigned to the one with the greatest first hit probability.

Ideally, through this process the category of each pixel in the image could be decided.

Algorithm detail

The philosophy of random walk segmentation being stated above, it's practically impossible to implement that way. (Say, releasing many random walkers at each pixel and get the first hit probability using Monte-Carlo method.)

An analogy between first hit probability of random walks and the electrical potential distribution on a circuit network was given in the middle of last century. The resistance(conductance) in the circuit network is analogous to the crossing difficulty in the random walking scenario. Through the analogy the problem could be converted to a Dirichlet problem: [math] \triangle u = 0[/math] with boundary conditions: [math]u = 1 for object seeds[/math] [math]u = 0 for background seeds[/math]

In the above equation the [math]\triangle [/math] is a Laplace-Beltrami operator where the spatial variant resistance is considered to be metric of the space.

Shape based segmentation

The shape based method could constrain the resulting segmentation within the learned variance of the shape. The algorithm consists two stages, learning the shapes and segment new case.

Shape learning

The training set consists 29 data sets, each of which is manually segmented. Not only the prostate is segmented, but also the rectum. The reason for segmenting rectum will be given later. The segmented results are saved in label map where 0 indicates background, 1 means prostate while 2 is the rectum.

To learn the shape of prostate, we first need to register them to get rid of the variance of rigid motion and isotropic scaling.

There is very large shape variance in prostate. Just for ease of describing, we use ellipsoid analogy for the prostate. Some of the prostate has long axis horizontally posed, while some vertically. And some prostate is spherical shaped, having no eminent axis in any direction. So if we are to register the prostates alone, then the "horizontal prostate" would rotate 90 degree to best fit the "vertical prostate" and this may cause wrong point correspondence. This brings the necessity of having another object to "hold the frame", thus the rectum is also segmented out.

Having multiple objects to register at once, we employ the label space representation. It's a vectorial representation for multiple objects in image. Then a vector image registration process, based on the L-2 measure between two label space images, was carried on and 7 parameters(3 translation, 3 rotation and 1 isotropic scale) are registered.

Registration eliminates the similarity transform among shapes, next we learn the shape of prostate. The signed distance function(SDF) of the object has been used for shape learning by many researchers. In our case, we observed that two similar shapes may have large difference in the far field of their corresponding SDFs. However the shapes are embedded as the zero-contour of the SDF. So the large far field difference brings unnecessary variance.

To cure this, instead of learning SDFs, we learn the tanh(hyperbolic tangent) of SDF. The tanh function preserves the zero-contour of SDF while eliminates the far field variance. To sum up, we use tanh(SDF) to represent the shape.

Principle component analysis was carried on to learn the above representations of the shapes. And the eigen-vectors with high eigen-values are extracted as the basis of the shape space. Next, we segment a new image within this learned shape space, denoted as S.

Segment new shape

The new image to be segmented is first preprocessed to high light the region of prostate. Then, within the shape space S, we look for the one that after similarity transformation, best fits the preprocessed image. The fitness is defined by the Binomial energy proposed by Yezzi et. al. in A Statistical Approach to Snakes for Bimodal and Trimodal Imagery. Next we detail the pre-processing and the segmentation.

Pre-processing

In the learning process we not only learn the shape, but also we could know the mean and standard divination of the intensity of prostate. For the given new image, we compute the likelihood image using the mean and std. To get the posterior image, uniform prior is used widely in literature. However that will include other regions with similar intensities. With another pieces of information, one point in the prostate, we could get better posterior image. That will further aid the segmentation. Next we detail the construction of prior.

Given one point in the prostate, preferred to be around center, we build a directional distance map. The local distances, from one grid point to its neighbors, are defined to be the absolute value of directional derivatives at that point toward its neighbors. By solving a Hamilton-Jacobi equation we obtain the directional distance map. The value of the distance map at each point illustrate both its Euclidean distance to the prostate and the similarity in intensity.

The prior is build by exp(-distance), and followed by the posterior map. In the later section, we'll call this posterior map by "distance modulated posterior map", or simply posterior map.

The posterior map given by uniform and distance modulated prior are, respectively:

PosteriorWithUniformPrior.png and Posterior.png

From which we can see that the distance modulated posterior eliminates the far field interference while maintain the shape(not favoring a spherical shape).

Segmentation of the pre-processed image

Given the posterior map, we want to find one shape in the shape space to minimize the Binomial energy. Because the shape in the learned shape space is represented by basis, instead of evolving the curve/surface, we only need to optimize over the coefficients of the basis. So the problem is turned into a finite dimensional non-linear optimization problem.

We calculate the gradient of the energy with respect to shape basis coefficients and similarity transformation parameters. Then we use the non-linear optimization algorithm LBFGS to get the result, shown in

Shape base prostate segmentation in Slicer through command line module.

As shown in the above image, the algorithm is integrated into 3D Slicer.

Key Investigators

  • Georgia Tech Algorithms: Yi Gao, Allen Tannenbaum

Publications

In Press

Y. Gao, R. Sandhu, G. Fichtinger, A. Tannenbaum; A coupled global registration and segmentation framework with application to magnetic resonance prostate imagery. IEEE TMI (in submission)

Recent Work

Robust Statistics Segmentation

Project Week Results: Jun 2009